Skip to main content

Advertisement

Log in

An inter-PAN mobility support scheme for IP-based wireless sensor networks and its applications

  • Published:
Information Technology and Management Aims and scope Submit manuscript

Abstract

Mobility support for Wireless Sensor Networks (WSN) can significantly extend the use of WSN in many fields, such as industrial control, healthcare and smart home. And high-efficiency mobility support schemes are essential for WSN because this is a typical energy constrained network. This paper proposes a LoW cost inter-PAN Mobility Support Scheme (LoWMS) for IPv6 based WSN, which follows the network based idea. The scheme aims at reducing signaling cost when sensor nodes move between two Personal Area Networks. In order to realize it, the handoff related control messages are designed to transmit in link layer, and resolution for ping-pong handoff is also given. Simulation results show the novel scheme efficiently reduces the amount of handoff messages, which is benefit for energy saving of WSN. At the end of the paper, we illustrate two possible application scenarios which could be beneficial from LoWMS, one is healthcare system, and another is logistics and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

WSN:

Wireless sensor networks

LoWMS:

LoW cost inter-PAN mobility support scheme

PANs:

Personal area networks

IETF:

Internet engineering task force

6LoWPAN:

IPv6 over low power wireless personal area network

MIP:

Mobile IP

MIPv6:

Mobility support in IPv6

HoA:

Home-of address

CoA:

Care-of address

FA:

Foreign agent

HMIPv6:

Hierarchical mobile IPv6

MAP:

Mobility anchor point

RCoA:

Regional CoA

LCoA:

Local care-of address

FMIPv6:

Fast mobile IPv6

PMIPv6:

Proxy mobile IPv6

LMA:

Local mobility anchor

MAG:

Mobile access gateway

SPMIPv6:

Sensor proxy mobile IPv6

GW:

Gateway

CMN:

Cluster tree member node

MC:

Mobile cluster

CHN:

Cluster head node

FFD:

Full function devices

RFD:

Reduced function devices

PTT:

Previous node tunnel table

NTT:

Next node tunnel table

FC:

Frame control

SN:

Serial number

DA:

Destination address

SA:

Source address

FCS:

Frame check sequence

C:

Control

BAN:

Body area network

RFID:

Radio frequency identification devices

AoA:

Angle of arrival

TDoA:

Time difference of arrival

RSS:

Received signal strength

References

  1. Hui JW, Culler DE (2008) Extending IP to low-power, wireless personal area networks. IEEE Internet Comput 12(4):37–45. doi:10.1109/MIC.2008.79

    Article  Google Scholar 

  2. Geoff M (2007) The 6LoWPAN architecture. In: Proceedings of EmNets, pp 78–82. doi:10.1145/1278972.1278992

  3. Antonio J, Miguel A, Antonio S (2012) Glowbal IP: an adaptive and transparent IPv6 integration in the internet of things. Mobile Inf Syst 8(3):177–197. doi:10.3233/MIS-2012-0138

    Google Scholar 

  4. Kushalnagar N, Montenegro G, Schumacher C (2007) IPv6 over low-power wireless personal area networks (6LoWPANs): overview, assumptions, problem statement, and goals. IETF RFC4919

  5. Jean-Philippe V, Adam D (2009) Interconnecting smart objects with IP: the next internet. Morgan Kaufmann, Burlington

    Google Scholar 

  6. Oliveira LuisML, Amaro F, Joel J (2011) Routing and mobility approaches in IPv6 over LoWPAN mesh networks. Int J Commun Syst 24(11):1445–1466. doi:10.1002/dac.1228

    Article  Google Scholar 

  7. Zach S, Carsten B (2009) 6LoWPAN: the wireless embedded internet. Wiley, London

    Google Scholar 

  8. Adam D, Vasseur JP (2008) IP for smart objects. Internet protocol for smart objects (IPSO) alliance. White paper 1

  9. Rashid RA, Arifin S, Rahim M, Sarijari MA, Mahalin NH (2008) Home healthcare via wireless biomedical sensor network. In: Proceedings of IEEE RF and microwave conference, pp 511–514. doi:10.1109/RFM.2008.4897437

  10. Arnil J, Punsawad Y, Wongsawat Y (2011) Wireless sensor network-based smart room system for healthcare monitoring. In: Proceedings of robotics and biomimetics (ROBIO), pp 2073–2076. doi:10.1109/ROBIO.2011.6181597

