
Some Computational Aspects of distance-sat ∗

Olivier Bailleux (olivier.bailleux@u-bourgogne.fr)
LERSIA/Université de Bourgogne
BP 47870
F-21078 Dijon cedex - France

Pierre Marquis (marquis@cril.univ-artois.fr)
CRIL-CNRS/Université d’Artois
rue de l’Université - S.P. 16
F-62307 Lens Cedex - France

Abstract. In many AI fields, the problem of finding out a solution which is as
close as possible to a given configuration has to be faced. This paper addresses
this problem in a propositional framework. The decision problem distance-sat
which consists in determining whether a propositional formula admits a model that
disagrees with a given partial interpretation on at most d variables, is introduced.
The complexity of distance-sat and of several restrictions of it are identified. Two
algorithms based on the well-known Davis/Logemann/Loveland search procedure
for the satisfiability problem sat are presented so as to solve distance-sat for CNF
formulas. Their computational behaviours are compared with the ones offered by sat
solvers on sat encodings of distance-sat instances. The empirical evaluation allows
for drawing firm conclusions about the respective performances of the algorithms,
and to relate the difficulty of distance-sat with the difficulty of sat from the
practical side.

Keywords: Satisfiability, computational complexity.

1. Introduction

1.1. Motivations

In many AI fields, the problem of finding out a solution which is as
close as possible to a given configuration must be faced. Such a con-
figuration may encode some preferential situation (e.g., an expected
state, or a normal state) which conflicts with the hard constraints of
the problem, represented as a knowledge base. It may also represent
some observations conflicting with a set of possible worlds, concisely
encoded as a knowledge base.

For instance, in the consistency-based diagnosis framework (Reiter,
1987), the expected state of each component of a device is “non-faulty”.

∗ A preliminary version of this paper appeared with the title “distance-sat:
Complexity and Algorithms” in the proceedings of the 16th National Conference on
Artificial Intelligence (AAAI’99), pages 642-647, 1999.

c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.1

2 Olivier Bailleux and Pierre Marquis

Whenever a failure occurs, such a diagnosis is not possible anymore: as-
suming that every component behaves as its model of correct behaviour
requires it conflicts with the observations which have been made. In this
situation, the normality assumption must be revised (some components
are to be assumed faulty) so as to restore consistency. Since many fault
assumptions can typically be made in order to achieve this goal, a
principle of parsimony is often adopted: among the possible diagnoses,
the selected ones are those including a minimal set (w.r.t. cardinality
or set-inclusion) of faulty assumptions. Thus, the diagnoses that are
“not so far” from the normal state of the device are preferred to the
remaining ones: one-fault diagnoses are first considered, then two-faults
diagnoses, and so on.

In this paper, the problem of computing a solution as close as
possible to a given configuration is addressed within a propositional
framework. Beyond the diagnosis field, this problem and its direct by-
product (computing the minimum “distance” between a configuration
and a knowledge base encoding the set of its models) appear as key
operations in many AI computational tasks where propositional rea-
soning is involved; let us mention belief change and update, product
configuration, similarity-based reasoning, non-classical planning, group
decision making, optimization, and some forms of common-sense rea-
soning. Thus, in Forbus’ approach to belief update (Forbus, 1989), a
preferred model of the updated belief state is a model of the update
formula which is as close as possible to a model of the original base
w.r.t. Hamming distance. Computing the Hamming distance between
an interpretation and its closest models among those of a knowledge
base also is a basic operation for some belief revision operators (espe-
cially, Dalal’s one (Dalal, 1988)) and some belief merging operators
(Konieczny and Pérez, 1998). In the interactive solving of product
configuration, the distance between a given configuration and a set
of feasible products (represented in an implicit way as the models of
a knowledge base) tells how many user’s choices must be given up so
as to render the configuration feasible. In similarity-based reasoning,
the greatest distance between a set of interpretations encoding a first
formula and a second formula indicates to what extent the former
approximately entails the latter (Dubois et al., 1997). A relaxation
of the classical planning problem can also be obtained by consider-
ing that a plan is valid whenever it leads to a state which is close
enough to a goal state; in such a setting, the configuration represents
the goal state and the distance indicates how close to a goal state a
final state has to be in order to be considered acceptable.1 In group

1 We shall return on this application in Section 6.2.

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.2

distance-sat 3

decision making (Lafage and Lang, 2000) (Lafage and Lang, 2001), the
disutility of a world can be defined and computed as the aggregation
of the “distances” between that world and some formulas representing
the various preferences of the agents of the group. In cardinality-based
circumscription (Liberatore and Schaerf, 1997), in absence of fixed vari-
ables, a preferred model of a knowledge base is a model of it in which
a minimal number of abnormality variables are set to true. Designing
algorithms for computing the models of a knowledge base as close as
possible to a given interpretation can be viewed as a first step towards
the implementation of propositional morphological operators (like the
dilation and erosion ones) (Bloch and Lang, 2000). The problem studied
in this paper also appears as a fundamental sat-based optimization
problem (Thiébaux et al., 2000); especially, the well-known max-sat
problem can be polynomially reduced to it (Slaney and Walsh, 2002).
Finally, this problem is closely related to the problem of repairing a
supermodel (Ginsberg et al., 1998) (Roy and Wilson, 2000).

1.2. Scope and organization of the paper

Let us first make precise what a knowledge base and a configuration
mean in a propositional setting. In the following, a knowledge base is
represented as a propositional formula Σ, a configuration as a partial
interpretation PI, and we are interested in finding out a model of Σ
that disagrees with PI on at most d variables. distance-sat consists
in determining whether or not such a model exists.

The contribution of this paper is twofold. On the one hand, the
complexity of distance-sat is investigated in the general case and in
some restricted cases. Like the well-known satisfiability problem sat
(which can be viewed as a restriction of it), distance-sat is NP-
complete. However, distance-sat is somewhat more difficult than sat,
in the sense that tractable restrictions for sat do not always give rise
to tractable restrictions for distance-sat.

On the other hand, two algorithms for solving distance-
sat for CNF formulas are introduced. The first one,
DLL-distance, is a straightforward adaptation of the well-known
Davis/Logemann/Loveland search procedure (Davis et al., 1962) for
sat. To every node of the search tree is associated a value that
measures the disagreement between the given configuration and the
partial interpretation that corresponds to the node (and can be read
off directly by picking up the literals from the branch that ends up to
the node under consideration). Whenever this value exceeds the given
maximal bound d, the algorithm backtracks. Our second algorithm,
DLL-lasso, is a variant of DLL-distance. The only difference between

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.3

4 Olivier Bailleux and Pierre Marquis

them lies in the branching rule. While the branching rule used in
DLL-distance is a standard, “efficient”, branching rule for sat, the
branching rule used in DLL-lasso is much more oriented towards the
satisfaction of the distance constraint. The objective is to lasso in
priority a model that is close to the given configuration. Thus, among
the clauses that are fully falsified by the given configuration, those of
minimal length are considered. Among the variables of these clauses,
one of those that maximize the standard branching rule heuristic (used
in DLL-distance) is selected as the branching variable.

Both algorithms are empirically assessed on many random 3-CNF in-
stances (generated using the now classical “fixed-length clauses model”
(Chvátal and Szemerédi, 1988)), for several values of the ratio number
of clauses/number of variables, for several sizes of the given configura-
tion, and several values for the maximal disagreement number d. When
d is small and all the variables are assigned by the given configuration,
DLL-lasso performs much better than DLL-distance. Contrastingly,
when d is large, DLL-distance is the best performer.

Those two algorithms are compared with a full-CNF approach to
distance-sat. An instance of distance-sat is reformulated as a sat
instance, which can be carried out by any sat solver. Compared with
DLL-distance and DLL-lasso, this full-CNF approach leads to a more
efficient way to solve some distance-sat instances, especially when
some variables are not fixed in the given configuration.

Those algorithms have also been tested on some additional instances,
including hand-crafted ones coming from a non-classical planning
problem and the parity learning problem, as well as larger random
3-CNF instances. Three additional sat solvers (two efficient ones and
a naive one) have been used downstream to the full-CNF approach.
Such further experiments have shown the feasibility of solving “real-
istic” instances of distance-sat; they also confirm that, while they
are based on a naive DLL procedure, the two specialized algorithms
DLL-distance and DLL-lasso prove practically useful.

The rest of this paper is organized as follows. Section 2 gives some
formal preliminaries. Section 3 presents distance-sat and its compu-
tational complexity in the general case, and in some restricted cases.
Our algorithms DLL-distance and DLL-lasso are successively intro-
duced in Section 4. Section 5 presents the full-CNF approach for solving
distance-sat instances using the encoding given in (Bailleux and
Boufkhad, 2003). Section 6 presents an empirical evaluation. Section
7 concludes this paper. Proofs are reported in an appendix.

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.4

distance-sat 5

2. Formal Preliminaries

Let PROPPS denote the propositional language built up from a finite
set PS of propositional symbols (also called variables), the Boolean
constant true and false, and the connectives in the standard way. The
elements of PROPPS are called formulas. The size of a formula Σ,
noted |Σ| is the number of signs (symbols and connectives) used to
write it. V ar(Σ) is the set of propositional variables occurring in Σ.
Among the formulas of PROPPS are the CNF formulas and the DNF
ones.

Formulas are interpreted in the classical way. An interpretation
(or truth assignment) of a formula Σ is a mapping I that associates
every propositional variable of PS to one of the two truth values of
BOOL = {0, 1}. A partial interpretation of Σ is a mapping PI that
associates some propositional variables of PS to one of the two truth
values of BOOL. Dom(PI) ⊆ PS denotes the domain of PI, and
|PI| the cardinal of Dom(PI). A complete partial interpretation is
just an interpretation. In the following, (partial) interpretations are
represented as sets of literals. A positive literal x (resp. a negative
literal ¬x) appears in PI if and only if PI(x) = 1 (resp. PI(x) = 0).
An interpretation I is an extension of a partial interpretation PI if
and only if PI ⊆ I holds. A clause is said to be fully falsified by a
partial interpretation whenever every literal of the clause appears in
the partial interpretation with the opposite sign.

