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Abstract The spreading of multicast technology enables the development of group

communication and so dealing with digital streams becomes more and more common

over the Internet. Given the flourishing of security threats, the distribution of streamed

data must be equipped with sufficient security guarantees. To this aim, some architec-

tures have been proposed, to supply the distribution of the stream with guarantees

of, e.g., authenticity, integrity, and confidentiality of the digital contents. This paper

shows a formal capability of capturing some features of secure multicast protocols. In

particular, both the modeling and the analysis of some case studies are shown, starting

from basic schemes for signing digital streams, passing through protocols dealing with

packet loss and time-synchronization requirements, concluding with a secure distribu-

tion of a secret key. A process-algebraic framework will be exploited, equipped with

schemata for analysing security properties and compositional principles for evaluating

if a property is satisfied over a system with more than two components.

Keywords Formal security models and analysis · multicast communication.

1 Introduction

Multicast communication and security issues. With the wide use of Internet,

the popularity of multicast technology has grown considerably. Examples include live-

broadcasts, digitized audio and video, news feeds, stock quotes, multi-party video

games, multi-party video conferences, data applets, software updates.
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Dealing with multicast communication means, in the terminology currently present

in the literature, dealing with digital streams, i.e., long (potentially infinite) sequences

of bits. The stream is typically sent from one sender to a set of receivers.

Given that network security threats have flourished as well, the increasing trend to

distribute streamed data over the Internet must be equipped with sufficient security

guarantees. In particular, the so called stream signature protocols were born with the

intent of efficiently solving the problem to sign digital streams. This class of protocols,

designed for open architectures, makes usually use of hashing techniques and a thrifty

use of standard digital signatures to ensure the authenticity of the sender and the

integrity of the stream.

In some cases, confidentiality requirements are also due, as in a pay per view en-

vironment, where only a restricted group of authorized users must have the ability to

consume the stream.

Formal models and verification of secure multicast and secure data

streaming. Along with the development of schemes for secure multicast and secure

data streaming, the use of formal techniques for their model and analysis represents an

interesting challenge because of the differences between such protocols and standard

cryptographic schemes. Indeed, two peculiarities are: i) a sender broadcasts a contin-

uous (and possibly unbounded) stream of messages to a (possibly unbounded) set of

receivers; ii) receivers possibly use information retrieved in earlier packets to legitimate

later packets or vice-versa.

Also, from a security point of view, and within a wireless context, the relative ease

with which any entity, supplied with an antenna, may eavesdrop on communication,

modify (and drop) messages in transit, inject new messages on the wireless links, bring

new threats and impose new attacks. Thus, attention has been paid to developing a

formal foundation to the modeling and analysis of wireless communication, see e.g., [24,

25,27]. In these papers, process calculi and observational theories have been presented,

taking into account aspects like a transmission that spams over a limited area, and it

does not reach all nodes in the network, or the fact that nodes may not transmit and

receive at the same time.

The work in [34] sums up the results towards the use of team automata [7] for

the analysis of security aspects of multicast/broadcast communication. In particular,

the one-to-many and one-to-all communications, which are so typical of multicast and

broadcast communications, were captured by team automata in a native way as syn-

chronizations between the set of component automata constituting a team automaton.

Focussing on the analysis of streamed data, in [2], Archer states a formal analysis

based on model checking techniques (i.e., checking all the reachable states of a system

with respect to the fulfillment of a certain property) is not feasible. In her opinion, this

is because “an infinite state system is required to represent the inductive relationship

between an arbitrary n-th packet and the initial packet”. Instead, she exploits theorem

proving techniques to analyze the basic version of a well known stream authentication

protocol, the TESLA protocol, [29]. On the other hand, in [5] Broadfoot and Lowe show

their successful results derived applying model checking techniques on TESLA, moti-

vating, even though informally, several steps of the analysis. In particular, they have

shown how to build a finite model of TESLA, despite of the possibly unboundedness

of the stream of messages (and cryptographic keys) broadcasted by the sender.

Formal methods have been also exploited for analysing a multicast key management

scheme, [33]. The authors model the scheme by a relational modeling language and
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perform the analysis using the Alloy Analyzer, an automatic simulation tool. The

analysis highlights some flaws of the scheme previously unknown.

