
���������	�
��������� ��� � �������������������

 "!$#&%('*)+#-,(.0/0!2143(5768'(9(:<;*!&5>=*?*?4@BAC=*=

DFE�GBHJI�K�LNM<I�KPORQTSUQVEXWNY Z�KP[\SP]_^<I<G-[`O abEcMd[TG*Ifeg[�hiS7jkMlSmMnj

/03`%*) 6no�%&,2p`%&,Fqr6s!utv!�w_5U!2:n!25�xy'&p`57!zq`#u!$p`5734t

%{6|6}1�~C�*�v�g�g�8A�9(.C;�AC,A�;*!$�4pr)��&����p��4#���t
 d%*)+���_3(5��f�g,v�R1&,25�6�)�,(.�. �z��9(1(1*3(576s!-pc;���,���/��(o��`5U,�'{6�~g=BA�@*�(�4?BAC?4=

Formal analysis of multi-party contract signing

Rohit Chadha1?, Steve Kremer2??, and Andre Scedrov3? ? ?

1 University of Sussex
2 Université Libre de Bruxelles
3 University of Pennsylvania

Abstract. We analyze the multi-party contract-signing protocols of Garay and MacKenzie
(GM) and of Baum and Waidner (BW). We use a finite-state tool, Mocha, which allows
specification of protocol properties in a branching-time temporal logic with game semantics.
While our analysis does not reveal any errors in the BW protocol, in the GM protocol we
discover serious problems with fairness for four signers and an oversight regarding abuse-
freeness for three signers. We propose a complete revision of the GM subprotocols in order
to restore fairness.

1 Introduction

The problem of digitally signing a contract over a network is more complicated than signing a
contract by “pen and paper”. The problem arises because of an inherent asymmetry: no signer
wants to be the first one to sign the contract because another signer could refuse to do so after
having obtained the first signer’s contract.

A simple solution consists in using a trusted party (T) as an intermediary. Signers send their
respective contracts to T , which first collects the contracts and then distributes them among the
signers. An intermediary is known to be necessary [8]. However, because of the communication
and computation bottleneck at T , this solution is inefficient. Other solutions include randomized
protocols as well as protocols based on gradual information exchange. More recently, the so-called
optimistic approach was introduced in [2, 4]. The idea is that T intervenes only when a problem
arises, e.g., a signer is trying to cheat or a network failure occurs at a crucial moment during
the protocol. Such protocols generally consist of a main protocol and one or several subprotocols,
each with a fixed number of messages. The main protocol is executed by the signers in order to
exchange their signatures. The subprotocols are used to contact T in order to force a successful
outcome or to abort the protocol.

A contract-signing protocol should respect several desirable properties. The first property is
fairness. Intuitively, a contract-signing protocol is fair if at the end of the protocol either each
signer obtains all the other signers’ contracts or no signer gets any valuable information. A second
property, timeliness, ensures that signer has some recourse to prevent endless waiting. Both fairness
and timeliness are standard properties that are also important in fair exchange, certified e-mail and
fair non-repudiation protocols. A property that is specific to contract signing, abuse-freeness, was
introduced in [9]. A protocol is abuse-free if no signer A is able to prove to an external observer that
A has the power to choose between successfully concluding the protocol and aborting the protocol.
A protocol that is not abuse-free gives an undesirable advantage to one signer, say Alice, who has
the power to decide the outcome of the protocol and can prove this to an external observer. If,
for instance, Alice wants to sell a house to Charlie, she could initiate a contract with Bob just to
force Charlie to increase his offer.

? Partially supported by the ONR CIP/SW URI “Software Quality and Infrastructure Protection for
Diffuse Computing” through ONR Grant N00014-01-1-0795 and by the NSF Grant CCR-0098096 and
the EU Global Computing project “MIKADO”.

?? This research was carried out while the author stayed at University of Pennsylvania funded by the
“Communaut Franaise de Belgique”.

? ? ? Partially supported by the ONR CIP/SW URI “Software Quality and Infrastructure Protection for
Diffuse Computing” through ONR Grant N00014-01-1-0795 and by the NSF Grant CCR-0098096.

There have been several applications of formal methods to contract signing, so far only for
the special case of two signers. The finite model-checker Murϕ is used in [13] to analyze two
contract-signing protocols, discover subtle errors and suggest corrections. In [5] inductive methods
are used to reason about contract-signing protocols specified in the multiset-rewriting framework,
MSR. Protocol properties are expressed in terms of strategies, which provide a natural framework
for the analysis. In [12] the finite model-checker Mocha is used to analyze two contract-signing
protocols. The advantage of using Mocha rather than Murϕ is that Mocha allows to specify
protocol properties in ATL, a temporal logic with game semantics, which in turn allows reasoning
about strategies. The most recent work on contract signing [6] introduces the notion of an optimistic

signer, i.e., a signer that prefers to wait for “some time” for messages from the other signers before
contacting the trusted party. The main theorem of [6] is that, independently of a specific protocol,
if any of the signers is optimistic, then the other signer will at some point of the protocol have the
power to decide the outcome.

All the efforts just described consider only two-party protocols. In this paper we analyze multi-
party contract-signing protocols [3, 10]. The protocol goal in that case is that each signer sends its
signature on a previously agreed upon contract text to all other signers and that each signer receives
all other signers’ signatures on this contract. In a multi-party framework, fairness, timeliness, and
abuse-freeness should hold against any coalition of dishonest parties. Unlike in the two-party case,
the complexity level of the multi-party protocols, especially [10], is such that a tool, e.g., a model-
checker, is indispensable in the analysis. This partly comes about from an important difference
between the two-party and the multi-party case, namely, in the multi-party case T has to be able
to overturn its previous abort decisions [9]. As our analysis shows, this feature is particularly
difficult to design correctly. We have discovered an essential obstacle in the GM protocol [10],
which appears not to be removable without completely changing the subprotocols for T and which
leads to the failure of fairness in the case of four signers. We present this attack in detail in the
paper and propose a corrected version of the GM protocol, which has been validated by Mocha.
Mocha did not find any problems with fairness in the BW protocol [3] nor in the original GM
protocol with only three signers. In the latter case, Mocha did find an amusing problem with
abuse-freeness, but this problem is easily corrected. We believe that the main reason for robustness
of the BW protocol is that overturning the aborts decisions has been designed correctly.

Outline of the paper. The rest of the paper is organized as follows. In section 2, we describe the
BW and the GM protocols. In section 3, we present briefly the finite-state tool, Mocha, the
temporal logic ATL and its game semantics. Modeling of the protocols and protocol assumptions
in the game semantics along with the modeling of fairness in ATL is briefly discussed. In section 4,
we report on our analysis of the BW and GM protocols using Mocha, present the fairness attack
on four signers in detail and propose a corrected version version of the protocol. We discuss briefly
how to restore fairness and present the anomaly with respect to abuse-freeness for three signers.
In order to detect this anomaly, we had to model optimistic signers and discuss this issue. We
summarize our results and discuss directions for future work in section 5.