Many valuable subsets (or fragments) of PROPPS can be defined.
Thus, a k-CNF formula is a CNF formula s.t. every clause in it contains
at most k literals. A formula is Horn CNF (resp. reverse Horn CNF)
if and only if it is a CNF formula s.t. every clause in it contains at
most one positive (resp. negative) literal. A Krom formula is a 2-CNF
formula, i.e., every clause in it contains at most two literals. A Blake
formula is a CNF formula Σ consisting of the conjunction of all its
prime implicates, i.e., the logically strongest clauses entailed by Σ (one
representative per equivalence class is kept, only). Contrariwise to the
k-CNF language (under the standard assumption P 6= NP), the Horn
CNF, reverse Horn CNF, Krom and Blake fragments are tractable for
sat: for any of those fragments, there exists a polytime algorithm for
checking whether any formula from the fragment is satisfiable or not.

Another important fragment tractable for sat is the DNNF lan-
guage, defined as follows (Darwiche, 1999; Darwiche, 2001): a sentence
in DNNF is a rooted, directed acyclic graph (DAG) where each leaf
node is labeled with true, false, x or ¬x, x ∈ PS; each internal node
is labeled with ∧ or ∨ and can have arbitrarily many children. Moreover,
the decomposability property is satisfied: for each conjunction C in the

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.5

6 Olivier Bailleux and Pierre Marquis

sentence, the conjuncts of C do not share variables. Interestingly, the
DNNF language includes as proper subsets two influential propositional
fragments, namely the DNF one and the ROBDD one (see (Darwiche,
2001; Darwiche and Marquis, 2001)).

In contrast to the k-CNF, Horn CNF, reverse Horn CNF, Krom
fragments, the DNNF, DNF, ROBDD and the Blake ones are (func-
tionally) complete, which means that for every propositional formula
Σ, there exists an equivalent formula Φ belonging to the fragment.

In the following, we assume the reader familiar with some basic
notions of computational complexity, especially NP-completeness (see
e.g., (Garey and Johnson, 1979)).

3. Definition and Complexity

Before defining distance-sat in a formal way, we first need the
definition of disagreement between two partial interpretations:

DEFINITION 1 (disagreement).
A partial interpretation PI1 is said to disagree with a partial interpre-
tation PI2 on at most d variables if and only if the number of variables
x of Dom(PI1)∩Dom(PI2) s.t. PI1(x) 6= PI2(x) is less than or equal
to d.

We are now ready to define distance-sat.

DEFINITION 2 (distance-sat).
distance-sat is the following decision problem:

− Input: A formula Σ, a partial interpretation PI, and a non-
negative integer d.

− Question: Does there exist a model I of Σ s.t. I disagrees with
PI on at most d variables?

For every instance of distance-sat, we call the constraint “I dis-
agrees with PI on at most d variables” its distance constraint. Its
strength diminishes as d decreases and as |PI| increases. In particular,
the distance constraint does not impose any restriction over the models
of Σ whenever |PI| ≤ d: under this requirement, Σ is a positive instance
of sat if and only if 〈Σ, P I, d〉 is a positive instance of distance-sat.

Since we are interested in solving distance-sat and the correspond-
ing function problem, it is important to identify the computational
complexity of distance-sat. We did it in the general case and in
several restricted cases.

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.6

distance-sat 7

Table I. The complexity of distance-sat
Any PI.

KB any d a fixed d

any Σ NP-complete NP-complete

Σ CNF NP-complete NP-complete

Σ Horn NP-complete in P

Σ reverse Horn NP-complete in P

Σ Krom NP-complete in P

Σ Blake NP-complete in P

Σ DNNF in P in P

PROPOSITION 1 (complexity of distance-sat).
The complexity of distance-sat and of several restrictions of it
obtained by considering:

− a knowledge base Σ from various propositional fragments that are
tractable for sat,

− a complete partial interpretation PI,

− a fixed maximal distance d

are reported in Tables I and II.

Clearly enough, sat, the satisfiability problem of a CNF formula
is a restriction of distance-sat (taking PI = ∅ (or d = n) so as
to reduce sat to distance-sat is sufficient to prove the NP-hardness
of distance-sat). Hence, it is not surprising that distance-sat is
intractable in the general case, i.e., there is no known polynomial algo-
rithm to solve it (and there can be no such algorithm unless P = NP).
Nevertheless distance-sat is not much more difficult than sat since it
belongs to NP. Indeed, verifying that a guessed interpretation disagrees
with PI on at most d variables can easily be achieved in polynomial
time.

It can be noted that for some fragments for which sat is tractable,
distance-sat is tractable as well. Especially, it is the case for the
DNNF fragment. Actually, very simple algorithms can be designed
for solving distance-sat for proper subsets of DNNF, as DNF and

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.7

8 Olivier Bailleux and Pierre Marquis

Table II. The complexity of distance-sat
A complete PI.

KB any d a fixed d

any Σ NP-complete in P

Σ CNF NP-complete in P

Σ Horn NP-complete in P

Σ reverse Horn NP-complete in P

Σ Krom NP-complete in P

Σ Blake NP-complete in P

Σ DNNF in P in P

ROBDD. On the one hand, since each model of a DNF Σ is an extension
of at least one term (viewed as a partial interpretation) of Σ and the
converse also holds, 〈Σ, P I, d〉 ∈ distance-sat if and only if there
exists a term ti of Σ s.t. 〈ti, P I, d〉 ∈ distance-sat; then, Definition
1 clearly shows that determining how much a term (viewed as a par-
tial interpretation) disagrees with a given partial interpretation can
be achieved in polynomial time. On the other hand, solving distance-
sat given a ROBDD formula Σ amounts to searching for a minimal-cost
path in a 0/1 weighted digraph (just label every arc of Σ with 0, except
those associated to a literal l s.t. ¬l ∈ PI, which are labeled with 1).

However, focusing on the standard fragments of propositional logic
where sat is known as tractable is not sufficient to ensure the (time)
polynomiality of distance-sat in the general case. Both NP-hardness
of the restrictions where Σ is Horn, reverse Horn or Krom are con-
sequences of the NP-hardness of distance-sat under the restriction
when Σ is a 2-CNF monotone formula, i.e., every literal of Σ has only
either positive occurrences or negative occurrences in Σ. Since every
monotone CNF formula is satisfiable, the complexity of distance-sat
does not come solely from the complexity of the satisfiability issue
for its input Σ but from the interaction between Σ and the distance
constraint. From this point of view, distance-sat can be considered
as at least as difficult as sat.

As the previous proposition shows it, focusing on KBs belonging
to usual tractable fragments for sat is sufficient to obtain tractable
restrictions of distance-sat as long as d is considered as a fixed

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.8

distance-sat 9

constant. Some other restrictions can be considered so as to achieve
tractability. Thus, while imposing PI to be a complete interpretation
does not lower the complexity of distance-sat in the general case
(even when Σ is known as tractable for sat), determining whether Σ
has a model that disagrees with a complete interpretation I on at most
d variables, where d is a constant, is in P. To be more precise, if K is
the maximal length of clauses of Σ, there exists a O(|Σ| × Kd) time
(deterministic) algorithm that solves this last problem (cf. Section 4).

Interestingly, as a by-product of Proposition 1, some new results
about the complexity of the satisfiability issue for some extended
propositional languages can be derived. Given a propositional lan-
guage PROPPS , let a cardinality constraint be an ordered pair 〈{l1, ...,
lk}, m〉, where each li (i ∈ 1..k) is a literal of PROPPS and m is a non-
negative integer that is less than or equal to k. Given an interpretation
I, the semantics of such a cardinality constraint in I is 1 if and only
if at least m literals from {l1, ..., lk} belong to I (i.e., are interpreted
as 1 in I as well). A cardinality formula is a (finite) conjunction of
cardinality constraints (Benhamou et al., 1994) (Van Henteryck and
Deville, 1991).

Clearly enough, expressing that we are looking for a model of Σ that
disagrees with PI = {l1, ..., lk} on at most d variables amounts to look-
ing for a model of the formula obtained by adding to the clauses of Σ
the single cardinality constraint 〈{l1, ..., lk}, k−d〉. Many more clauses,
but a polynomial number of it, are required to reduce distance-sat to
sat in the general case.2 Such a reduction underlies what we called the
full-CNF approach to distance-sat; it is presented in Section 5. As a
direct consequence of Proposition 1, we obtain the following corollary:

COROLLARY 3.1. Determining whether a cardinality formula Σ is
satisfiable is NP-complete, even when Σ contains only (classical) clauses
(i.e., with m = 1) that form a Horn CNF formula (or a reverse Horn
CNF formula or a Krom one), plus one cardinality constraint with m 6=
1.

Obviously enough, this corollary applies as well to linear pseudo-
Boolean formulas (see e.g., (Bockmayr, 1995)) since every cardinality
constraint is a linear pseudo-Boolean constraint; thus, the satisfiability
of a set of Horn (resp. reverse Horn, Krom) clauses given a single linear
pseudo-Boolean constraint is an NP-complete problem.

2 This comes from the fact that sat is NP-complete: every problem in NP can be
polynomially reduced to it.

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.9

10 Olivier Bailleux and Pierre Marquis

4. Two Algorithms for distance-sat

In this section, two algorithms for distance-sat in the CNF case
are introduced. These algorithms are based on the standard Davis /
Logemann / Loveland search procedure for sat (Davis et al., 1962).
This choice is motivated by the two following facts:

− A naive approach that would consist in enumerating in a successive
way the interpretations that do not disagree with PI on at most d
variables is not computationally feasible in the general case, even
for quite small values of n, the number of variables of Σ, and d.
For instance, with n = 100, d = 10 and PI is any complete in-
terpretation, more than 1013 interpretations should be considered,
which makes such a naive enumerative technique far from being
practical.

