Skip to main content
Log in

Some Techniques for Proving Termination of the Hyperresolution Calculus

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

We define a semantic criterion ensuring termination of the hyperresolution calculus, which allows us to prove the decidability of certain classes of clause sets. We also define an algorithm for deciding – in polynomial time – whether a given clause set satisfies the proposed criterion. Comparisons with existing works on hyperresolution-based decision procedures are provided, showing evidence of the interest of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baader, F., Snyder, W.: Unification theory. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, Chapt. 8, pp. 445–532. Elsevier, Amsterdam (2001)

  2. Baumgartner, P., Furbach, U., Niemelä, I.: Hyper-tableaux. In: Logics in AI, JELIA'96. Springer, Berlin Heidelberg New York (1996)

  3. Bry, F., Yahya, A.: Positive unit hyperresolution. J. Autom. Reason. 25(1), 35–82 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. De Schreye, D., Decorte, D.: Termination of logic programs: The neverending story. J. Log. Program. 19, 199–260 (1993)

    Google Scholar 

  5. Fermüller, C., Leitsch, A.: Hyperresolution and automated model building. J. Log. Comput. 6(2), 173–203 (1996)

    Article  MATH  Google Scholar 

  6. Fermüller, C., Leitsch, A., Tammet, T., Zamov, N.: Resolution Methods for the Decision Problem, LNAI 679. Springer, Berlin Heidelberg New York (1993)

  7. Fermüller, C.G., Leitsch, A., Hustadt, U., Tammet, T.: Resolution Decision Procedures. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, Chapt. 25, pp. 1791–1849. North-Holland, Amsterdam (2001)

  8. Fitting, M.: First-Order Logic and Automated Theorem Proving, Texts and Monographs in Computer Science. Springer, Berlin Heidelberg New York (1990)

  9. Ganzinger, H., de Nivelle, H.: A superposition decision procedure for the guarded fragment with equality. In: Proc. 14th IEEE Symposium on Logic in Computer Science. IEEE Computer Society, Los Alamitos, California (1999)

  10. Georgieva, L., Hustadt, U., Schmidt, R.: A new clausal class decidable by hyperresolution. In: Voronkov, A. (ed.) Automated Deduction–CADE-18, vol. 2392 of LNCS, pp. 258–272. Springer, Berlin Heidelberg New York (2002)

  11. Georgieva, L., Hustadt, U., Schmidt, R.A.: Hyperresolution for guarded formulae. In: Baumgartner, P., Zhang, H. (eds.) Proc. Third International Workshop on First-Order Theorem Proving (FTP 2000), vol. 5/2000 of Fachberichte Informatik, pp. 101–112. Institut für Informatik, Universität Koblenz-Landau, Koblenz, Germany (2000)

    Google Scholar 

  12. Georgieva, L., Hustadt, U., Schmidt, R.A.: Hyperresolution for guarded formulae. J. Symb. Comput. 36(1–2), 163–192 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hustadt, U., Schmidt, R.A.: Using resolution for testing modal satisfiability and building models. J. Autom. Reason. 28(2), 205–232 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jouannaud, J., Kirchner, C.: Solving equations in abstract algebras: A rule-based survey of unification. In: Lassez, J.-L., Plotkin, G. (eds.) Essays in Honor of Alan Robinson, pp. 91–99. MIT, Cambridge, Massachusetts (1991)

  15. Joyner, W.: Resolution strategies as decision procedures. J. ACM 23, 398–417 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  16. Langholm, T.: A strong version of Herbrand's theorem for introvert sentences. J. Symb. Log. 63, 555–569 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Leitsch, A.: Deciding clause classes by semantic clash resolution. Fundam. Inform. 18, 163–182 (1993)

    MATH  MathSciNet  Google Scholar 

  18. Loveland, D.W.: Automated Theorem Proving: A Logical Basis, vol. 6 of Fundamental Studies in Computer Science. North-Holland, Amsterdam (1978)

  19. Lutz, C., Sattler, U., Tobies, S.: A suggestion of an \(n\)-ary description logic. In: Proc. DL'99. Linköping University (1999)

  20. Manthey, R., Bry, F.: SATCHMO: A Theorem Prover Implemented in Prolog. In: Proc. CADE-9. LNCS 310, pp. 415–434. Springer, Berlin Heidelberg New York (1988)

  21. Martelli, A., Montanari, U.: An efficient unification algorithm. ACM Trans. Program. Lang. Syst. 4(2), 258–282 (1982)

    Article  MATH  Google Scholar 

  22. de Nivelle, H.: A resolution decision procedure for the guarded fragment. In: Automated Deduction–CADE-15, vol. 1421 of LNCS (1998)

  23. Peltier, N.: Constructing decision procedures in equational clausal logic. Fundam. Inform. 54(1), 17–65 (2003)

    MATH  MathSciNet  Google Scholar 

  24. Robinson, J.A.: Automatic deduction with hyperresolution. Int. J. Comput. Math. 1, 227–234 (1965a)

    MATH  Google Scholar 

  25. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12, 23–41 (1965b)

    Article  MATH  Google Scholar 

  26. Rudlof, T.: SHR tableaux–A framework for automated model generation. J. Logic Comput. 10(6), 107–155 (2000)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Peltier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peltier, N. Some Techniques for Proving Termination of the Hyperresolution Calculus. J Autom Reasoning 35, 391–427 (2005). https://doi.org/10.1007/s10817-006-9028-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-006-9028-z

Key words

Navigation