2 Protocol description

In this section we describe the multi-party contract-signing protocols proposed by Baum and
Waidner in [3] and Garay and MacKenzie in [10]. Unlike two-party protocols, which generally have
similar structures, the two multi-party protocols described below have fundamentally different
structures. For this section and for the rest of the paper, we shall assume that each protocol
participant has a private signing key and a corresponding public verification key. Each participant
shall be identified with this private/public key pair, and if we say that “A can . . . ”, we shall mean
anyone that possesses the private key of A.

2.1 GM multi-party contract-signing protocol

The protocol allows n (n ≥ 2) participants, say P1, . . . , Pn, to exchange signatures with the help
of a trusted party T on a preagreed contract text m. Pi is said to have a contract if it has
everybody’s signature on the text m. The order of the participants P1, . . . , Pn, henceforth referred
to as signers, and the identity of T are also agreed upon before the protocol begins. The preagreed
contract text m contains an identifier that uniquely identifies each protocol instance. In [10], the
communication amongst the participants is assumed to be over a network channel in control of a
“Dolev-Yao intruder”, while the communication between the participants and the trusted party is
assumed to be over a private channel.

The protocol uses zero-knowledge cryptographic primitives, private contract signatures, that
were first introduced in [9]. The private contract signature of A for B on text m with respect to
a trusted party T , denoted as PCSA(m, B, T) has the following properties:
a) PCSA(m, B, T) can be created by A.
b) PCSA(m, B, T) can be faked by B. Only A, B and T can tell difference between PCS and its
simulation.
c) PCSA(m, B, T) can be converted into a conventional universally-verifiable digital signature,
SA(m), by both A and T . Only A and T can do this conversion.

The protocol itself consists of three subprotocols: main, abort, and recovery subprotocols.
Usually signers try to achieve the exchange by executing the main subprotocol. They contact T

using one of the other two subprotocols when they think something is amiss. Once a signer contacts
T , it no longer takes part in the main subprotocol. T responds to a request with either an abort
token or a signed contract. The decision whether to reply with an abort token or with a signed
contract is based on a database maintained by T , which stores all the relevant information of the
requests and its responses. Once T sends back a signed contract, it always replies with the signed
contract. As discussed below, a decision to abort may, however, be overturned in order to maintain
fairness. We discuss the subprotocols in some detail.

Main protocol. The main protocol for n signers is divided into n-levels, that can be described
recursively. For each level of recursion, a different “strength” of promise is used. The strength of
a promise is denoted by an integer “level”, and an “i-level promise from signer A to signer B on
a message m” is implemented using PCS: PCSA((m, i), B, T).

In level i, signers Pi through P1 exchange i-level promises to sign the contract. The i-level
protocol is triggered when Pi receives 1-level promises from Pi+1, . . . , Pn. After receiving these
promises, Pi sends out its 1 level promise to signers Pi−1, . . . , P1 and waits for i− 1 level to finish.
At the end of the i − 1 level, P1, . . . Pi−1 have exchanged i − 1 level promises and Pi receives a
i− 1 level promise from each of the signers P1, . . . , Pi−1. Now Pi . . . , P1 exchange i level promises,
and close the higher levels.

In order to close level a where a > i, Pi sends an (a−1)-level promise to Pa and waits for a-level
promises from signers Pi+1, . . . , Pa. After receiving these promises, Pi indicates its willingness to
close the level a to signers P1, . . . , Pi−1 by sending them its a-level promise, and in return waits
for a-level promises from them. Upon receiving these, Pi sends its a-level promises to Pi+1, . . . , Pa

completing its obligation in the a-level protocol. Pi then proceeds to complete a + 1 level.
Once the n-levels are completed, each signer has a n-level promise from everybody else, and the

contract exchange is ready to begin. In this exchange, each signer also sends a n + 1-level promise
to everybody along with its signature on the preagreed text. In order to complete the exchange,
signer Pi waits for the contract and n + 1-level promises from Pn, . . . , Pi+1. Upon receiving these,
Pi sends its signature and n + 1-level promises to everybody, and waits for the signatures and
n + 1-level promises from Pi−1, . . . , P1. Once these are received, the protocol ends for Pi, and Pi

has the contract.
If some expected messages are not received, Pi may either quit the protocol or contact T . Pi

may simply quit the protocol if it has not sent any promises or contact T if it has sent some
promises. It may contact T with a request to abort if it has not received any promise from some
signer. It may request T to recover the protocol if it has a promise from every other signer. A
detailed description of the main protocol is given in table 1.

Table 1 GM multi-party contract-signing protocol—Main

Wait for all higher recursive levels to start
1. Pj → Pi: PCSPj

((m, 1), Pi, T) (n ≥ j > i)
If Pi does not receive 1-level promises from Pn . . . Pi+1 in a timely manner, Pi simply quits.

Start recursive level i
2. Pi → Pj : PCSPi

((m, 1), Pj , T) (i > j ≥ 1)
Wait for recursive level i-1 to finish

3. Pj → Pi: PCSPj
((m, i − 1), Pi, T) (i > j ≥ 1)

If Pi does not receive (i-1)-level promises from Pi−1 . . . P1 in a timely manner, Pi aborts.
Send i-level promises to all lower-numbered signers

4. Pi → Pj : PCSPi
((m, i), Pj , T) (i > j ≥ 1)

Finish recursive level i when i-level promises are received
5. Pj → Pi: PCSPj

((m, i), Pi, T) (i > j ≥ 1)
If Pi does not receive i-level promises from Pi−1 . . . P1 in a timely manner, Pi recovers.

Complete all higher recursive levels
For a = i + 1 to n, Pi does the following:

6.1. Pi → Pa: PCSPi
((m,a − 1), Pa, T)

6.2. Pj → Pi: PCSPi
((m,a), Pj , T) (a ≥ j > i)

If Pi does not receive a-level promises from Pa . . . Pi+1 in a timely manner, Pi recovers.
6.3. Pi → Pj : PCSPi

((m,a), Pj , T) (i > j ≥ 1)
6.4. Pj → Pi: PCSPi

((m,a), Pj , T) (i > j ≥ 1)
If Pi does not receive a-level promises from Pi−1 . . . P1 in a timely manner, Pi recovers.
6.5. Pi → Pj : PCSPi

((m,a), Pj , T) (a ≥ j > i)
Wait for signatures and (n+1)-level promises from higher-numbered signers

7. Pj → Pi: PCSPj
((m, n + 1), Pi, T), SPj

(m, 1) (n ≥ j > i)
If Pi does not receive signatures and (n+1)-level promises from Pn . . . Pi+1 in a timely manner, Pi

recovers.
Send signatures and (n+1)-level promises to signers

8. Pi → Pj : PCSPi
((m,n + 1), Pj , T), SPi

(m, 1) (j 6= i)
Wait for signatures from lower-numbered signers

9. Pj → Pi: PCSPj
((m, n + 1), Pi, T), SPj

(m, 1) (i > j ≥ 1)
If Pi does not receive signatures and (n+1)-level promises from Pi−1 . . . P1 in a timely manner, Pi

recovers.

Abort protocol. T maintains two sets, Sm and Fm, that are used by T to make decisions when
a signer contacts T . These sets are created when T is contacted for the first time for m and are
initialized to be empty. The set Sm contains the indices of all signers that have contacted T and
received an abort token from T in response. The intuitive meaning of the set Fm is not clearly
stated in [10], but it contains some additional information that T uses in deciding when to overturn
an abort decision that T has taken before.