− The most effective algorithms for sat one can find in the literature
are typically based on the Davis / Logemann / Loveland search
procedure, and sat is a restriction of distance-sat. Especially, if
Σ 6∈ sat, then ∀PI∀d, 〈Σ, P I, d〉 6∈ distance-sat.

Our first algorithm, DLL-distance, mainly is the standard Davis/
Logemann / Loveland search procedure, equipped with a counter that
indicates for every node of the search tree the number of variables on
which the partial interpretation associated to that node disagrees with
the given configuration. As soon as the value of the counter exceeds d,
the algorithm backtracks.

Procedure DPdistance : BOOLEAN
Input : an instance 〈Σ, P I, d〉 of distance-sat.
Output : true if and only if 〈Σ, P I, d〉 ∈ distance-sat.
Begin

unit propagate(Σ);
if disagree(PIC, PI) > d then return (false);
if the empty clause is generated then return (false);
else if all clauses are satisfied then return (true)

else begin
x := branching(Σ, P IC);
return (DPdistance(Σ ∧ x) or

DPdistance(Σ ∧ ¬x));
end;

End

In this algorithm, PIC is the current partial interpretation, i.e., the
one associated to the current node of the search tree. PIC gathers all

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.10

distance-sat 11

the variables that have been fixed from the root of the tree to the cur-
rent node. unit propagate is a function that performs unit-propagation
through Σ. PIC is updated by unit propagate.

It is well-known that the design of a branching rule is a critical factor
in the performance of any Davis/Logemann/Loveland-like algorithm
for sat (without learning). Our branching function implements the
branching rule given in (Dubois et al., 1996), one of the best performer
for sat. To be more precise, the weight of a literal l of a CNF formula
Σ is given by w(l) =

∑
∀γ∈Σ,l∈γ −log2(1−1/(2|γ|−1)2) and the score of

a variable x by s(x) = w(x)+w(¬x)+1.5min(w(x), w(¬x)). A variable
maximizing s is elected as the branching variable.

Clearly enough, DLL-distance is very close to the standard DLL
procedure. Actually, the unique difference between them is the addi-
tional backtrack instruction that is triggered as soon as the current
partial interpretation PIC disagrees with PI on more than d variables.
The distance constraint is not exploited in an aggressive way, but only
in a passive way.

Our second algorithm DLL-lasso is a variant of DLL-distance in
which the branching function that is used does not correspond to a
standard branching rule for sat but has been especially tailored for
distance-sat. The purpose is to take advantage of both the best
branching rules available for sat but also to exploit the distance con-
straint much more aggressively than in DLL-distance. The variables
that appear in the set SPIC

of the clauses of Σ simplified by PIC that
are fully falsified by PI, and are of minimal size, are filtered. Then, the
weights of these variables are computed using the same weight function
as in branching , and a variable with a maximal weight is elected. If
SPIC

is empty then the branching variable is selected according the
same heuristic as DLL-distance. The idea of choosing the branching
variable among the variables which occur in clauses that are falsified by
a reference interpretation already appeared in SCORE(FD/B), a local
search based complete algorithm for sat (Chabrier et al., 1995).

Let γ be a clause of SPIC
and x a variable of γ. When x is assigned

the sign it has in γ, γ becomes satisfied by the updated partial interpre-
tation PIC . When x is given the opposite sign, the resulting simplified
clause (i.e., γ in which the literal corresponding to x has been removed)
is still fully falsified by PI, and necessarily is of minimal size. This
forces the remaining variables of γ to be among the candidate variables
for branching at the next choice node. Interestingly, whenever PI is
a complete interpretation and the size of the longest clause of Σ is
bounded by a constant K, only O(Kd) choice nodes will be generated
by DLL-lasso, provided that a variable of SPIC

is always elected as the
branching variable. We call such a property the lasso effect.

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.11

12 Olivier Bailleux and Pierre Marquis

PROPOSITION 2 (lasso effect). Let 〈Σ, P I, d〉 the input of
DLL-lasso, where PI is a complete interpretation. Let K be the
number of literals in the largest clause of Σ. The run time of
DLL-lasso is O(|Σ| ×Kd).

When the lasso effect works (i.e., when PI is complete), the number
of clauses occurring in Σ influences the computational performance of
DLL-lasso by a linear factor, only. This is far from being expected for
DLL-distance.

The design of the branchinglasso function is done so as to take advan-
tage of both the lasso effect (considering only the variables of SPIC

),
and the best branching rules for sat (the variables are ordered so as to
select one that maximizes a standard weight function).

Clearly enough, since the lasso technique simply consists in filtering
out some candidate variables before applying to them any branching
function, some other branching functions for sat can be used, giving
rise to additional branching functions for distance-sat. Moreover,
the distance constraint can be exploited in a more integrated way
within such branching functions for distance-sat, especially for the
propagation-based ones, like the one used in satz (Li and Anbulagan,
1997). Propagating a literal through a CNF formula results in a par-
tial interpretation (encoding the literals that have been fixed) and a
corresponding simplified CNF formula. The value of the disagreement
between such a partial interpretation and the reference one, and the
tightness of the associated simplified formula are two parameters that
can be used to evaluate heuristically whether propagating a literal is
promising for distance-sat.

Finally, let us note that both DLL-distance and DLL-lasso can
be easily modified to address the function problem associated to
distance-sat, i.e., to return a model of Σ that disagrees with PI on
at most d variables whenever such a model exists. Instead of returning
true when an implicant of Σ is found, it is sufficient to return any
extension of the current partial interpretation PIC .

5. The full-CNF approach

In this section, we briefly explain how distance-sat in the CNF case
can be reduced to sat. Such a reduction underlies a family of algorithms
to which our own algorithms DLL-distance and DLL-lasso have to be
compared.

First, let us note that there are several ways to encode cardinal-
ity constraints (including distance constraints) as CNF formulas. We

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.12

distance-sat 13

used the approach introduced in (Bailleux and Boufkhad, 2003), which
proves more efficient that usual Warners’ encoding (Warners, 1998),
since it exploits unit propagation in order to restore the generalized
arc consistency property on the encoded constraints.

Maintaining generalized arc consistency (Bessiere and Regin, 2001)
is a filtering technique, widely used for solving constraint satisfac-
tion problems; this technique consists in removing of the domain of
each variable any value which cannot belong to any solution because
every solution which includes it violates at least one constraint. In
the distance-SAT setting, maintaining generalized arc consistency
consists in applying the following rules at each node of the search
tree: Let d be the distance and k be the number of variables fixed in
the partial current interpretation PIC that disagree with the reference
interpretation PI. If k > d then backtrack (because of inconsistency
of the distance constraint). If k = d then fix each free variable in PIC

with the corresponding value in PI.
Observe that DLL-distance and DLL-lasso do not explicitly main-

tain generalized arc consistency, but they do it implicitly whenever the
reference interpretation PI is complete; indeed, when d = k, one of the
two values of each branching variable induces an immediate backtrack.

The encoding we considered is denoted UT-MGAC (for Unit Total-
izer Maintaining Generalized Arc Consistency). It is based on a unary
representation of integer intervals. Namely, a set of Boolean variables
x0, . . . , xmax is used to represent any interval µ, . . . , λ in the range
0, . . . , max by setting x0, . . . , xµ to 1 and xλ+1, . . . , xmax to 0.

An adder based on this representation can be used to derive the
interval where an integer c is located, given the intervals of integers a
and b s.t. c = a + b. The resulting CNF formula allows unit propaga-
tion for deriving all the consequences w.r.t. generalized arc consistency
of assigning truth values to variables. The cardinality constraint is
then encoded as a totalizer structured as a pyramidal adder network,
extended by unary clauses which restrict the possible output values.

The encoding clauses and additional encoding variables can be gen-
erated as shown on Figure 1, where each adder with inputs a1, . . . , am1 ,
b1, . . . , bm2 , and output r1, . . . , rm is encoded as

∧
0≤α≤m1
0≤β≤m2
0≤σ≤m
α+β=σ

(C1(α, β, σ) ∧ C2(α, β, σ)) (1)

using the following notations:

a0 = b0 = r0 = 1, am1+1 = bm2+1 = rm+1 = 0

C1(α, β, σ) = (aα ∨ bβ ∨ rσ), C2(α, β, σ) = (aα+1 ∨ bβ+1 ∨ rσ+1)

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.13

14 Olivier Bailleux and Pierre Marquis

Given an integer a in unary notation, if the bit aα is equal to 1,
then a is such that a ≥ α and, conversely, if aα = 0 then we have
a < α. On this ground, the clause (aα∨ bβ ∨ rσ), which is called of type
C1, ensures that at least one of the three following inequalities holds:
a < α, b < β, r ≥ α+β; the clause (aα+1∨bβ+1∨rσ+1), which is called
of type C2, ensures that at least one of the three following inequalities
is true : a > α, b > β, r ≤ α + β.

Now, let n be the number of input and output variables of the
totalizer, and let Q be the cardinality constraint µ ≤ N ≤ λ, where
N is the number of input variables of the totalizer which can be fixed
to 1 according to Q. Q is ensured by additional unit clauses enforcing
the output variables to match the interval µ . . . λ. Namely,

∧

1≤i≤µ

(si)
∧

λ+1≤j≤n

(sj) (2)

As proved in (Bailleux and Boufkhad, 2003), given any partial truth
assignment of the input variables, altogether the C1 and C2 clauses
allow unit propagation for restoring the generalized arc consistency of
Q.

EXAMPLE 1. Let T (〈i1, . . . , in〉, 〈o1, . . . , on〉) denote the formula en-
coding a totalizer with input variables i1, . . . , in and output vari-
ables o1, . . . , on. Let A(〈a1, . . . , am1〉, 〈b1, . . . , bm2〉, 〈r1, . . . , rm1+m2〉)
denote the formula encoding an adder with input variables
a1, . . . , am1 , b1, . . . , bm2 and output variables r1, . . . , rm1+m2.