  11. Zhang Z, Chen Q, Bergarp T, Norman P, Wikstrom M, Yan X, Zheng L (2009) Wireless sensor networks for logistics and retail. In: Proceedings of networked sensing systems (INSS), pp 1–4. doi:10.1109/INSS.2009.5409943

  12. Pangun P, Fischione C, Bonivento A, Johansson KH, Sangiovanni V (2011) Breath: an adaptive protocol for industrial control applications using wireless sensor networks. IEEE Trans Mobile Comput 10(6):821–838. doi:10.1109/TMC.2010.223

    Article  Google Scholar 

  13. Islam MM, Huh EN (2011) Sensor proxy mobile IPv6 (SPMIPv6)—a novel scheme for mobility support IP-WSN. Sensors 11(2):1865–1887. doi:10.3390/s110201865

    Article  Google Scholar 

  14. Charles EP (1996) IP mobility support. IETF RFC2002

  15. Charles EP, David BJ, Jari A (2011) Mobility support in IPv6. IETF RFC6275

  16. Soliman H, Castelluccia C, ElMalki K, Bellier L (2008) Hierarchical mobile IPv6 (HMIPv6) mobility management. IETF RFC5380

  17. Rajeev K (2009) Mobile IPv6 fast handovers. IETF RFC5568

  18. Gargi B, Muhammad TR, Kim KH, Yoo SW (2009) LoWMob: intra-PAN mobility support schemes for 6LoWPAN. Sensors 9(7):5844–5877. doi:10.3390/s90705844

    Article  Google Scholar 

  19. Gundavelli S (2012) Reserved IPv6 interface identifier for proxy mobile IPv6. IETF RFC6543

  20. Gundavelli S, Leung K, Devarapalli V, Chowdhury K, Patil B (2008) Proxy mobile IPv6. IETF RFC5213

  21. IEEE standard 802.15.4-2006. Part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs). IEEE Std. 802.15.4-2006. 2006

  22. Baronti P, Pillai P, Chook V, Chessa S, Gotta A, Hu Y (2007) Wireless sensor networks: a survey on the state of the art and the 802.15.4 and ZigBee standards. Computer communications wires/wireless internet. Communications 30(7):1655–1695. doi:10.1016/j.comcom.2006.12.020

    Google Scholar 

  23. Wu P. http://sites.google.com/site/pengjungwu/nsg

  24. Jinho K, Rim H, Eung JC, Choong SH, Lee S (2011) A 6LoWPAN sensor node mobility scheme based on proxy mobile IPv6. IEEE Trans Mobile Comput 99:1–14. doi:10.1109/TMC.2011.240

    Google Scholar 

  25. JeongGil K, Lu C, Srivastava MB, Stankovic JA, Terzis A, Welsh M (2010) Wireless sensor networks for healthcare. Proc IEEE 98(11):1947–1960. doi:10.1109/JPROC.2010.2065210

    Article  Google Scholar 

  26. Hidalgo LRuben, Moreno N, Jose I (2011) Routing design in wireless sensor networks and a solution for healthcare environments. IEEE Latin Am Trans 9(3):408–414. doi:10.1109/TLA.2011.5893790

    Article  Google Scholar 

  27. Chen SL, Lee HY, Chen CA, Huang HYi, Luo CH (2009) Wireless body sensor network with adaptive low-power design for biometrics and healthcare applications. IEEE Syst J 3(4):398–409. doi:10.1109/JSYST.2009.2032440

    Article  Google Scholar 

  28. Sebastian Z, Andreas R, Marek M, Ralf S (2010) A concept for cross-layer optimization of wireless sensor networks in the logistics domain by exploiting business knowledge. In: Proceedings of IEEE conference on local computer networks, pp 951–953

Download references

Acknowledgments

This work is supported by Beijing Natural Science Foundation (Grant No. 4112044) and Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20120009110009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopu Shang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, X., Zhang, R. & Chu, F. An inter-PAN mobility support scheme for IP-based wireless sensor networks and its applications. Inf Technol Manag 14, 183–192 (2013). https://doi.org/10.1007/s10799-013-0155-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10799-013-0155-z

Keywords

Navigation