The details of the abort protocol are given in table 2. Mainly, if T is contacted with a request
to abort, then T checks its database. If this is the first request or if the protocol has not already
been recovered, T sends back an abort token and updates the sets Sm and Fm. If the protocol has
already been successfully recovered, T sends back a signed contract.

Recovery protocol. The details of the recovery protocol are given in table 3. For Pi to recover, it
sends the message SPi

({PCSPj
((m, kj), Pi, T)}j∈{1,...n}\{i}, SPi

((m, 1))), where

– if j > i, kj is the maximum level of a promise received from Pj on m,
– if j < i, kj is the maximum level of promises received from all signers Pj′ , with j′ < i, i.e., the

min-max of the level of promises from signers with lower index. (E.g., if the maximum level
of the promises received by P4 from P3 and P2 was 6, and the maximum level received by P4

from P1 was 5, then it would send the 5-level promises for P1, P2 and P3.)

If T is contacted with a request to recover, then T checks its database. If this is the first
request for m or if the protocol has already been recovered, T replies with a signed contract

Table 2 GM multi-party contract-signing protocol—Abort

1. Pi → T: SPi
(m,Pi, (P1, . . . , Pn), abort)

if not validated(m) then
if Sm = ∅, T stores ST (SPi

(m,Pi, (P1, . . . , Pn), abort)); Sm = Sm ∪ {i};
if i is larger than the maximum index in Sm, T clears Fm

2. T → Pi: ST (SPj
(m, Pj , (P1, . . . , Pn), abort), ST (m,Sm, abort))

else (validated(m)=true)
3. T → Pi : {SPj

((m,kj))}j∈{1,...,n}\{i}

where kj is the level of the promise from Pj that was converted to a universally-verifiable signature
during the recovery protocol.

which it obtains by converting the promises into conventional digital signatures. Otherwise, if the
protocol has already been aborted, T must decide whether to maintain the abort or to overturn it.
Overturning of the abort is necessary in order to maintain fairness. Indeed, consider the scenario in
which a dishonest Pn−1 contacts T with an abort request, receives an abort token and dishonestly
continues the protocol. After the n-levels are completed, Pn sends its signature to others and waits
for signatures from other signers. If Pn−1 does not send back its signature, then Pn will be forced
to contact T with a request to recover. Now, T must overturn its previous abort, otherwise Pn

will not receive the signature of Pn−1. The decision whether to overturn is based on the contents
of the sets Sm and Fm, as described in table 3.

2.2 BW multi-party contract-signing protocol

The protocol allows n (n ≥ 2) participants or signers, say P1, . . . , Pn, to exchange signatures with
the help of a trusted party T on a preagreed contract text m. In our description, we suppose
n − 1 potentially dishonest signers. The original protocol is actually parameterized with respect
to a threshold t, the maximum number of possibly dishonest signers. In our analysis however we
assume the worst possible scenario for an honest signer, namely that all the other signers are
dishonest (i.e., t is n − 1).

The protocol consists of two subprotocols: main and recovery. Usually signers try to achieve
the exchange by executing the main subprotocol. They contact T using the recovery subprotocol
when they think something is amiss.

Main protocol. A detailed description of the main protocol for each signer Pi is given in table 4.
The protocol is composed of n+1 rounds1. The main protocol is symmetric for each signer, and in
round i a signer sends an i-level promise to other signers. In [3], the i-level promise is implemented
using a universally-verifiable digital signature and includes all the promises (through the vectors
M and X , as defined in table 4) that the signer has received till round i − 1. Note that these
promises are based on universally verifiable signatures and that the protocol does not intend to
provide abuse-freeness. The n + 1 level promises from everybody is considered to be the signed
contract. If any expected message is not received, a signer can launch the recovery protocol. Once
the signer launches the recovery protocol, it is not allowed to continue the main subprotocol.

Recovery protocol. The details of the recovery protocol are given in table 5. To recover, Pi sends
a recovery request. If the recovery request is launched in the first round, i.e. Pi did not receive a
message from all the signers, the recovery request consists in the first level promise. Otherwise, if
r > 1, the recovery request contains, via the vector Xr−1,i, the set of received messages.

T maintains for each contract for which it has been contacted a variable recovered indicating
whether the given contract has already been recovered or not, a set con, containing the indexes of
the signers that contacted T for the given contract and the set abort set containing the indexes of
the signers for whom T aborted the protocol.

1 In [3], the protocol has t + 2 rounds.

Table 3 GM multi-party contract-signing protocol—Recovery

1. Pi → T: SPi
({PCSPj

((m,kj), Pi, T)}j∈{1,...n}\{i}, SPi
((m, 1)))

if i ∈ Sm, T ignores the message
else if validated(m)

2. T → Pi: {SPj
((m,kj))}j∈{1,...n}\{i}

where kj is the level of the promise from Pj that was converted to a universally-verifiable signature.
else if Sm = ∅

validated(m):=true
3. T → Pi: {SPj

((m,kj))}j∈{1,...n}\{i}

else (validated(m)=false ∧ Sm 6= ∅)
a. if i 6∈ Fm, then

(i) if for any ` ∈ Sm there is a j ∈ Sm such that j > k`

Sm := Sm ∪ {i}
let a be the maximum value in Sm

if a > i then ∀j, such that kj = a − 1 · Fm := Fm ∪ {j}
else Fm := ∅

4.1.1. T → Pi: ST (SPj
(m, Pj , (P1, . . . , Pn), abort), ST (m, Sm, abort))

where ST (SPj
(m, Pj , (P1, . . . , Pn), abort)) corresponds to the stored abort token

(ii) else
validated(m):=true
4.1.2. T → Pi: {SPj

((m,kj))}j∈{1,...n}\{i}

b. else (i ∈ Fm)
let a be the maximum value in Sm

(i) if (∀j, such that i < j ≤ a · kj < a) ∧ (∀j < i · kj ≥ a)
validated(m):=true
4.2.1. T → Pi: {SPj

((m,kj))}j∈{1,...n}\{i}

(ii) else
Sm := Sm ∪ {i}
if a > i then ∀j, kj = a − 1 · Fm := Fm ∪ {j}
if a = i then Fm := ∅

4.2.2. T → Pi: ST (SPj
(m, Pj , (P1, . . . , Pn), abort), ST (m, Sm, abort))

where ST (SPj
(m, Pj , (P1, . . . , Pn), abort)) corresponds to the stored abort token

When T receives a valid recovery request, it first verifies whether this signer already contacted
the T or not. If so, T ignores the request. If not, it checks whether the contract has already been
successfully recovered or not. A successful recovery is always maintained. Otherwise, we distinguish
two cases. If the recovery request is sent in the first round, T must abort the protocol, as the request
does not contain a proof that all signers actually started the protocol. If the recovery request is
sent during any later round, T verifies whether all the requests that were aborted previously
occurred at least two rounds before. If so T can be sure that the previous abort replies were sent
to dishonest players, as they continued the protocol and sent out higher level promises. Hence, the
previous abort decision is overturned. Otherwise, T replies with an abort token.