Let us consider a cardinality constraint Q over 3 variables i1, i2, i3 s.t.
N ≤ 2. The encoding of Q involves a totalizer T (〈i1, i2, i3〉, 〈o1, o2, o3〉),
completed by the clause (o3).

The totalizer T (〈i1, i2, i3〉, 〈o1, o2, o3〉) includes a totalizer
T (〈i1, i2〉, 〈u1, u2〉), where u1, u2 are additional encoding variables, and
an adder A(〈u1, u2〉, 〈i3〉, 〈o1, o2, o3〉). Because it has only two input
variables, the totalizer T (〈i1, i2〉, 〈u1, u2〉) includes only one adder
A(〈i1〉, 〈i2〉, 〈u1, u2〉).
Then we have
T (〈i1, i2, i3〉, 〈o1, o2, o3〉) =

A(〈i1〉, 〈i2〉, 〈u1, u2〉) ∧A(〈u1, u2〉, 〈i3〉, 〈o1, o2, o3〉).
The corresponding CNF formulas are
A(〈i1〉, 〈i2〉, 〈u1, u2〉) =

(i1 ∨ u1) ∧ (i2 ∨ u2) ∧ (i2 ∨ u1) ∧ (i1 ∨ u2)∧
(i1 ∨ i2 ∨ u2) ∧ (i1 ∨ i2 ∨ u1)

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.14

distance-sat 15

Figure 1. UT-MGAG encoding scheme for Boolean cardinality constraints.

and
A(〈u1, u2〉, 〈i3〉, 〈o1, o2, o3〉) =

(i3 ∨ o1) ∧ (u2 ∨ o3) ∧ (u2 ∨ o2) ∧ (i3 ∨ o3) ∧ (u1 ∨ o2) ∧ (u1 ∨ o1)∧
(u1 ∨ i3 ∨ o2) ∧ (u2 ∨ i3 ∨ o3) ∧ (i1 ∨ i3 ∨ o1) ∧ (u2 ∨ i3 ∨ o2)

Now suppose that the variables i1 and i3 are fixed to 1. Unit propagation
will set u1 to 1 through the clause (i1 ∨ u1), u2 to 0 through the clause
(u2 ∨ i3 ∨ o3), then i2 to 0 through the clause (i1 ∨ i2 ∨ u2).
This last deduction restores the generalized arc consistency on Q.

This encoding requires Θ(n2) clauses and Θ(n log n) additional vari-
ables. Without questioning the correctness and filtering properties, its
effective size can be optimized by bounding to λ + 1 the number of
output variables of any adder in the totalizer.

6. Empirical Evaluation

This section is divided into two parts. In the first part, we re-
port on an empirical evaluation of three algorithms for distance-
sat: DLL-distance and DLL-lasso, both based on the same,
naive, non-optimized implementation of a DLL algorithm, and
BerkMin-full-CNF-encoding, the full-CNF approach using a state-of-
the-art DLL algorithm, the BerkMin561 solver (Goldberg and Novikov,
2002). In the second part, we report on some additional, yet less sys-
tematic, experiments obtained using three other sat solvers: Minisat
(Eén and Sörensson, 2004), JeruSat (Nadel, 2002), and dll-basic,
i.e., the naive, non-optimized DLL implementation that is the core of
DLL-distance and DLL-lasso. These experiments concern distance-
sat instances related to a non-classical planning problem, the parity

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.15

16 Olivier Bailleux and Pierre Marquis

learning problem and slightly larger random 3-CNF formulas than the
ones considered in the first part.

All the experiments were achieved on the same desktop computer
Pentiumr 4 3Ghz under Linux OS.

6.1. Statistical results on random instances

All the results presented in the following are about random 3-CNF for-
mulas Σ generated under the “fixed-length clause” model (Chvátal and
Szemerédi, 1988): literals are picked up under uniform conditions and
clauses with redundant variables are rejected. Without loss of general-
ity, the variables of Dom(PI) are the first ones w.r.t. the lexicographic
order, and they are assigned to 0. Every distance-sat instance can be
turned into an instance for which this assumption is satisfied, through
a simple renaming of its literals.

Three solvers are considered: DLL-distance, DLL-lasso, and
BerkMin-full-CNF-encoding, the full-CNF approach using the state-
of-the-art BerkMin561 sat solver.

The computational difficulty of a distance-sat instance w.r.t.
DLL-distance and DLL-lasso is quantified as the size of the corre-
sponding search tree, where both unary and binary nodes are taken
into account; in other words, it is evaluated as the number of variable
assignments that are required to solve the instance. This difficulty mea-
sure depends neither on the implementation of the algorithms nor on
the computer used to perform the experiments.

In the same way, the difficulty of a distance-sat instance w.r.t. a
sat algorithm using the full-CNF encoding is quantified as the number
of assignments required by the sat algorithm to solve the corresponding
sat instance.

Figure 2 gives the proportion of satisfiable 100 variable instances, as
a function of both the number of clauses of Σ and the distance d, given a
complete interpretation PI (|PI| = 100). 1000 instances per point have
been considered. A sharp transition appears between the satisfiable and
the unsatisfiable regions. When d is large, the transition appears at
the well-known satisfiability threshold for 3-sat, i.e., when the ratio
number of variables / number of clauses is equal to 4.25 (Cheeseman et
al., 1991) (Crawford and Auton, 1996). When d decreases, less clauses
are required to produce unsatisfiable instances.

Figures 3 and 4 give difficulty of 100 variables instances with a
complete interpretation PI w.r.t. DLL-distance and DLL-lasso. Each
point corresponds to the mean difficulty over 200 instances.

With the DLL-lasso solver, for each distance under consideration,
the difficulty is maximum at the sat/unsat transition. The global dif-

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.16

distance-sat 17

 0
 20
 40
 60
 80

 100

%sat

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

distance

 50 100 150 200 250 300 350 400 450 500

#clauses

 0
 20
 40
 60
 80

 100

%sat

Figure 2. Proportion of satisfiable 100 variable 3-CNF instances of dis-
tance-sat, as a function of both the number of clauses and the distance
d, given a complete interpretation PI.

 1

 10

 100

 1000

 10000

 100000

 5 10 15 20 25 30 35 40 45 50

distance
 50

 100
 150

 200
 250

 300
 350

 400
 450

 500

#clauses

 0.1

 1

 10

 100

 1000

 10000

 100000

#assignments

 1

 10

 100

 1000

 10000

 100000

 5 10 15 20 25 30 35 40 45 50

distance
 50

 100
 150

 200
 250

 300
 350

 400
 450

 500

#clauses

 0.1

 1

 10

 100

 1000

 10000

 100000

#assignments#assignments

 1

 10

 100

 1000

 10000

 100000

50% sat

#assignments

Figure 3. Difficulty of solving 100 variable 3-CNF instances of distance-sat
with DLL-distance, as a function of both the number of clauses and the
distance d, given a complete interpretation PI.

ficulty peak of the surface is at the sat/unsat transition of distance 24
(280 clauses). An average of 120000 assignments is required to solve
the corresponding random distance-sat instances.

As for the DLL-lasso solver, for each distance under consideration,
the average number of assignments used by the DLL-distance solver
is maximum at the sat/unsat transition. However, when compared
with the empirical behaviour of DLL-lasso on those instances, the
behaviour of DLL-distance presents two salient differences. First, the
difficulty peak for DLL-distance is larger than the one for DLL-lasso,
especially for satisfiable instances. Second, the global difficulty peak
for DLL-distance is at distance 16 (180 clauses) instead of 24 for
DLL-lasso.

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.17

18 Olivier Bailleux and Pierre Marquis

 1

 10

 100

 1000

 10000

 100000

 5 10 15 20 25 30 35 40 45 50

distance
 50

 100
 150

 200
 250

 300
 350

 400
 450

 500

#clauses

 0.1

 1

 10

 100

 1000

 10000

 100000

#assignments

 1

 10

 100

 1000

 10000

 100000

 5 10 15 20 25 30 35 40 45 50

distance
 50

 100
 150

 200
 250

 300
 350

 400
 450

 500

#clauses

 0.1

 1

 10

 100

 1000

 10000

 100000

#assignments#assignments

 1

 10

 100

 1000

 10000

 100000

50% sat

#assignments

Figure 4. Difficulty of solving 100 variable 3-CNF instances of distance-sat
with DLL-lasso, as a function of both the number of clauses and the distance
d, given a complete interpretation PI.

 0.01

 0.1

 1

 10

 100

 5 10 15 20 25 30 35 40 45 50

distance
 50

 100
 150

 200
 250

 300
 350

 400
 450

 500

#clauses

 0.1

 1

 10

 100

difficulty ratio

 0.01

 0.1

 1

 10

 100

 5 10 15 20 25 30 35 40 45 50

distance
 50

 100
 150

 200
 250

 300
 350

 400
 450

 500

#clauses

 0.1

 1

 10

 100

difficulty ratiodifficulty ratio

 0.01

 0.1

 1

 10

 100

50% sat

difficulty ratio

Figure 5. Ratio of the average difficulty of solving 100 variable 3-CNF in-
stances of distance-sat using DLL-distance to the average difficulty of
solving the same instances using DLL-lasso as a function of both the number
of clauses and the distance d, given a complete interpretation PI.

Figure 5 reports on a comparison of the two algorithms in the
following way: the bottom surface shows (in white) the values of
the distance and the number of clauses for which DLL-lasso out-
performs DLL-distance; the top surface gives the ratio efficiency of
DLL-lasso / efficiency of DLL-distance. Clearly, DLL-lasso performs
much better than DLL-distance for the smallest distances, especially
at the sat/unsat transition. At its global difficulty peak, DLL-lasso
is slightly more efficient than DLL-distance (120000 assignments per
run versus 140000 assignments per run). At the global difficulty peak
of DLL-distance, DLL-lasso is about 5 times more efficient than
DLL-distance (45000 assignments per run versus 247000 assignments

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.18

distance-sat 19

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 5 10 15 20 25 30 35 40 45 50

#a
ss

ig
nm

en
ts

distance

DLL-lasso

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 5 10 15 20 25 30 35 40 45 50

#a
ss

ig
nm

en
ts

distance

DLL-lasso
DLL-distance

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 5 10 15 20 25 30 35 40 45 50

#a
ss

ig
nm

en
ts

distance

DLL-lasso
DLL-distance

fullCNF-BerkMin

Figure 6. Comparison of the difficulty of solving 100 variable 3-CNF
instances of distance-sat with DLL-distance, DLL-lasso, and
BerkMin-full-CNF-encoding approaches, as a function of the distance, at
the sat / unsat transition, given a complete interpretation PI.

per run). For some instances, like the (mostly satisfiable) ones with dis-
tance 16 and 80 clauses, DLL-lasso outperforms DLL-distance by two
orders of magnitude (57 assignments per run versus 6600 assignments
per run).