The AVISPA model checker [3] supports the analysis of VoIP security protocols,

aiming at providing confidentiality, message authentication and integrity, and replay

protection to data streams, that typically carry voice datagrams. In particular, [19]

considers the inter-operation between protocols at different layers of the VoIP stack,

showing that a protocol may be secure when executed in isolation, but the composition

of protocols in different layers may be not.

The analysis approach we are going to use throughout this paper focuses on the

verifiability of a system with an arbitrary number of components (as in the case of

stream signature protocols). In particular, some compositional principles will be ap-

plied to the case studies we present. These principles will allow us to safely compose

processes, in such a way that the overall system preserves the security property that

each subsystem separately enjoys.

A compositional approach has also been exploited in [1], where the authors propose

a general framework for deriving security protocols from simple components, using com-

position and refinements. They consider a family of key-exchange protocols, they prove

some security properties of two basic protocols (a standard signature based challenge-

response protocol and the Diffie-Hellman key exchange protocol), and they prove all

the family to be correct by composing the correctness proofs of the sub-analyses. In this

paper, we deal more with multicast and wireless technology and we focus on number

of participants rather than on number of protocols.

Goal of the paper. The goal of this paper is to show the formal capability of

capturing security features of multicast protocols, like sensor networks protocols based

on a time synchronization between senders and receivers and secret communication

within a multicast group. Some case studies will be shown, modeled, and analyzed

by exploiting a process-algebraic framework, equipped with schemata for analysing

security properties and compositional principles for evaluating if a property is satisfied

over a system with more than two components.

Process algebras. Process algebras represent an algebraic approach to the study

of concurrent processes. They are executable languages for the description of dis-

tributed systems. They allow both the specification of the processes and the formu-

lation of statements about them, together with methodologies for the verification of

these statements.

To facilitate a comparison between processes, several notions of behavioral equiva-

lences have been defined within the algebras. We mainly deal with the notion of weak

bisimulation, [26], recalled in the appendix. Also, two extensions of CCS, the Calculus

of Communicating Systems, [26], namely Crypto-CCS and tCryptoSPA, will be used

throughout the paper (their syntax is concisely presented in Appendix A).

Compositional strategy and general schemata for security properties.

A compositional principle gives sufficient conditions to conclude that the composition of

two (or more) processes satisfies the composition of two (or more) properties, provided

that the single processes satisfy the single properties. As an example, such a principle

could work as follows: in order to check if a compound system P ||Q satisfies a formula f

(where f says, e.g., that the system is correct), it is enough to check whether both P and

Q separately satisfy f . (Notation || represents the parallel composition of processes, see

also the appendix.) The existence of such a principle would be particularly appealing
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for the target of our analysis. Indeed, the state-space of the system P ||Q is usually

considerably bigger than those of P and Q, separately. Above all, it would help in

analyzing systems with a possibly unbounded number of components. Indeed, consider

the parallel composition of n instances of process P :

n
︷ ︸︸ ︷

P || . . . ||P

To prove that the overall system enjoys f (for whatever n) it is sufficient to prove that

P enjoys f .

Compositional principles will be used to verify i) an integrity property, i.e., a sort of

robustness against packet modification, and ii) a secrecy property requiring, informally,

that the contents of the stream remains unknown to everybody but the sender and the

intended receivers.

Some of these principles were first introduced in [16] for the Generalized Non De-

ducibility on Compositions scheme of properties, (GNDC for short), defined in [9,12,

11]. In turn, the scheme (reminded in Appendix B) is based on the seminal notion

of non-interference ( [14]). We use these principles to verify an instance of a stream

signature protocol dealing with packet loss, see [30] and section 2.2 of this paper. Also,

Subsection 3.4 shows an application of compositionality to analyze confidentiality in a

multicast protocol that uses group encryption techniques [35].

A variant of this principle was introduced in [18,16] within a formal framework

aimed at verifying timed security properties, i.e., security properties whose fulfilment

is based on timed conditions. In turn, the timed formal framework, namely the timed-

Generalized Non Deducibility on Compositions (tGNDC for short) has been introduced

in [16]. Part of Appendix B is devoted to recall the tGNDC schema. The principle is

applied in Subsection 3.3 to verify a protocol for broadcast authentication of data in

wireless sensor networks [31].