3 Model

ATS, ATL and Mocha. The desired properties of contract signing are easily described using
games, and hence we chose a game-variant of Kripke structures, alternating transition systems
(ATS) [1], to model the protocols. An ATS is composed of a set of players Σ, a set of states Q

that represents all possible game configurations, a set Q0 ⊆ Q of initial states, a finite set of
propositions Π , a labeling function π : Q → 2Π that labels states with propositions, and a game

transition function δ : Q×Σ → 22
Q

. For a player a and a state q, δ(q, a) is the set of choices that
a can make in the state q. A choice is a set of possible next states. One step of the game at a
state q is played as follows : each player a ∈ Σ makes its choice and the next state of the game
q′ is the intersection (required to be a singleton) of the choices made by all the players of Σ, i.e.,

Table 4 Baum-Waidner multi-party contract signing protocol—Main

r := 1
1. Pi → Pj : m1,i = SPi

(c, 1, prev round ok)(j 6= i)
2. Pj → Pi: m1,j = SPj

(c, 1, prev round ok) (j 6= i)
if Pi times out then recovery(1)
Pi computes vectors M1,i := (m1,1, . . . , m1,n) and X1,i := M1,i

for r := 2 to n + 1 do
3. Pi → Pj : mr,i = SPi

(Mr−1,i, r, vec ok), SPi
(c, r, prev round ok)(i 6= j)

4. Pj → Pi: mr,j = SPj
(Mr−1,j , r, vec ok), SPj

(c, r, prev round ok) (j 6= i)
if Pi times out then recovery(r)
Pi computes vectors

Mr,i := (SP1
(c, r, prev round ok), . . . , SPn(c, r, prev round ok))

and
X1,i := (SP1

(Mr−1,1, r, vec ok), . . . , SPn(Mr−1,n, r, vec ok))

{q′} = ∩a∈Σδ(q, a). A computation is an infinite sequence λ = q0q1 . . . qn . . . of states obtained by
starting the game in q0, where qO ∈ Q0.

In order to reason about ATS, we use alternating-time temporal logic (ATL) [1]. For a given
set of players A ⊆ Σ, a set of computations Λ, and a state q, consider the following game between
a protagonist and an antagonist starting in q. At each step, to determine the next state, the
protagonist selects the choices controlled by the players in the set A, while the antagonist selects the
remaining choices. If the resulting infinite computation belongs to the set Λ, then the protagonist
wins. If the protagonist has a winning strategy, we say that the ATL formula 〈〈A〉〉Λ is satisfied in
state q. Here, 〈〈A〉〉 is a path quantifier, parameterized by the set A of players, which ranges over all
computations that the players in A can force the game into, irrespective of how the players in Σ\A

proceed. The set Λ is defined using temporal logic formulas. For those familiar with branching
time temporal logics, the parameterized path quantifier 〈〈A〉〉 can be seen as a generalization of
the CTL path quantifiers: the existential path quantifier ∃ corresponds to 〈〈Σ〉〉 and the universal
path quantifier ∀ corresponds to 〈〈∅〉〉.

We now illustrate the expressive power of ATL that allows to model both cooperative as well
as adversarial behavior amongst the players. Consider the set of players Σ = {a, b, c} and the
following formulas with their verbal reading:

– 〈〈a〉〉3p, player a has a strategy against players b and c to eventually reach a state where the
proposition p is true;

– ¬〈〈b, c〉〉2p, the coalition of players b and c does not have a strategy against a to make p true
forever;

– 〈〈a, b〉〉 e(p∧ ¬〈〈c〉〉2p), a and b can cooperate so that the next state satisfies p and from there
c does not have a strategy to impose p forever.

The details of ATS and ATL can be found in [1]. Instead of modeling protocols directly with ATS

we use a more user-oriented notation: a guarded command language a la Dijkstra. The details
about the syntax and semantics of this language (given in terms of ATS) can be found in [11].
Intuitively, each player a ∈ Σ disposes of a set of guarded commands of the form guard ξ → updateξ.
A computation-step is defined as follows: each player a ∈ Σ chooses one of its commands whose
boolean guard evaluates to true, and the next state is obtained by taking the conjunction of the
effects of each update part of the commands selected by the players. Given an ATS described in
terms of guarded commands, the finite state tool Mocha automates the model-checking of ATL

formulae over the specified ATS.

Modeling protocols. Unlike the classical security protocols aiming at secrecy and authentication,
optimistic contract-signing protocols usually consist of subprotocols that can be invoked at spec-
ified moments. Running a protocol at a time not foreseen by the designer, may have unexpected

Table 5 Baum-Waidner multi-party contract signing protocol—Recovery

1. Pi → T: resolver,i

where

resolver,i =

{

(1, i, SPi
(m1,i, resolve)) if r = 1

(r, i, SPi
(Xr−1,i, resolve)) otherwise

if i ∈ con then stop
else if recovered
con:=con∪{i}

2. T → Pi: signedr,i

where signedr,i = first signed
else (¬recovered)

a. if r = 1
abort set:=abort set ∪{(r, i)}
con:=con∪{i}

3. T → Pi: abortedr,i

where abortedr,i = ST (c, r, i, aborted)
b. else (r > 1)

(i) if ∀(s, k) ∈ abort set · s < r − 1
if con=∅ then T sets first signed:=(resolver,i, ST (c, r, i, recovered))
recovered:=true
con:=con∪{i}

4. T → Pi: signedr,i

where signedr,i = first signed
(ii) else

abort set:=abort set ∪{(r, i)}
con:=con∪{i}

5. T → Pi: abortedr,i

where abortedr,i = ST (c, r, i, aborted)

side-effects. This may be used by a signer to gain an advantage over other signers. We believe that
such concurrency issues are a major source of problems. Therefore, and since the high number of
messages would create a serious state explosion, we only analyze the structure of the protocols
and concentrate only on single protocol instance. We now discuss our model in detail.

The protocol instance is modeled as an ATS and each protocol participant is modeled as a
player in the ATS using the above introduced guarded command language. Besides, the branching
aspect, another notable difference with more classical secrecy and authentication protocols, is
that contract-signing protocols must be secure against malicious signer, rather than an external
intruder. In order to model this we have two process for each signer, one describing it’s honest
behavior and the other the dishonest one. Communication is modeled using shared variables. Each
protocol message is modeled using a boolean variable, initialized to false and set to true when it
is sent. Sending of a message is modeled using guarded commands, where the guard depends on
previously sent out messages. When modeling the honest behavior of a participant, we ensure that
a given message is sent out only when specified by the protocol. In contrary, the guards are relaxed
in the malicious version of the signer so that each message can be sent out, as soon as possible, i.e.,
as soon as all messages needed to compose the given message are received. We do not explicitly
model any cryptographic primitives, but only the fact that protocol messages can be sent out of
order. Hence, a dishonest signer can send messages out of order and continue the protocol, even if
it is supposed to stop. We manually decide which messages must be known in order to send some
other message. Moreover, the communication between any two signers is assumed to be on private
channels and we do not model the possibility to spy other channels. The trusted party is modeled
to be always honest.