Since, in essence, the full-CNF approach to distance-sat can be
improved by using an ”up-to-date” sat solver (including lazy data
structures and state-of-the-art backjumping techniques, which are not
employed in our basic DLL algorithm), we found valuable to com-
pare DLL-distance, DLL-lasso and the full-CNF approach coupled
with a state-of-the-art sat solver, namely BerkMin561 (Goldberg and
Novikov, 2002).

Figure 6 gives the mean number of variable assignments required
by the three algorithms to solve random 100 variable distance-sat
instances, given a complete interpretation PI. For each distance, only
the distance-sat instances at the sat / unsat transition are consid-
ered, i.e., with a number of clauses such that 50% of the instances are
satisfiable. Each point corresponds to 500 runs.

Clearly, DLL-lasso outperforms DLL-distance on the instances
with distances lower than 25. On the other instances, DLL-lasso and
DLL-distance perform similarly. Using the full-CNF approach, the
BerkMin561 solver requires much more variable assignments than the
two other algorithms.

Yet, because they are based on different implementations,
BerkMin561 and the basic DLL solver used in DLL-lasso and
DLL-distance do not achieve the same number of variable assignments
per second. So we report on Figure 7 a comparison of the run times of

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.19

20 Olivier Bailleux and Pierre Marquis

 0.001

 0.01

 0.1

 1

 10

 5 10 15 20 25 30 35 40 45 50

cp
u

tim
e

distance

DLL-lasso

 0.001

 0.01

 0.1

 1

 10

 5 10 15 20 25 30 35 40 45 50

cp
u

tim
e

distance

DLL-lasso
DLL-distance

 0.001

 0.01

 0.1

 1

 10

 5 10 15 20 25 30 35 40 45 50

cp
u

tim
e

distance

DLL-lasso
DLL-distance

fullCNF-BerkMin

Figure 7. Cpu time required for solving 100 variable 3-CNF in-
stances of distance-sat with DLL-distance, DLL-lasso, and
BerkMin-full-CNF-encoding approaches, as a function of the distance, at
the sat / unsat transition, given a complete interpretation PI.

DLL-distance, DLL-lasso, and BerkMin-full-CNF-encoding on the
same instances as the ones considered on Figure 6.

Interestingly, one can observe that, even if it achieves much more as-
signments, BerkMin-full-CNF-encoding is faster than DLL-distance
for the lowest distances (i.e., below 15). But DLL-lasso outperforms
BerkMin-full-CNF-encoding on the whole range of distances.

Similarly to what has been reported on Figures 6 and 7 where
complete interpretations have been considered, Figures 8, 9, 10, and
11 report on a comparison of the three algorithms on distance-sat
instances where PI is a partial interpretation.

Figures 8, 9 give the number of assignments and the cpu time
required for solving 150 variable 3-CNF instances where 50% of the
variables are fixed in PI.

For the smallest distances (i.e., d ≤ 10), the best algorithm is
BerkMin-full-CNF-encoding, while DLL-distance performs better
(at least in terms of cpu time) on the remaining instances.

Figures 10, 11 give the number of assignments and the cpu time
required for solving 200 variable 3-CNF instances where 25% of the
variables are fixed in PI.

As for instances where 50% of variables are fixed in PI,
BerkMin-full-CNF-encoding performs better than the two other
algorithms on the smallest distances. For the other distances,
DLL-distance is the best performer.

From the whole experiments, it is clear that none of the three al-
gorithms outperforms the two others for any kind of distance-sat
instances. As to randomly generated instances, DLL-lasso is the best

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.20

distance-sat 21

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 5 10 15 20 25 30 35 40

#a
ss

ig
nm

en
ts

distance

DLL-lasso

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 5 10 15 20 25 30 35 40

#a
ss

ig
nm

en
ts

distance

DLL-lasso
DLL-distance

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 5 10 15 20 25 30 35 40

#a
ss

ig
nm

en
ts

distance

DLL-lasso
DLL-distance

fullCNF-BerkMin

Figure 8. Comparison of the difficulty of solving 150 variable 3-CNF instances
of distance-sat, 75 variables fixed in PI, using DLL-distance, DLL-lasso,
and BerkMin-full-CNF-encoding, as a function of the distance, at the sat /
unsat transition.

 0.001

 0.01

 0.1

 1

 10

 5 10 15 20 25 30 35 40

cp
u

tim
e

distance

DLL-lasso

 0.001

 0.01

 0.1

 1

 10

 5 10 15 20 25 30 35 40

cp
u

tim
e

distance

DLL-lasso
DLL-distance

 0.001

 0.01

 0.1

 1

 10

 5 10 15 20 25 30 35 40

cp
u

tim
e

distance

DLL-lasso
DLL-distance

fullCNF-BerkMin

Figure 9. Cpu time required for solving 150 variable 3-CNF instances of dis-
tance-sat, 75 variables fixed in PI, using DLL-distance, DLL-lasso, and
BerkMin-full-CNF-encoding, as a function of the distance, at the sat / unsat
transition.

solver, in a large range of distances, whenever PI is complete. When
only 25% or even 50% of variables are fixed in PI, the best algo-
rithm is BerkMin-full-CNF-encoding for the smallest distances, and
DLL-distance for the greatest ones.

6.2. Some additional results

In this section, we report on a second series of experiments, concerning
three families of distance-sat instances:

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.21

22 Olivier Bailleux and Pierre Marquis

 10000

 100000

 1e+006

 1e+007

 5 10 15 20 25 30 35 40

#a
ss

ig
nm

en
ts

distance

DLL-lasso

 10000

 100000

 1e+006

 1e+007

 5 10 15 20 25 30 35 40

#a
ss

ig
nm

en
ts

distance

DLL-lasso
DLL-distance

 10000

 100000

 1e+006

 1e+007

 5 10 15 20 25 30 35 40

#a
ss

ig
nm

en
ts

distance

DLL-lasso
DLL-distance

fullCNF-BerkMin

Figure 10. Comparison of the difficulty of solving 200 variable 3-CNF instances
of distance-sat, 50 variables fixed in PI, using DLL-distance, DLL-lasso,
and BerkMin-full-CNF-encoding, as a function of the distance, at the sat /
unsat transition.

 0.01

 0.1

 1

 10

 100

 5 10 15 20 25 30 35 40

cp
u

tim
e

distance

DLL-lasso

 0.01

 0.1

 1

 10

 100

 5 10 15 20 25 30 35 40

cp
u

tim
e

distance

DLL-lasso
DLL-distance

 0.01

 0.1

 1

 10

 100

 5 10 15 20 25 30 35 40

cp
u

tim
e

distance

DLL-lasso
DLL-distance

fullCNF-BerkMin

Figure 11. Cpu time required for solving 200 variable 3-CNF instances of
distance-sat, 50 variables fixed in PI, using DLL-distance, DLL-lasso,
and BerkMin-full-CNF-encoding approaches, as a function of the distance,
at the sat / unsat transition.

− distance-sat instances modeling non-classical planning in-
stances,

− distance-sat instances modeling parity learning instances,

− distance-sat instances based on randomly generated 3-CNF
formulas.

All those instances were submitted to six distance-sat solvers:

− the three solvers considered in Section 6.1, namely DLL-distance,
DLL-lasso and BerkMin-full-CNF-encoding,

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.22

distance-sat 23

− three other solvers coupled with the full-CNF approach, namely
Minisat version 1.14, Jerusat version 1.3, and a naive implemen-
tation of the DLL procedure, named DLL-basic, which is the core
of the DLL-distance and DLL-lasso solvers.

Since the solvers are very dissimilar, only the cpu time is considered
as a matter of comparison.

While performed in a less systematic way than the first series of
experiments (reported in the previous section), the purpose of the sec-
ond series was threefold: showing the feasibility of solving “realistic”
instances of distance-sat, showing the impact of the sat solver used
downstream to the encoding in the full-CNF approach, and finally,
showing the efficiency of the two specialized algorithms DLL-distance
and DLL-lasso in solving some instances, despite the fact they are
based on a quite inefficient implementation of the DLL procedure.

6.2.1. Non-classical planning
We have first considered a few distance-sat instances coming from a
generalization of classical (propositional) planning, without uncertainty
but with a more gradual preferential structure on goals. Formally, we
have focused on instances of the classical planning problem, given by a
description of a finite set A of (deterministic) actions (in a STRIPS-like
language), the description of a (complete) initial state I, the description
of the goal (as a (usually incomplete) state G), plus the planning hori-
zon h (a nonnegative integer). An instance is positive whenever there
exists a classical plan (a sequence of actions from A) whose length is
bounded by h, allowing to go from I to a goal state (i.e. a state where G
is satisfied). In the classical planning setting, a state (a complete inter-
pretation over the fluent variables) is either a goal state (i.e. it contains
all the literals of the goal) or it is not a goal state. Now, the set of goal
states can be viewed as a fuzzy set, where the Hamming distance of a
state to the goal (once normalized, and up to a scale inversion) expresses
how much the given state is a goal state. Accordingly, instances of a
(non-classical) planning problem can be easily obtained by considering
an additional nonnegative integer d representing the distance to the
goal, and a positive instance is one for which there exists a plan whose
length is bounded by h, allowing to go from I to a state which is at
distance at most d from G. Classical planning corresponds to the case
when d = 0. Interestingly, relaxing this constraint by considering d > 0
can prove sufficient to get plans for values of h for which no classical
plan exist. Thus, a trade-off between the quality of a plan (measured
as the number of literals from G occurring in the final state) and the
efficiency of the plan (the number of steps) can be looked for.