Case studies. The case studies considered throughout the paper are: 1) the

Gennaro-Rohatgi protocol [13], a pioneering protocol introduced in 1997 to sign digital

streams; 2) the Efficient Multi-chained Stream Signature protocol (EMSS) proposed

in [30]. This stream signature protocol implements a significant improvement over the

Gennaro-Rohatgi protocol, since EMSS guarantees some robustness against packet loss;

3) the µTESLA (“micro” Timed Efficient Stream Loss-tolerant Authentication, [31]), a

protocol to provide authenticated broadcast in wireless sensor networks environments;

4) finally, a protocol to distribute a secret key to a multicast group, [35].

Contributions. The main contributions of this paper are the following.

i) We formally model and analyze some relevant proposals for authenticating data

streams and for giving them data confidentiality. To the best of our knowledge, this is

the first attempt to prove some of the security properties of those protocols (by means

of compositional rules).

ii) Starting from modeling the basic scheme of Gennaro and Rohatgi, passing

through protocols dealing with packet loss, concluding with a time-dependent secu-

rity wireless protocol and with a secure distribution of a key, the proposed analysis

aims at allowing the modeling and formal validation of a spectrum of secure multicast

and wireless protocols.

iii) Contrary to previous work in the area, e.g., [2,5], the proposed analysis is able

to check a specification with an unbounded number of components.
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Summary. The paper is organized as follows. Section 2 presents the informal de-

scription and the formal model of the case studies. Section 3 is dedicated to the analysis

of some security properties of the presented protocols. Finally, some conclusions are

given.

Even though our effort was to write down a self contained paper, the appendixes

report more information regarding the theory behind the application. In particular,

they report the syntax of the formal languages used in the paper, they recall the

GNDC and tGNDC schemata and they present some proofs.

2 Modeling multicast communication

In this section, we present and formally model some security protocols aiming at ensur-

ing integrity and authenticity of the so called digital streams, while section 3.4 proposes

a formal model for distributing a secret key to a multicast group, [35].

Typically, communication involves one sender and an arbitrary number of receivers.

We start to describe the Gennaro-Rohatgi protocol (in its off-line version), [13], in order

to introduce the reader to the architecture of a simple scheme for signing streams, and

to give basic concepts of our modeling.

2.1 The Gennaro-Rohatgi protocol

In [13], Gennaro and Rohatgi developed a mechanism to sign digital streams. They

aim at assuring a receiver that the information he received is exactly what the sender

has intended.

Applications that deal with streams are typically digitized audio and video, data

feeds, applets. This kind of applications requires the user to consume the data it re-

ceives at almost the input rate, without excessive delay. For this reason, signing digital

streams represents a different problem compared with the signature of finite messages.

Traditional digital signature schemes do not fit properly because they require the re-

ceiver to process the entire message in order to verify the signature.

The Gennaro-Rohatgi protocol should be considered paradigmatic, being essen-

tially, in its 1997 version, one of the first proposals to efficiently solve the problem to

sign digital streams. Efficient cryptographic solutions (i.e., fast to be computed and

verified, with respect to the time in which these authors made the proposal) have been

adopted in the protocol to allow the entities at stake to minimize their communication

and computation overhead.

The authors present two solutions to the problem, distinguishing two cases: i) the

off-line case: a finite stream which is entirely known to the sender (e.g., a movie); ii)

the on-line case: a potentially infinite stream not known in advance to the sender (e.g.,

a live broadcast for news feed).

We model the off-line scheme below. For details about the on-line scheme, the

reader is referred to [13,17].

The off-line scheme relies on the basic idea to divide the stream into blocks and

to add cryptographic information in each block such that receivers use information

retrieved in earlier blocks to legitimate later blocks.

We first use an intuitive notation usually reported in literature. We consider a set

of agents able to send and receive messages. With the following notation,
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cj A → B : msg

we represent the transmission of message msg from a sender A to a receiver B. cj

is the j-th communication channel.

Thus, let {bi} ∈ Msgs be the set of meaningful payloads, i = 1 . . . l. It is assumed

that the sender’s private key sk(S) does not occur in the set {bi}. h(m) is the digest

of m after applying the hash function; {m}sk(S) is message m digitally signed by the

sender’s private key sk(S). len is the number of blocks in which the stream is divided.

Then, the protocol for the off-line case is:

c0 S → R : b
′

0

ci S → R : b
′

i i = 1..l − 1

cl S → R : b
′

l

where

b
′

0 = {len, h(b
′

1)}sk(S)

b
′

i = bi, h(b
′

i+1) i = 1..l − 1

b
′

l = bl

It exploits the technique of embedding the hash of the following block in the current

block. Bootstrapping integrity of the digital stream is obtained by applying a single

traditional signature in combination with hash chaining.