As an example, consider the short extract of the modeling of the three-party GM protocol
depicted in figure 1. In the extract, the integer variable Pr i j L models the promises that Pi

has sent to Pj , and Pr i j L = k means that Pi has sent out up to k-level promises to Pj . (For

efficiency reasons, we use the logarithmic encoding of a ranged integer variable, rather than having
one boolean variable for each level of promise). In the extract, the first rule of honest P1 says that
P1 may quit the protocol, if it has not contacted the trusted party, and has neither received nor
sent any promises. The corresponding modeling of dishonest behavior of P1 states that P1 may
quit the protocol at any moment. The second rule of honest P1 gives the exact condition when the
first level promise has to be sent to P2. The corresponding dishonest rule, merely requires that P1

has not quit the protocol before sending the promise.

Extract of honest modeling of P1 for the three-party GM protocol:

[] ~P1_stop & ~P1_contacted_T & Pr_1_3_L=0 & Pr_1_2_L=0 & ~(Pr_3_1_L>0 & Pr_2_1_L>0)

-> P1_stop’:=true

[] ~P1_stop & ~P1_contacted_T & Pr_1_3_L=0 & Pr_1_2_L=0 & Pr_2_1_L>0 & Pr_3_1_L>0

-> Pr_1_2_L’:=1

The corresponding actions of a dishonest modeling:

[] ~P1_stop -> P1_stop’:=true

[] ~P1_stop & Pr_1_2_L<1 -> Pr_1_2_L’:=1

Fig. 1: Extract of the three-party GM protocol modeling

As we are unable to verify parametric systems with Mocha, we simplify our task and verify
the protocols only for a given number n of signers. In order to avoid encoding each instance of the
protocol using guarded commands, we have written a dedicated C++ program for each protocol
which takes the number n of signers as a parameter and generates the protocol specification.
Although our model is restricted with regard to several aspects, the model seems to be of interest
as several unknown anomalies have been revealed.

Modeling properties. We express the desired security guarantees using ATL. We concentrate on
modeling of fairness. Consider an instance of the protocol with n signers, which we denote as
P1, . . . , Pn. In the following, we assume that only one of the signers, say P1 is honest, and the
other dishonest signers are colluding to cheat the honest signer.

A protocol is fair for an honest P1, if at the end of the protocol, either P1 receives signed
contracts from all the other signers or it is not possible for any other signer to obtain P1’s signed
contract. One possible ATL formula for modeling this says that if any signer receives P1’s signed
contract, then P1 has a strategy to get the signed contracts from other signers:

∀2((P2.SP1
(m) ∨ . . . ∨ Pn.SP1

(m)) → 〈〈P1〉〉3(P1.SP2
(m) ∧ . . . ∧ P1.SPn

(m))) (1)

where Pi.SPj
(m) denotes that player Pi received Pj ’s signature on the contract text m.

It can of course be argued that P1 having a strategy to receive the signed contracts is not a
sound modeling of fairness: P1 may have this strategy but if it is ignorant or if it mistakenly does
not follow this strategy, then the protocol may end in an unfair state. Therefore one could require
the following stronger property: in whatever way P1 resolves the remaining choices specified by
the protocol, P1 receives all the signed contract.

∀2((P2.SP1
(m) ∨ . . . ∨ Pn.SP1

(m)) → ∀3(P1.SP2
(m) ∧ . . . ∧ P1.SPn

(m))) (2)

In the same vein, a third formulation only requires that there exists a path where P1 receives the
signed contracts.

∀2((P2.SP1
(m) ∨ . . . ∨ Pn.SP1

(m)) → ∃3(P1.SP2
(m) ∧ . . . ∧ P1.SPn

(m))) (3)

Formula (2) implies formula (1), which in turn implies formula (3). We concentrate on the last,
weakest version of fairness. As we show that fairness is violated even in this weakest version, the
other stronger versions are also violated. Now, we are ready to discuss our analysis.

It is also possible to express abuse-freeness in our formalism. We are going to discuss this
property when analysing the GM protocol

4 Analysis

We have verified the BW protocol with two and up to five signers, but the model-checker Mocha

did not find any flaw. Due to lack of space we do not go into the details of our analysis of the BW
protocol. However, the design of the BW protocol is much simpler than the GM protocol and the
decision to overturn an abort is based on the following argument: T only aborts if it can infer that
no previous abort reply has been sent to a honest principal. This seems to ensure the robustness
of the protocol. Note that we only analyzed the structure of the protocol. Hence, our results only
prove that the protocol is correct in the given model. Nevertheless, we believe that the protocol
would also be correct in a more general model as all messages are signed and a unique contract
identifier is used.

We now report in more detail on our the analysis of the GM contract-signing protocol. The
protocol has several peculiarities. The most notable one is that the protocol changes with the
number of signers, e.g., the protocol specification of P1 differs when the value of n changes. The
number of protocol messages increases considerably with the number of signers. For instance, if
we have n = 3, the main protocol has 20 messages and there are 14 different recovery requests.
When n = 4, the corresponding numbers are 41 and 36. Moreover, the protocol is not symmetric
for the signers: the protocol specification for Pi is different from that for Pj , for all i 6= j. For
instance, when n = 4, P1 can launch 18 different recovery requests and P4 only 2.

As mentioned in section 3, we have written a dedicated C++ program that takes the number of
signers, n, as a parameter and generates the protocol specification. Our analysis revealed problems
with fairness, when n is 4. Although, we did not discover any fairness problems when n = 3, we did
find an amusing problem with abuse-freeness. We did not discover any problems with timeliness in
the protocol. All these anomalies are novel and the protocol was believed to be secure since it was
first published. We discuss our results in detail. The sources codes of our analysis of both protocols
are also available at the following website http://www.ulb.ac.be/di/scsi/skremer/MPCS/.

Fairness. We did not discover any problems with fairness when n = 3. The formulas representing
fairness for P1, P2 and P3, introduced in section 3, are validated by Mocha. However, as we
use a restricted model and consider single runs, we can only conclude that the protocol does
not present any structural weakness for n = 3. Indeed, if we relax the assumption of the private
channels, the anomaly presented by Shmatikov and Mitchell in [13] on the two-party GJM protocol
can be adapted to the multi-party version. In this scenario, a malicious signer eavesdrops on the
channel between the honest signer and T , and succeeds in compromising fairness. With our present
modeling, we do not find such flaws, as this requires to eavesdrop channels and to decompose
messages. The fix proposed by Shmatikov and Mitchell applies to the multi-party protocol too.
However, we should emphasize that the authors of the GM protocol require the channels to T to
be private and hence this scenario does not represent a valid attack on the protocol.

We discovered several scenarios that compromised fairness when n = 4. The first scenario
was discovered by hand, when we found an error in the proof of correctness given in the original
paper [10]. A detailed analysis using Mocha detected seven other scenarios. An analysis of these
revealed that the proof also did not cover a case. In each scenario, an honest signer is cheated by
the coalition of three malicious signers. These scenarios follow the general outline:

1. A dishonest signer contacts the trusted party, T , at the beginning of the protocol, gets an
abort token, and dishonestly continues participating in the main protocol.