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.23

24 Olivier Bailleux and Pierre Marquis

It is well-known that the classical planning problem can be reduced
to sat3, and solved as such. Several reductions can be found in the
literature. We slightly modified a reduction proposed in (Kautz et
al., 1996), based on explanatory frame axioms. The difference is that
parallel actions are allowed when their preconditions and effects do
not interfere. We took advantage of a translator from instances of
classical planning (in PDDL format) to sat which implements such
a reduction4 and is such that, for each input instance with a goal G,
the literals of G are the first (unit) clauses of the corresponding sat
instance. Thanks to this property, it was easy to turn this translator
into a translator from non-classical planning into distance-sat. We
generated some distance-sat encodings of instances of non-classical
planning (corresponding to well-known instances of classical planning)
letting the distance d to vary as well as the horizon h5. The blocks
world instance (blockaips15), the logistics one (logisticsaips10) and
the miconic one (miconic30) come from IPC2 (International Planning
Competition), while the depot instance (depot03) comes from IPC3
(Bacchus, 2001; Long and Fox, 2003).

In Table III, the first column gives the name of the starting instance
of classical planning, the second column gives the number n of literals
in the goal, the third value gives the horizon h under consideration, the
fourth column gives the number #v of variables in the corresponding
sat encoding, while the last column gives the number #c of clauses in
the corresponding sat encoding.

Note that the size of each distance-sat instance is very close to the
size of the associated sat instance (the size of the binary representation
of d can be typically neglected). Despite the (quite huge) size of the
instances, they have been solved easily using the full-CNF approach,
showing thus the feasibility of solving “realistic” non-classical planning
instances through distance-sat.

The results are reported in Tables IV, VII, VI and V. The cpu time
required by each solver is given in seconds, ns meaning that the instance
was not solved within 3600 seconds.

Those experiments have shown the feasibility of solving instances of
distance-sat coming from a non-classical planning problem. The best
approach clearly is the full-CNF one. This corroborates the conclusion
drawn after the first series of experiments (when only few variables
are assigned in the reference (partial) interpretation, the specialized
solvers are not efficient). Furthermore, those experiments have clearly

3 The membership of the classical planning problem (with bounded horizon) to
NP ensures it.

4 We would like to thank Vincent Vidal for providing us with this translator.
5 Those instances are available from the authors on demand.

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.24

distance-sat 25

Table III. Non-classical planning instances
used in the experiments.

name n h #v #c

blocksaips15 7 15 3216 46378

blocksaips15 7 14 3007 43292

blocksaips15 7 13 2798 40206

logisticsaips10 7 11 3102 13108

logisticsaips10 7 10 2829 11926

logisticsaips10 7 9 2556 10744

logisticsaips10 7 8 2283 9562

miconic30 6 17 2880 21552

miconic30 6 16 2712 20286

miconic30 6 15 2544 19020

depot03 6 11 5064 128226

depot03 6 10 4614 116580

depot03 6 9 4164 104934

depot03 6 8 3714 93288

Table IV. Results on Miconic30 planning instances.
h is the horizon, d is the distance to the goal. The
cpu time required by each solver is given in seconds.
ns means that the corresponding instance was not
solved within 3600 seconds.

Miconic30 h = 17, d = 1 h = 16, d = 1

#variables 2880 2712

#clauses 21552 20286

#fixed variables 6 6

satisfiable yes yes

specialized solvers

DLL-lasso ns ns

DLL-distance ns ns

full CNF solvers

DLL-basic ns ns

Berkmin ns ns

Minisat 335 2981

Jerusat 257 268

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.25

26 Olivier Bailleux and Pierre Marquis

Table V. Results on Logisticaips10 planning instances. h is the horizon, d is
the distance to the goal. The cpu time required by each solver is given in
seconds. ns means that the corresponding instance was not solved within 3600
seconds.

Logisticaips10

h 11 10 10 9 9 8 8

d 1 1 2 2 3 2 3

#variables 3102 2829 2829 2556 2556 2283 2283

#clauses 13108 11926 11926 10744 10744 9562 9562

#fixed variables 7 7 7 7 7 7 7

satisfiable yes no yes no yes no yes

specialized solvers

DLL-lasso ns ns ns ns ns ns ns

DLL-distance ns ns ns ns ns ns ns

full CNF solvers

DLL-basic ns ns ns ns ns ns ns

Berkmin 0.07 0.05 0.06 0.04 0.04 0.03 0.04

Minisat 0.01 0.02 0.01 0.02 0.01 0.02 0.01

Jerusat 0.09 0.03 0.05 0.06 0.02 0.04 0.05

shown the impact of the sat solver used in the full-CNF approach:
the encoding itself is not sufficient to ensure an efficient resolution
(DLL-basic appears as a bad performer in the experiments, compared
to the state-of-the-art sat solvers).

6.2.2. Parity learning
We have also focused on the parity learning problem, which consists
in guessing a parity function, given noisy input/output samples. The
famous par32 sat instance that was one of the ten IJCAI’97 challenges
proposed in (Selman et al., 1997) is an instance of the parity learn-
ing problem. In our experiments, we have considered parity learning
instances obtained through the encoding proposed in (Bailleux and
Boufkhad, 2003). Each of them includes a distance constraint which
specifies the maximum number of samples with a wrong output value.
To be more precise, the instances we have used have been generated as
follows. A 32 bit parity function is first randomly generated. This parity
function is characterized by a 32 bit string, called a mask. A bit of the
input string is said to be unmasked if and only if the corresponding bit
is set to 1 in the mask. The output value of the parity function for the

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.26

distance-sat 27

Table VI. Results on Depot03 planning instances. h is the horizon, d is the distance to
the goal. The cpu time required by each solver is given in seconds. ns means that the
corresponding instance was not solved within 3600 seconds.

Depot03

h 11 11 10 10 9 9 8

d 1 2 1 2 2 3 3

#variables 5064 5064 4614 4614 4164 4164 3714

#clauses 128226 128226 165580 165580 104934 104934 93288

#fixed variables 6 6 6 6 6 6 6

satisfiable no yes no yes no yes yes

specialized solvers

DLL-lasso ns ns ns ns ns ns ns

DLL-distance ns ns ns ns ns ns ns

full CNF solvers

DLL-basic ns ns ns ns ns ns ns

Berkmin 3.17 0.45 0.50 0.58 0.28 0.40 0.20

Minisat 1.25 0.55 0.39 0.44 0.26 0.15 0.16

Jerusat 27.8 2.15 4.66 3.07 1.88 1.19 0.47

Table VII. Results on Blocsaips10 planning instances. h is the hori-
zon, d is the distance to the goal. The cpu time required by each
solver is given in seconds. ns means that the corresponding instance
was not solved within 3600 seconds.

Blocsaips10 h = 15, d = 1 h = 14, d = 1 h = 13, d = 1

#variables 3216 3007 2798

#clauses 46378 43292 40206

#fixed variables 7 7 7

satisfiable yes yes yes

specialized solvers

DLL-lasso ns ns ns

DLL-distance ns ns ns

full CNF solvers

DLL-basic 1714 ns 1903

Berkmin 0.58 0.60 0.40

Minisat 0.19 0.14 0.11

Jerusat 3.33 1.06 0.64

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.27

28 Olivier Bailleux and Pierre Marquis

Table VIII. Results on parity learning instances based on two ran-
domly generated 32 bit parity functions. d is the distance, which
represent the maximum number of wrong samples. The cpu time
required by each solver is given in seconds. ns means that the
corresponding instance was not solved within 3600 seconds.

Parity function F1, d = 6 F1, d = 7 F2, d = 6 F2, d = 7

#variables 518 518 552 552

#clauses 1944 1944 2080 2080

#fixed variables 64 64 64 64

satisfiable no yes no yes

specialized solvers

DLL-lasso 50.5 88.6 55.7 97.4

DLL-distance 50.5 88.6 58.5 103.5

full CNF solvers

DLL-basic 673 1295 102 195

Berkmin 5.89 32.1 12.0 41.9

Minisat 7.48 0.01 13.0 30.8

Jerusat 14.5 0.10 34.2 41.0

instance is 1 if and only if there is an odd number of unmasked bits in
the input string. 64 input samples have been randomly generated, and
the corresponding outputs processed. Then, 7 of the output values have
been flipped. The data are encoded as a CNF formula according to the
method proposed in (Bailleux and Boufkhad, 2003). By construction,
the resulting distance-sat instance is satisfiable for any distance value
greater than 6.

Table VIII gives the cpu times required for solving two satisfiable
instances (d = 7) and the two corresponding unsatisfiable instances
(d = 6).

Again, the best performers for those experiments are the state-
of-the art sat solvers used in the full-CNF approach. Specialized
solvers behave not so bad (the cpu time they required is “only” an
order of magnitude larger then the cpu time required by the state-of-
the art sat solvers, despite the fact they are based on an inefficient
DLL procedure), and better than the full-CNF approach based on
DLL-basic.

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.28

distance-sat 29

Table IX. Results on random instances with 100% variables fixed
in PI. The cpu time required by each solver is given in seconds. ns
means that the corresponding instance was not solved within 3600
seconds.

Instance number 1 2 3 4 5 6

#variables 200 200 200 200 150 150

#clauses 200 200 400 400 450 450

#fixed variables 200 200 200 200 150 150

distance 15 15 30 30 35 35

satisfiable no yes no yes no yes

specialized solvers

DLL-lasso 2.13 0.01 2377 48.1 7.63 10.6

DLL-distance 72.9 163.6 ns ns 6.77 9.01

full CNF solvers

DLL-basic ns ns ns ns ns ns

Berkmin 1.62 0.01 ns 0.32 802 1.48

Minisat 1.14 0.02 1810 0.22 101 0.07

Jerusat 3.88 0.03 ns 0.71 313 36.1

6.2.3. Random instances
Finally, we report on some results obtained with random distance-sat
instances, significantly larger than the ones considered in Section 6.1.
Tables IX, XI, X present the results that were obtained. Globally, the
best performer is Minisat, but some instances with complete reference
interpretations are best solved by dll-lasso or dll-distance.