The sender S first divides the stream into l blocks. Then, S generates block b
′

0,

i.e., the digital signature of the encoding of the length of the stream len, plus the hash

of the subsequent block b
′

1. After verification of the signature the receiver knows how

many blocks are expected to be received and what the hash of the first block should

be and then it starts receiving the full stream (blocks b
′

i). When the receiver receives

the first block b
′

1, it computes its hash and checks the hash against what the signature

was verified upon. The other blocks consist of an authentication chain, in which each

block contains the hash of the subsequent block. Note that embedding the hash of the

subsequent block implies that the sender knows the stream in advance, hence the non

feasibility of this construction for applications like live broadcasts.

It is worth noticing that in the original paper [13], the first block contains an

encoding of the length of the stream. The structure of the first block is here simplified

(without however affecting the results of the analysis that will follow). Furthermore,

we assume the receiver knows in advance the number of blocks in which the stream is

divided.

2.1.1 Crypto-CCS specification of the Gennaro-Rohatgi protocol

To formally specify the protocol, the sender and the receiver are modelled as Crypto-

CCS processes, see App. A. The modelling of possible operations on messages is given

by an inference system, consisting of a set of rules r, e.g., . r = m1 . . . mn
m0

where

{m1, . . . , mn} is a set of messages (called premises, possibly empty) and m0 is the

conclusion.

In the following, the application of rule r to messages m0, . . . , mn and a consequent

behaviour of the process is denoted as [m0 . . . mn ⊢r xm]A1; A2, where A1 and A2 are

Crypto-CCS processes too, and it represents the inference construct. Each conclusion

xm of an inference construct is a message variable and it means “variable x should

contain message m”. If, by applying rule r to premises m0, . . . , mn a message m can

be inferred, then the process behaves as A1, otherwise the process behaves as A2.

When A2 is missing, if no message m can be inferred, the process aborts. Notation c!m
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x y
Pair(x, y)

(pair)
Pair(x, y)

x (fst)
Pair(x, y)

y (snd)

x sk(y)
{x}sk(y)

(sign)
{x}sk(y) pk(y)

x (ver) x
h(x)

(hash)

Fig. 1 Inference system for the Gennaro-Rohatgi protocol.

is message m sent on channel c; notation c?x is some message variable x received on

channel c. Finally, 0 is the process that does nothing.

It is worth noticing that the syntax and semantics of Crypto-CCS are parametric

with respect to a given inference system. Indeed, one of the strengths of the language

adopted for modeling is its flexibility in specifying operations on messages. In the fol-

lowing, we will show how it is possible to manipulate exchanged messages, by appositely

defining opportune inference systems according to the protocols to be modelled.

As the first example, a suitable inference system that is used to model the Gennaro-

Rohatgi protocol is shown in Fig. 1. Rule (pair) builds the pair of two messages x and

y; rules (fst) and (snd) return the components of a pair; rule (sign) allows message x

to be digitally signed by applying the secret key sk(y) of agent y; rule (ver) allows a

digital signature {x}sk(y) to be verified by applying the public key of signer y, pk(y);

rule (hash) allows an agent to apply a one-way hash function to message x and obtain

digest h(x).

Example 1 A typical use of the Crypto-CCS inference construct may be as follows,

where a process receives a signed message x over channel c and tries to verify the

signature. If it succeeds, then the value is sent over channel out, otherwise the process

outputs an error message err.

c?x. receive x on channel c

[x pk ⊢ver y] verify signature

out!y.0; in the positive case. output y and stop

out!err.0 otherwise, output an error message and stop

The specification of the Gennaro-Rohatgi protocol follows.

The sender process builds the initialization block b
′

0 (more precisely, he builds a

variable containing b
′

0) to bootstrap the chain: by means of rule sign in Fig. 1 the

sender computes block b
′

0, sends it on communication channel c0 and travels to the

next state Sender1. The generic Senderi, 1 ≤ i < l now sends payloads bi together

with hashed blocks h(b
′

i+1) until the last state l is reached.
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Sender0
.
=

[len h(b
′

1) ⊢pair xpair] Pair lenght and hash of next block

[xpair sk(S) ⊢sign x
b
′

0

] Sign pair

c0!xb
′

0

.Sender1 Output b
′

0 and go to next state

Senderi
.
= 1 ≤ i < l

[bi h(b
′

i+1) ⊢pair x
b
′

i

] Pair payload and hash of next block

ci!xb
′

i

.Senderi+1 Output b
′

i and go to next state

Senderl
.
=

cl!bl.0 Output last block and stop

The receiver process is parameterized by the hashed blocks he receives from the

sender and by the number of the expected blocks (more precisely, by variables that

should contain these values).