2. A second dishonest signer tries to recover at some later point. It does not succeed, but manages
to put the honest signer in the list Fm. It dishonestly continues the main protocol.

3. The honest signer is forced to recover, but is not successful in getting the abort decision
overturned since it is in the list Fm.

4. The third dishonest signer contacts T and manages to overturn the decision. Hence, while the
honest signer does not get any signed contract, the honest signer’s contract is obtained.

For lack of space, we just describe one of these scenarios in detail. In this scenario, P1, P3 and
P4 collude to cheat P2. The scenario proceeds as follows:

– At the beginning of the protocol, P3 aborts the protocol and T updates Sm = {3}. However,
unlike specified by the protocol, dishonest P3 continues the main protocol execution.

– As soon as P1 receives the second level promise from P2, it asks T to recover by sending

SP1
({PCSP2

((m, 2), P1, T), PCSP3
((m, 1), P1, T), PCSP4

((m, 1), P1, T)}, SP1
((m, 1))).

T refuses this request, answers with an abort message and updates Sm = {1, 3} and Fm = {2}.
As P3 did before, P1 also continues the protocol.

– The main protocol is executed normally until signer P2 reaches point 6.2. (see table 1) of the
protocol with a = 4. At that point P2 has sent out the set of message

{PCSP2
((m, 1), P1, T), PCSP2

((m, 2), P1, T),
PCSP2

((m, 2), P3, T), PCSP2
((m, 3), P1, T),

PCSP2
((m, 3), P3, T), PCSP2

((m, 3), P4, T)}

and has received the set of messages

{PCSP4
((m, 1), P2, T), PCSP3

((m, 1), P2, T),
PCSP1

((m, 1), P2, T), PCSP1
((m, 2), P2, T),

PCSP3
((m, 3), P2, T), PCSP1

((m, 3), P2, T)}.

P2 is at position 6.2. with a = 4 and is waiting for 4-level promises from P3 and P4. P3 and
P4 do not reply and P2 is forced to send the following recovery request to T .

SP2
({PCSP2

((m, 3), P2, T), PCSP3
((m, 3), P2, T), PCSP4

((m, 1), P2, T)}, SP2
((m, 1))).

P2 is in Fm, the tests in the protocol description (see table 3) indicate that T refuses the
request, updates Sm = {1, 2, 3} and replies with an abort message. Fm remains unchanged.

– P4 launches a resolve request, sending

SP4
({PCSP1

((m, 3), P4, T), PCSP2
((m, 3), P4, T), PCSP3

((m, 3), P4, T)}, SP4
((m, 1))).

This request overturns the previous aborts, and hence violates fairness as T sends the signed
contract back to P4.

In other scenarios, we discovered that protocol is unfair for signers P1, P2 and P3 when n = 4.
We did not find any scenario that compromised fairness for P4. This is probably because the tests
indicate that P4 can never be added to Fm, when n = 4.

Correcting the Garay-MacKenzie Protocol. In order to restore fairness in the Garay-MacKenzie
protocol, we had to do major revisions in the recovery protocol. We were unsuccessful to restore
fairness with minor changes, and we believe that this is because the meaning of the list Fm is
not clear in the protocol. The central idea behind the revision is that T , when presented with a
recovery request, overturns its abort decision if and only if T can infer dishonesty on the part of
each of the signer that contacted T in the past. This is also the main idea behind the recovery
protocol in [3].

The main protocol remains the same. Major changes are in the recovery protocol. The recovery
messages are designed so that T can infer the promises that an honest signer would have sent when
it launched the recovery protocol (note that a signer may have dishonestly sent other promises).
For Pi to recover, it sends the message

SPi
({PCSPj

((m, kj), Pi, T)}j∈{1,...n}\{i}, SPi
((m, 1)))

where kj is computed as following:

Table 6 Revised GM multi-party contract-signing protocol—Abort

1. Pi → T: SPi
(m,Pi, (P1, . . . , Pn), abort)

if not validated(m) then
Sm = Sm ∪ {i};
if Sm = ∅, T stores ST (SPi

(m,Pi, (P1, . . . , Pn), abort));
2. T → Pi: ST (SPj

(m, Pj , (P1, . . . , Pn), abort), ST (m,Sm, abort))
else (validated(m)=true)

3. T → Pi : {SPj
((m,kj))}j∈{1,...,n}\{i}

where kj is the level of the promise from Pj that was converted to a universally-verifiable signature
during the recovery protocol.

1. If Pi runs the resolve protocol in step 5 of the main protocol (see table 1), then kj = 1 for
j > i and kj = i − 1 for j < i.

2. In step 6.2 of the main protocol, kj = a − 1 for 1 < j ≤ a − 1, j 6= i and kj = 1 for j > a − 1.

3. In step 6.4 of the main protocol, kj = a − 1 for j < i, kj = a for i < j ≤ a and kj = 1 for
j > a.

4. In step 7 of the main protocol, kj = n for all j.

5. In step 9 of the main protocol, kj = n for all j < i and kj = n + 1 for all j > i.

kj may alternately be computed as:

– If j < i, kj is the maximum level of promises received from all signers Pj′ , with j′ < i, i.e. the
min-max of the promises from signers with lower index. (For example, if the maximum level
of the promises received by P4 from P3 and P2 was 6, and the maximum level received by P4

from P1 was 5, then it would send the 5-level promises for P1, P2 and P3.)

– Let l be the maximum value l′ such that Pi has l′ level promises from Pj for all i ≤ j ≤ l′. If
no such l′ exists then let l be 0. If l = 0, then let kj = 1 for all j > i. If l 6= 0, then let kj = l

for all i ≤ j ≤ l and kj = 1 for all j > l. (For example, if P2 has received level 1 promise from
P6, level 5 and 1 promises from P5, level 5, 4 and 1 promises from P4, and level 4, 3 and 1
promises from P3 then k6 = 1, k5 = 1, k4 = 4, k3 = 4.)

T maintains the set Sm of indices of signers that contacted T in the past and received an abort
token. For each signer Pi in the set Sm, T also maintains two integer variables hi(m) and li(m).
Intuitively, hi is the highest level promise an honest Pi could have sent to any higher indexed
signer before it contacted T . li is the highest level promise an honest Pi could have sent to a lower
indexed signer before it contacted T . The protocol for T works as follows:

– If T ever replies with a signed contract for m, then T responds with the contract for any
further request.

– If the first request to T is a resolve request, then T sends back a signed contract.

– If the first request is an abort request, then T aborts the contract. T may overturn this decision
in the future if it can deduce that all the signers in Sm have behaved dishonestly. T deduces
that a signer Pi in Sm is dishonest when contacted by Pj if

1. j > i and Pj presents to T a k-level promise from Pi such that k > hi(m), or

2. j < i and Pj presents to T a k-level promise from Pi Pi such that k > li(m).

We describe the abort and recovery protocols in detail in table 6, respectively 7.

We analyzed the revised protocol for both 3 and 4 signers and Mocha did not detect any errors
in the revised protocol. Please note that this should not be construed as proof of correctness since
we are using a restricted communication model and are modeling a single run. Nevertheless, we
believe that the revised protocol would be fair in a more general setting, and for an arbitrary
number of signers.