Those experiments corroborate the conclusions drawn after the
first series of experiments: when the number of variables assigned
in the reference (partial) interpretation is sufficiently large, the spe-
cialized solvers DLL-distance and DLL-lasso can prove as much
better performers than the state-of-the-art sat solvers in the full-CNF
approach.

7. Conclusion

The main contribution of this paper is the identification of the com-
plexity of distance-sat and of several restrictions of it, as well as two
algorithms for solving it in the CNF case.

Those two algorithms were empirically evaluated and compared
with a full-CNF solving approach which takes advantage of a recent

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.29

30 Olivier Bailleux and Pierre Marquis

Table X. Results on random instances with 50% variables fixed
in PI. The cpu time required by each solver is given in seconds.
ns means that the corresponding instance was not solved within
3600 seconds.

Instance number 7 8 9 10 11 12

#variables 400 400 400 400 200 200

#clauses 400 400 800 800 600 600

#fixed variables 200 200 200 200 100 100

distance 5 5 15 15 20 20

satisfiable no yes yes no yes no

specialized solvers

DLL-lasso 0.01 ns ns ns 92.0 177

DLL-distance ns ns 928 ns 108 99.8

full CNF solvers

DLL-basic 68.3 54.1 ns ns ns ns

Berkmin 0.01 0.01 0.03 81.2 251 ns

Minisat 0.01 0.01 0.01 13.3 32.8 71.8

Jerusat 0.02 0.01 0.01 44.4 662 ns

efficient CNF encoding scheme, allowing some conclusions about their
respective applicability for being drawn. Especially, in the light of the
experiments, DLL-lasso appears as the most efficient algorithm for
hard instances with complete PI, at the sat/unsat transition. This
stresses the quality of branchinglasso as a branching heuristic, since it
is the only difference between DLL-lasso and a naive DLL procedure.

On the other hand, the BerkMin-full-CNF-encoding and
DLL-distance algorithms appear more efficient for solving distance-
sat instances with incomplete PI.

This work calls for many perspectives. A first one consists in evalu-
ating other branching rules, based on corresponding branching rules
used in sat solvers. Another one consists in incorporating some of
the features used by state-of-the-art sat solvers (like watched literals,
clause learning and so on) into DLL-lasso so as to improve it; this is
not an obvious extension since exploiting lazy data structures prevents
from computing in an efficient way sophisticated branching rules, like
branchinglasso .

Because instances of distance-sat can be easily encoded as in-
stances of the satisfiability problem for propositional cardinality for-
mulas, it would be interesting to extend our algorithms so as to make

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.30

distance-sat 31

Table XI. Results on random instances with 25%
variables fixed in PI. The cpu time required by
each solver is given in seconds. ns means that the
corresponding instance was not solved within 3600
seconds.

instance number 13 14 15 16

#variables 400 400 400 400

#clauses 800 800 1200 1200

#fixed variables 100 100 100 100

distance 4 4 10 10

satisfiable yes no yes no

specialized solvers

DLL-lasso ns ns 1678 ns

DLL-distance ns ns ns ns

full CNF solvers

DLL-basic 0.04 1.12 93.6 2618

Berkmin 0.01 0.01 0.01 4.0

Minisat 0.01 0.01 0.07 2.50

Jerusat 0.01 0.01 0.08 4.89

them able to take simultaneously several distance constraints into ac-
count. In addition, it would be interesting to study whether additional
structural properties (e.g., how the clauses of Σ are satisfied by the ref-
erence interpretation) could be exploited in the design of more efficient
distance-sat solvers. These are two issues for further research.

(Hebrard et al., 2005) study the complexity of several problems,
related to the issue of determining how diverse (resp. close) some
solutions of a CSP are. The decision problem corresponding to the
optimization problem called MostClose in (Hebrard et al., 2005)
is related to sat-distance-sat, a variant of distance-sat: given a
propositional formula Σ, a model I of it and and integer d, determine
whether Σ has another model, which is at distance at most d from
I. It is not difficult to prove that sat-distance-sat is NP-complete.
A deeper investigation of the connections between MostClose and
distance-sat is a topic for further research.

Some other perspectives include the comparison of the full-CNF
approach with other encodings of cardinality constraints (especially
the one reported in (Sinz, 2005)), and the optimization version of
distance-sat (which can be easily reduced to the optimization prob-

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.31

32 Olivier Bailleux and Pierre Marquis

lem weighted-max-sat). An issue to be investigated is the adaptation
of the specialized solvers to such optimization problems, and the
evaluation of their performances.

Appendix

Proof of Proposition 1:

− Membership results:

• to NP: this result is very easy since once a model of Σ has been
guessed in nondeterministic polynomial time, it is sufficient
to check in deterministic polynomial time that it disagrees
with PI on at most d variables.

• to P: all the membership results come from the tractability
of the following cases:

∗ a Horn (resp. reverse Horn, Krom, Blake) Σ, a fixed d,
any PI: tractability is the consequence of two basic facts.
On the one hand, since every variable occurring in PI
but not in Σ is irrelevant (i.e., it can be discarded from
PI without questioning the membership to distance-
sat) and since such an elimination process can be done
in time linear in |Σ|, the number m of variables of PI
that has to be considered is bounded by the number of
variables occurring in Σ, hence by the size of Σ. So only∑d

i=1

(m
i

)
= O(d ×md) partial interpretations PI ′ must

be checked for being consistent with Σ in the worst case.
The quantity

∑d
i=1

(m
i

)
is polynomial in the size of Σ

when d is fixed. On the other hand, whenever Σ is a Horn
(resp. reverse Horn, Krom, Blake) formula and PI ′ is a
partial interpretation (viewed as a term), it is possible to
compute in time polynomial in |Σ|+ |PI ′| a formula from
the same fragment that is equivalent to Σ ∧ PI. This is
obvious for the Horn, reverse Horn and Krom class and
the case of the Blake class is given by Proposition 36
from (Marquis, 2000). The fact that the satisfiability test
can be done in polynomial time for all these fragments
concludes the proof.

∗ a DNNF Σ, any d, any PI: this is a direct, slight extension
of Theorem 10 from (Darwiche, 2001). Let us show how
to compute in polynomial time the minimal Hamming
distance between (a model of) Σ and (an extension of)

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.32

distance-sat 33

PI. The proof is by induction on the structure of Σ.
The base case is as follows: if Σ is true (resp. false)
then its distance to PI is 0 (resp. +∞); otherwise, if Σ
is a literal l, then its distance to PI is 0, except when
¬l ∈ PI; in the latter case, the distance is 1. There are
two inductive steps, one for conjunctions and the other
one for disjunctions. As to the conjunction case, since
the conjuncts do not share any variables, the minimal
distance between Σ and PI is given by the sum of the
minimal distances between the conjuncts of Σ and PI.
As to the disjunction case, since every model of Σ is a
model of at least one of its disjuncts (and vice-versa),
the minimal distance between Σ and PI is given by the
smallest distance between the disjuncts of Σ and PI.

∗ any Σ, a fixed d, a complete PI: direct consequence of the
fact that only

∑d
i=1

(|PI|
i

)
= O(d× |PI|d) interpretations

must be checked for being a model of Σ in the worst case.

− NP-hardness results: all the results come from the NP-hardness of
the following restrictions:

• a CNF Σ, a fixed d, any PI: reduction from sat. To
every CNF formula Σ we associate the instance 〈Σ, {}, 0〉 of
distance-sat. Obviously enough, we have Σ ∈ sat if and
only if 〈Σ, {}, 0〉 ∈ distance-sat.

• a Horn (resp. reverse Horn, Krom, Blake) Σ, any d, a complete
PI: we consider the restricted fragment monotone-Krom,
which is the subset of both the reverse Horn fragment and
of the Krom fragment, consisting of the CNF formulas for
which each clause contains at most 2 literals and every lit-
eral is positive. We exhibit a reduction from the well-known
NP-complete problem hitting set to distance-sat with
Σ monotone-Krom. Indeed, an instance of hitting set is
given by a pair 〈C, d〉 where C is a finite set of subsets of
a finite set S and d is a non-negative integer; the instance
is positive if and only if there exists a subset H of S s.t.
the cardinal of H is lower than or equal to d and for every
c ∈ C, H ∩ c 6= ∅. It is known that the problem is NP-
complete even if the case where each c ∈ C contains at most
two elements (Karp, 1972). Our polynomial reduction is as
follows: we map 〈C, d〉 to 〈Σ, I, d〉 such that, each element of⋃

c∈C c being viewed as a propositional symbol from PS, each
subset c ∈ C can be viewed as a clause containing at most

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.33

34 Olivier Bailleux and Pierre Marquis

two positive literals, and the conjunction Σ of these clauses
is a monotone-Krom formula. I is the interpretation s.t. each
variable from PS is set to 0. Clearly enough, each hitting
set H of C can be viewed as an implicant of Σ since Σ is
monotone. Every model of Σ is an extension of at least one
of its implicant and the converse holds. It remains to observe
that H contains d elements if and only if it disagrees with I
on d variables.
The proof is similar in the Horn case (just flip every literal
in the above reduction and consider I as the interpretation
that set every variable to 1). As to the Blake case, the result
comes from the fact that to every monotone-Krom formula it
is possible to associate an equivalent Blake one in polynomial
time (just remove every clause that is entailed by another
one).

¥

Proof of Proposition 2: Let 〈Σ, P I, d〉, where PI is a complete inter-
pretation, be the input of DLL-lasso. Without loss of generality, we
assume that PI sets all the variables of Σ to 0. Let K be the number
of literals in the largest clause of Σ.