Receiver0(null, null)
.
=

c0?xb
′

0

. Receive initial block

[x
b
′

0

pk(S) ⊢ver xpair] V erify signature

[xpair ⊢fst xlen] Extract lenght

[xpair ⊢snd x
h(b

′

1
)
] Extract hash next block

Receiver1(xh(b
′

1
)
, xlen) Go to next state

Receiveri(xh(b
′

i
)
, xlen)

.
= 1 ≤ i < l

ci?xb
′

i

. Receive i − th block

[x
b
′

i

⊢hash x
h(b

′

MY i
)
] Compute my hash h(b

′

MY i)

[x
h(b

′

i
)

= x
h(b

′

MY i
)
] Compare hash

[x
b
′

i

⊢fst xbi
] Extract payload

couti !xbi
. Send payload to application level

[x
b
′

i

⊢snd x
h(b

′

i+1
)
] Extract hash of next block and

Receiveri+1(xh(b
′

i+1
)
) Go to next state

Receiverl(xh(b
′

l
)
, xlen)

.
=

cl?xb
′

l

. Receive last block

[x
b
′

l

⊢hash x
h(b

′

MY l
)
] Compute my hash h(b

′

MY l)

[x
h(b

′

l
)

= x
h(b

′

MY l
)
] Compare hash

coutl
!x

b
′

l

.0 Send block to application level and stop

In the initial state the receiver aims at verifying the digital signature (we assume

he has previously retrieved the public key pk(S) corresponding to the private key of

the supposed sender). Then, it travels to the next state Receiveri(xh(b
′

1
)
, xlen), by

maintaining history of the (supposed) next hashed block h(b
′

1) and of the (supposed)
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total number of blocks. Acceptance of the subsequent blocks is conditioned to the

successful outcome of the equality tests between the hash it maintains as a parameter

and the hash it computes from what it has presently received, respectively x
h(b

′

i
)

and

x
h(b

′

MY i
)
. If the hashes coincide, the receiver sends the meaningful payload contained in

xbi
to the application level to consume it. This sending operation is over channel couti .

The receiver then extracts the supposed hash of the block to be received immediately

later. This mechanism is repeated until the reception of the l-th block. Whether the

verification of the signature in the initial state or the equality tests in subsequent states

do not succeed the receiver should abort.

2.1.2 Extending the model to multiple receivers

Extending the model to the treatment of multicast and broadcast communication (i.e.,

by allowing a potentially unbounded number of receivers) is as follows: a new process

MB is added, that is responsible for potentially sending each block an unbounded

number of times in order to simulate a one-to-many (one-to-all) sending typical of a

multicast (broadcast) communication. The new process is parameterized by the block

the sender has to multicast (or broadcast).

MBi(xb
′

i

)
.
= ci!xb

′

i

.MBi(xb
′

i

)

Thus, in the light of this new process, the specification for the sender process can

be re-written as follows. P1||P2 denotes a parallel execution of two processes (details

in App. A).

Sender0
.
=

[len h(b
′

1) ⊢pair xpair]

[xpair sk(S) ⊢sign x
b
′

0

]

(Sender1||MB0(xb
′

0

)) Output b
′

0 and go to next state

Senderi
.
= 1 ≤ i < l

[bi h(b
′

i+1) ⊢pair x
b
′

i

]

(Senderi+1||MBi(xb
′

i

)) Output b
′

i and go to next state

Senderl
.
= MBl(bl) Output bl and go to next state

2.2 The EMSS protocol

Digital streams are usually sent over UDP, the User Datagram Protocol, [32]. UDP is

considered to be an unreliable transport protocol, i.e., when UDP sends packets over

a network, it just sends them and forgets about them. This does not mean that UDP

is ineffective, only that it does not handle reliability of the communication. If a stream

is received incomplete, we would still like to be able to prove the integrity of all the

packets that were not lost.