Table 7 Revised GM multi-party contract-signing protocol—Recovery

1. Pi → T: SPi
({PCSPj

((m,kj), Pi, T)}j∈{1,...n}\{i}, SPi
((m, 1)))

if i ∈ Sm, T ignores the message
else if validated(m)

2. T → Pi: {SPj
((m,kj))}j∈{1,...n}\{i}

where kj is the level of the promise from Pj that was converted to a universally-verifiable signature.
else if Sm = ∅

validated(m):=true
3. T → Pi: {SPj

((m,kj))}j∈{1,...n}\{i}

else (validated(m)=false ∧ Sm 6= ∅)
1. If there is some p < i in Sm such that kp ≤ hp(m), or if there is some p > i in Sm such that

kp ≤ lp(m), then T sends back the stored abort ST (SPj
(m, Pj , (P1, . . . , Pn), abort)) to Pi. T

adds i to Sm, and computes hi(m) and li(m) as follows
(hi(m), li(m)) = (ki+1, 0), if i = 1 (intuitively, P1 has contacted T in either step 6.2 of

the main protocol with a = ki+1 +1 or in step 7 of the main
protocol),

= (0, i), if 1 < i and ki−1 = i − 1 (intuitively, Pi has contacted T in
step 5 of the main protocol),

= (ki−1, ki−1), if 1 < i < n, i ≤ ki−1 ≤ n and ki+1 ≤ ki−1 (intuitively,
Pi has contacted T in step 6.2 of the main protocol with
a = ki−1 + 1),

= (ki−1, ki−1 + 1), if 1 < i < n, i ≤ ki−1 < n and ki+1 > ki−1 (intuitively,
Pi has contacted T in step 6.4 of the main protocol with
a = ki−1 + 1),

= (n, n), if 1 < i < n and ki−1 = ki+1 = n. (intuitively, Pi has
contacted T in step 7 of the main protocol).

= (n + 1, n + 1), if 1 < i < n, ki−1 = n and ki+1 = n + 1. (intuitively, Pi has
contacted T in step 9 of the protocol).

= (0, n + 1), if i = n and ki−1 = n. (intuitively, Pn has contacted T in
step 9 of the main protocol).

2. Otherwise, T sends {SPj
((m,kj))}j∈{1,...n}\{i} to Pi, stores all the signatures, and sets

validated(m) to true.

Abuse-freeness. We now describe the anomaly that we discovered for n = 3 signers in the GM
protocol. The anomaly exploits the fact that when T replies with an abort decision, it also signs
the list Sm of the signers who have received an abort from T . Recall that an optimistic signer [6]
is one that prefers to wait for ”some time” before contacting the trusted party. Following [6], we
say that a protocol is abuse-free for a signer Pi if the protocol does not provide provable advantage

to the remaining signers. A coalition of signers is said to have provable advantage against Pi at
a point in the protocol if (i) they have a strategy to abort the contract against an optimistic Pi,
(ii) they have a strategy to get optimistic Pi’s contract, and (iii) they can prove to an outside
challenger, Charlie, that Pi is participating in the protocol.

Now consider the protocol instance with three signers P1, P2 and P3. Assume that P3 is
optimistic and P1 and P2 are colluding to cheat P3. P3 starts the protocol by sending its level 1
promises to P1 and P2, and waits for level 2 promises from them. P2 on receiving this sends its
level 1 promise to P1, and then sends an abort request to T which aborts the protocol. Now, P1

has received level 1 promises from P2 and P3. Using these first level promises, P1 sends a recovery
request to T . Note that, in the protocol, P1 is never allowed to abort and T would not accept an
abort request from P1. P1’s recovery request is refused and T sends

ST (SP2
(m, P2, (P1, P2, P3), abort))

and

ST (m, Sm = {1, 2}, abort)

At this point, we make the following observations:

– the abort reply contains the set Sm = {1, 2} and is different from the one P2 received,
– if P1 receives an abort reply from T , it is always the answer to a recovery request,
– a recovery request always includes a promise from each signer which is verified by T .

From these remarks, we can conclude that if P1 shows the abort reply to Charlie, then Charlie
will be convinced that P3 has started the protocol even though Charlie is unable to verify the
PCS from P3. In other words, we can say that T has verified the PCS for Charlie. Also note that
at this point P1 and P2 can force the exchange to abort by simply quitting the protocol: P3 has
no promises from P1 and P2. P1 and P2 can also force a successful completion of the contract
exchange by simply (dishonestly) engaging P3 in the main protocol. Hence the protocol is not
abuse-free for P3.

This vulnerability can be easily addressed by excluding the set Sm from the abort reply. In this
case, the abort messages from P3 and P2 are exactly similar and can be obtained by P2 without
P3’s participation. Hence, an abort reply does not prove P3’s participation in the protocol. This
rather amusing scenario illustrates that sometimes additional information may be harmful. While
explicitness is often considered a good engineering practice (and we do not attempt to criticize such
thumb rules), care should be taken when applying these principles. In personal communication
with the authors of the protocol, they propose a different fix in letting P1 abort the protocol rather
than just quitting.

Abuse-freeness for P3 is naturally expressed in ATL as follows:

¬∃3(T. send(abort) to P1∧
〈〈P1, P2〉〉2(¬P3.SP1

(m) ∨ ¬P3.SP2
(m))∧

〈〈P1, P2〉〉2(P3.stop → (P1.SP3
(m) ∧ P2.SP3

(m)))
)

The boolean variable T. send(abort) to P1 is set to true when P1 receives the the abort token
ST (SP2

(m, P2, (P1, P2, P3), abort)) with Sm = {1, 2}. As discussed before, this serves as a proof of
P3’s participation. The variables Pi.SPj

(m) reflect that player i has received player j’s signature
on the contract. More precisely, the formula requires that it is possible to reach a point where

1. P1 and P2 can prove to Charlie that the protocol was started by P3 (T. send(abort) to P1 is
true),

2. P1 and P2 have a strategy to choose an unsuccessful outcome, i.e., P3 cannot get some signer’s
contract (〈〈P1, P2〉〉2(¬P3.SP1

(m) ∨ ¬P3.SP2
(m)) is true), and

3. P1 and P2 have a strategy to choose a successful outcome, i.e., when honest P3 stops, the
dishonest players must have obtained P3’s contract (〈〈P1, P2〉〉2(P3.stop → (P1.SP3

(m) ∧
P2.SP3

(m)) is true).

The requirement of P3 stopping in condition 3 is to prevent it from idling forever. Even though
as discussed before, the protocol is not abuse-free if P3 is optimistic, the above formula is validated
if P3 is honest. An honest P3 may contact T non-deterministically as permitted by the protocol.
Indeed, in the scenario discussed above, an honest P3 could prevent P1 and P2 from getting P3’s
signature if it contacts T . Therefore, in order to capture the scenario described above, we needed
to model optimistic signers.

Following [6], we implement an optimistic signer by adding signals that the signer uses to
decide when to quit waiting for messages from other signers and contact T . P3 uses 3 signals for
this: one to decide when to ask T to abort and 2 to decide when to contact T for the two recovery
protocols that P3 can launch. These signals are controlled by a new player, P3T imeOuts, that is
added to the model.