If all the clauses of Σ are satisfied by PI, then a model is found and
the procedure stops.

Now, suppose that some clauses of Σ are falsified by PI. Let q denote
the number of literals in the smallest clause of Σ that is falsified by PI.
Let x denote the branching variable at the root of the search tree. Since
branchinglasso is used, x belongs to a clause of size q.

If q = 1 then unit propagation operates, fixing x to 1 and producing
a simplified instance of distance-sat with distance d− 1; else, in the
worst case, two instances of distance-sat are successively produced
by fixing x to 0 and 1, respectively. Fixing x to 0 produces an instance
with distance d and q− 1 literals in the shortest clause falsified by PI.
Fixing x to 1 produces an instance with distance d− 1. Given that any
clause in Σ has at most K literals, the number of assignments required
by DLL-lasso to solve 〈Σ, P I, d〉 is bounded by Nd,K s.t.:

∀κ ≥ 0, N0,κ = 0,
∀δ > 0, Nδ,1 = 1 + Nδ−1,K ,
∀δ > 0, ∀κ > 1, Nδ,κ = 1 + Nδ,κ−1 + Nδ−1,K .

Because ∀κ > 0,∀δ > 0, Nδ,κ ≤ κ(1 + Nδ−1,K), we obtain

Nd,K = O(Kd).

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.34

distance-sat 35

Since the run time needed to propagate a variable assignment onto
Σ (including, if applicable, the computation of the branching function)
is O(|Σ|), the time complexity of DLL-lasso is O(|Σ| ×Kd). ¥

Acknowledgements

Many thanks to Vincent Vidal for his help. The second author has
been partly supported by the IUT de Lens, the Université d’Artois, the
Nord/Pas-de-Calais Région through the IRCICA Consortium, and by
the European Community FEDER Program.

References

F. Bacchus. The 2000 AI Planning Systems Competition. Artificial Intelligence
Magazine, 22(3):47–56, 2001.

O. Bailleux and Y. Boufkhad. Efficient CNF encoding of boolean cardinality con-
straints. In Proc. of the 9th International Conference on Principles and Practice
of Constraint Programming (CP’03), volume 2833 of Lecture Notes in Computer
Science, pages 108–122, Kinsale (Ireland), 2003. Springer Verlag.

B. Benhamou, L. Säıs, and P. Siegel. Two proof procedures for a cardinality based
langage in propositional calculus. In Proc. of the 11th Annual Symposium on
Theoretical Aspects of Computer Science (STACS’94), volume 775 of Lecture
Notes in Computer Science, pages 71–84, Caen (France), 1994. Springer Verlag.

C. Bessiere and J.-C. Regin. Refining the basic constraint propagation algorithm.
In Proceedings of IJCAI01, pages 309–315, 2001.

I. Bloch and J. Lang. Towards mathematical morphologics. In Proc. of the 8th

International Conference on Information Processing and Management of Un-
certainty in Knowledge-Based Systems (IPMU’00), pages 1405–1412, Madrid
(Spain), 2000.

A. Bockmayr. Solving pseudo-boolean constraints. In Constraint Programming:
Basics and Trends, volume 910 of Lecture Notes in Computer Science, pages
22–38. Springer Verlag, 1995.

J. Chabrier, V. Juliard, and J.J. Chabrier. SCORE(FD/B): An efficient complete
local-based search method for satisfiability problems. In Proc. of the CP’95
Workshop on Solving Really Hard Problems, pages 25–30, Cassis (France), 1995.

P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the really hard problems
are. In Proc. of the 12th International Joint Conference on Artificial Intelligence
(IJCAI’91), pages 331–337, Sydney, 1991.

V. Chvátal and E. Szemerédi. Many hard examples for resolution. JACM, 35(4):759–
768, 1988.

J.M. Crawford and L.D. Auton. Experimental results on the crossover point in
random 3SAT. Artificial Intelligence, 81:31–57, 1996.

M. Dalal. Investigations into a theory of knowledge base revision: Preliminary report.
In Proc. of the 7th National Conference on Artificial Intelligence (AAAI’88),
pages 475–479, St Paul (MN), 1988.

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.35

36 Olivier Bailleux and Pierre Marquis

A. Darwiche and P. Marquis. A perspective on knowledge compilation. In Proc.
of the 17th International Joint Conference on Artificial Intelligence (IJCAI’99),
pages 175–182, Seattle (WA), 2001.

A. Darwiche. Compiling knowledge into decomposable negation normal form.
In Proc. of the 16th International Joint Conference on Artificial Intelligence
(IJCAI’99), pages 284–289, Stockholm (Sweden), 1999.

A. Darwiche. Decomposable negation normal form. Journal of the ACM, 48(4):608–
647, 2001.

M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5:394–397, 1962.

O. Dubois, P. André, Y. Boufkhad, and J. Carlier. SAT versus UNSAT, pages 415–
436. Second DIMACS Series in Discrete Mathematics and Theoretical Computer
Science. American Mathematical Society, 1996.

D. Dubois, F. Esteva, P. Garcia, L. Godo, and H. Prade. A logical approach to
interpolation based on similarity relations. International Journal of Approximate
Reasoning, 17(1):1–36, 1997.

N. Eén and N. Sörensson. An extensibel sat solver. In Proc. of the 6th International
Conference on Theory and Application of Satisfiability Testing, volume 2919 of
Lecture Notes in Computer Science, pages 502–518. Springer Verlag, 2004.

K. Forbus. Introducing actions into qualitative simulation. In Proc. of the 11th

International Joint Conference on Artificial Intelligence (IJCAI’89), pages 1273–
1278, Detroit (MI), 1989.

M.R. Garey and D.S. Johnson. Computers and intractability: A guide to the theory
of NP -completeness. Freeman, 1979.

M.L. Ginsberg, A.J. Parkes, and A. Roy. Supermodels and robustness. In Proc. of the
15th National Conference on Artificial Intelligence (AAAI’98), pages 334–339,
Madison (WI), 1998.

E. Goldberg and Y. Novikov. Berkmin: A fast and robust sat solver. In Proc. of the
Design, Automation and Test in Europe Conference (DATE’02), pages 142–149,
Paris, 2002.

E. Hebrard, B. Hnich, B. O’Sullivan, and T. Walsh. Finding diverse and similar
solutions in constraint programming. In Proc. of the 20th National Conference
on Artificial Intelligence (AAAI’05), pages 372–377, 2005.

R.M. Karp. Reducibility among combinatorial problems, chapter Complexity of
Computer Computations, pages 85–103. Plenum Press, New York, 1972.

H. Kautz, D. McAllester, and B. Selman. Encoding plans in propositional logic.
In Proc. of the 5th International Conference on Knowledge Representation and
Reasoning (KR’96), pages 374–384, 1996.

S. Konieczny and R. Pino Pérez. On the logic of merging. In Proc. of the 6th Inter-
national Conference on Principles of Knowledge Representation and Reasoning
(KR’98), pages 488–498, Trento (Italy), 1998.

C. Lafage and J. Lang. Logical representation of preferences for group decision mak-
ing. In Proc. of the 7th International Conference on Knowledge Representation
and Reasoning (KR’00), pages 457–468, Breckenridge (C0), 2000.

C. Lafage and J. Lang. Propositional distances and preference representation. In
Proc. of the 6th European Conference on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty (ECSQARU’01), pages 48–59, Toulouse (France),
2001.

ChuMin Li and Anbulagan. Heuristics based on unit propagation for satisfiabil-
ity problems. In Proc. of the 15th International Joint Conference on Artificial
Intelligence (IJCAI’97), pages 366–371, Nagoya (Japan), 1997.

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.36

distance-sat 37

P. Liberatore and M. Schaerf. Reducing belief revision to circumscription (and vice
versa). Artificial Intelligence, 93(1-2):261–296, 1997.

D. Long and M. Fox. The 3rd International Planning Competition: Results and
Analysis. Journal of Artificial Intelligence Research, 20:1–59, 2003.

P. Marquis. Consequence finding algorithms, volume 5 of The Handbook for Uncer-
tain and Defeasible Reasoning, chapter Algorithms for Uncertain and Defeasible
Reasoning, pages 41–145. Kluwer Academic Publishers, 2000.

A. Nadel. The jerusat sat solver. Master’s thesis, Hebrew University of Jerusalem,
2002.

R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57–95,
1987.

A. Roy and Ch. Wilson. Supermodels and closed sets. Electronic Colloquium on
Computational Complexity (ECCC), TR00-010, 2000.

B. Selman, H.A. Kautz, and D.A. McAllester. Ten challenges in propositional rea-
soning and search. In Proceedings of the Fifteenth International Joint Conference
on Artificial Intelligence (IJCAI’97), pages 50–54, 1997.

C. Sinz. Towards an optimal cnf encoding of boolean cardinality constraints. In Proc.
of the 11th International Conference on Principles and Practice of Constraint
Programming (CP’05), volume 3709 of Lecture Notes in Computer Science, pages
827–831, Sitges (Spain), 2005. Springer Verlag.

J. Slaney and T. Walsh. Phase transition behavior: from decision to optimization.
In Proc. of the 5th International Symposium on the Theory and Applications of
Satisfiability Testing (SAT’02), Cincinnati (OH), 2002.

S. Thiébaux, J. Slaney, and P. Kilby. Estimating the hardness of optimisation.
In Proc. of the 14th European Conference on Artificial Intelligence (ECAI’00),
pages 123–127, Berlin (Germany), 2000.

P. Van Henteryck and Y. Deville. The cardinality operator: A new logical connective
for constraint logic programming. In Proc. of the 8th International Conference
on Logic Programming (ICLP’91), pages 745–749, Paris (France), 1991.

J. P. Warners. A linear-time transformation of linear inequalities into conjunctive
normal form. Information Processing Letters, 68(2):63–69, 1998.

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.37

dist-sat-obpm-jar-final.tex; 19/12/2005; 14:32; p.38