The decision to abort is modeled by 2 boolean variables: setT imeOutAbort and expiredT imeOutAbort.
While P3 changes the value of setT imeOutAbort, expiredT imeOutAbort is changed by P3T imeOuts.
When P3 sends level 1 promise to P1 and P2, it sets the value of setT imeOutAbort to true, and
then waits for level 2 promises from them. P3T imeOuts may set expiredT imeOutAbort to true

once setT imeOutAbort is set to true by P3. If the promises arrive before expiredT imeOutAbort

is true, then P3 continues with the main protocol, otherwise P3 may contact T with an abort
request. The decision to send recovery requests are modeled similarly.

Following [6], abuse-freeness is modeled by having a coalition of P3T imeOuts, P1 and P2. This
coalition can choose a sufficiently ”long time” to keep P3 from contacting T , while allowing P1

and P2 to schedule its messages in order to get the desired result. Abuse-freeness can then be
expressed as

¬∃3(T. send(abort) to P1∧
〈〈P1, P2, P3T imeOuts〉〉2(¬P3.SP1

(m) ∨ ¬P3.SP2
(m))∧

〈〈P1, P2, P3T imeOuts〉〉2(P3.stop → (P1.SP3
(m) ∧ P2.SP3

(m)))
)

Please note that even an optimistic P3 should eventually be allowed to contact T , otherwise P3

may be stuck forever. Hence, P3T imeOuts must eventually set expiredT imeOutAbort and other
signals to true. Ideally, this should be set non-deterministically. However, ensuring that a variable
changes its value in Mocha slows down verification considerably. In order to make the verification
feasible, we put a maximum limit, tick, on the number of computation steps after which the value
must change, and vary this limit manually. Please note that the signals may change before this
limit is reached. This modeling is sound in the sense that if the formula is violated for some value
of tick then abuse-freeness must be violated: P3 just needs to wait for sufficiently ”long time” to
allow P1 and P2 to schedule its messages. Indeed, the above property is violated when tick is set
to 3 giving us the attack on abuse-freeness. As expected, if we drop the player P3T imeOuts in
the formula, then the property is not violated: P1 and P2 are not able to schedule their messages
ahead of P3.

However, if P3 is not optimistic, the above given formulation of abuse-freeness is not violated.
In a non-optimistic setting, the vulnerability can be detected by weakening the third requirement
of the formula in order to say that there is a trace in which P3 does not contact T , and P1 and
P2 get P3’s signed contract. The ATL formula which captures this is

¬∃3(T. send(abort) to P1∧
〈〈P1, P2〉〉2(¬P3.SP1

(m) ∨ ¬P3.SP2
(m))∧

∃2(P3.stop → (P1.SP3
(m) ∧ P2.SP3

(m)))
)

This property is violated even in the original non-optimistic model. Mocha also detected the
violation of a stronger version of abuse-freeness proposed in [12]. This formulation requires that as
soon as P2 and P3 can prove to Charlie that P1 started the protocol, then they may not achieve
an unsuccessful outcome anymore.

5 Conclusions and Future Work

We have studied two multi-party contract-signing protocols [10, 3] using a finite-state tool, Mocha,
that allows specification of properties in a branching-time temporal logic with game semantics. In
order to make this analysis feasible, we model single runs and assume a restricted communication
model. Our analysis did not find any errors in the BW protocol [3]. We did encounter problems
with fairness in the case of four signers in the GM protocol [10]. It appears that fairness cannot
be restored without completely rewriting the subprotocols. The revised subprotocols are inspired
by the BW protocol. We also discovered a rather amusing problem with abuse-freeness in the GM
protocol with three signers that occurs because abort messages from the trusted party reveal who
have contacted it in the past. This problem is easily addressed by ensuring that the trusted party
does not send this extra information. We had to implement optimistic signers to demonstrate this
problem using Mocha.

We plan to verify the protocols without fixing the number of signers. One major challenge
in such a parametric verification is that the protocol descriptions change fundamentally with the

number of signers in that the protocol for n signers is not merely putting n identical processes
in parallel. We hope to prove the correctness of these protocols in a more general setting which
accounts for cryptography, multiple concurrent sessions, and relaxes the communication model.
We plan to use, at least partially, abstraction techniques such as proposed by Das and Dill [7] to
achieve this.

References

1. Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic. In 38th
Annual Symposium on Foundations of Computer Science. IEEE Computer Society Press, 1997.

2. N. Asokan, Matthias Schunter, and Michael Waidner. Optimistic protocols for fair exchange. In 4th
ACM Conference on Computer and Communications Security, Zurich, Switzerland, April 1997. ACM
Press.

3. Birgit Baum-Waidner and Michael Waidner. Round-optimal and abuse free optimistic multi-party
contract signing. In Automata, Languages and Programming — ICALP 2000, volume 1853 of Lecture
Notes in Computer Science, pages 524–535, Geneva, Switzerland, July 2000. Springer-Verlag.

4. H. Burk and A. Pfitzmann. Value exchange systems enabling security and unobservability. In Com-
puters and Security, 9(8):715–721, 1990.

5. Rohit Chadha, Max Kanovich, and Andre Scedrov. Inductive methods and contract-signing proto-
cols. In 8th ACM Conference on Computer and Communications Security, Philadelphia, PA, USA,
November 2001. ACM Press.

6. Rohit Chadha, John C. Mitchell, Andre Scedrov, and Vitaly Shmatikov. Contract signing, optimism,
and advantage. In CONCUR 2003 — Concurrency Theory, volume 2761 of Lecture Notes in Computer
Science. Springer-Verlag, 2003.

7. Satyaki Das and David L. Dill. Successive approximation of abstract transition relations. In Sixteenth
Annual IEEE Symposium on Logic in Computer Science, 2001.

8. Shimon Even and Yacov Yacobi. Relations among public key signature systems. Technical Report
175, Technion, Haifa, Israel, March 1980.

9. Juan A. Garay, Markus Jakobsson, and Philip D. MacKenzie. Abuse-free optimistic contract signing.
In Advances in Cryptology—Crypto 1999, volume 1666 of Lecture Notes in Computer Science. Springer-
Verlag, 1999.

10. Juan A. Garay and Philip D. MacKenzie. Abuse-free multi-party contract signing. In International
Symposium on Distributed Computing, volume 1693 of Lecture Notes in Computer Science, Bratislava,
Slavak Republic, September 1999. Springer-Verlag.

11. Thomas A. Henzinger, Rupak Manjumdar, Freddy Y.C. Mang, and Jean-François Raskin. Abstract
interpretation of game properties. In SAS 2000: Intertional Symposium on Static Analysis, Lecture
Notes in Computer Science. Springer-Verlag, 2000.

12. Steve Kremer and Jean-François Raskin. Game analysis of abuse-free contract signing. In 15th IEEE
Computer Security Foundations Workshop, Cape Breton, Canada, June 2002. IEEE Computer Society
Press.

13. Vitaly Shmatikov and John Mitchell. Finite-state analysis of two contract signing protocols. Theo-
retical Computer Science, special issue on Theoretical Foundations of Security Analysis and Design,
283(2):419–450, 2002.