Along with the pioneering protocol modelled in the previous section, protocols

dealing with the problem of securing streamed data over channels with packet loss have
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been recently proposed, [30,28,15]. They all can be basically considered as valuable

extensions of the Gennaro-Rohatgi constructions.

In particular, in [30], Perrig et al. presented the Efficient Multi-chained Stream

Signature (EMSS) protocol to sign digital streams. EMSS exploits a combination of

hash functions and digital signatures and–contrary to previous proposals [13]–achieves

(some) robustness against packet loss.

The basic idea of EMSS is the following: a hash of packet Pi−1 is appended to

packet Pi, whose hash is in turn appended to packet Pi+1 and so on. A signature

packet, containing the hash of the final data packet along with a signature, is sent

at the end of the stream. To achieve robustness against packet loss (the event of one

or more packets loss would break the chain) each packet contains multiple hashes of

previous packets and the signature packet signs hashes of multiple packets. [30] uses

both deterministic and random distribution of hashes per packet.

Here we focus on a specific instance of the EMSS, the deterministic (1,2) schema,

where packet Pi contains hashes of packets i − 1, i − 2 and whose hash is contained in

packets i+1, i+2. After an initial phase, each packet Pi contains a meaningful payload

mi
1 together with the hashes h(Pi−1) and h(Pi−2) of the previous two packets sent.

Packets are sent over channels ci, 0 ≤ i ≤ last from a sender S to a set of receivers

{Rn | n ≥ 1}. The end of a stream is indicated by a signature packet Psign over channel

csign, containing the hashes of the final two packets, along with a digital signature.

The protocol can informally be described as follows.

c0 S → {Rn} : P0

c1 S → {Rn} : P1

ci S → {Rn} : Pi 2 ≤ i ≤ last

where

P0 = m0

P1 = m1, h(P0)

Pi = mi, h(Pi−1), h(Pi−2) 2 ≤ i ≤ last

Let Plast be the last packet of the stream. Upon sending Plast a signature packet

Psign is sent:

csign S → {Rn} : Psign = {h(Plast), h(Plast−1)}sk(S)

A packet Pi is said to be verifiable if there exists a path (in terms of hashes contained

in a chain of packets) from Pi to the signature packet. Note that verifiability depends

on a bound of the number of lost packets, and on the reception of the signature packet.

Given a set of verifiable packets, we intend to prove the correctness of the con-

struction in terms of packet integrity, i.e., to assure a receiver that the information

it received is exactly what the sender has originally intended. For the analysis, see

Section 3.1.

2.2.1 Crypto-CCS specifications of the (1,2) EMSS.

We present the Crypto-CCS specifications of the (1,2) scheme of the EMSS protocol.

We remind that the whole formalization, in particular the way a receiver process

acts, is based on implementative choices of the authors since some details are not ex-

plicitly given in [30].

1 We assume the sender’s private key sk(S) cannot be deduced from the set of messages
{mi}.
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x y z
(x, y, z)

(triple)
(x, y, z)

x (1-st)
(x, y, z)

y (2-nd)
(x, y, z)

z (3-rd)

x sk(y)
{x}sk(y)

(sign)
{x}sk(y) pk(y)

x (ver) x
h(x)

(hash)

Fig. 2 Inference system for EMSS.

A suitable inference system that is used to model EMSS is shown in Fig. 2. Rule

(triple) builds the triple of three messages x, y and z; rules (1-st), (2-nd) and (3-rd)

return, respectively, the first, second and third component of a triple; rules (sign),

(ver) and (hash) are the same as in the inference system for the Gennaro-Rohatgi

protocol.

The sender process is parameterized by variables containing the hashes it should

insert in the following packet. As in the formalization of the Gennaro-Rohatgi protocol,

with notation xm we mean “variable x should contain message m”. Hereafter, state

last + 1 coincides with state sign. In the initial states S0 and S1, and in the final

state Ssign, we will use rule triple with a little abuse of notation, without explicitly

introducing null arguments.

S0(null, null)
.
=

[m0 ⊢triple xP0
] Create triple P0 : (m0, null, null)

[xP0
⊢hash xh(P0)] Compute hash of P0

(S1(xh(P0), null)||MB0(xP0
)) Output P0 and go to next state

S1(xh(P0), null)
.
=

[m1 xh(P0) ⊢triple xP1
] Create triple P1 : (m1, xh(P0), null)

[xP1
⊢hash xh(P1)] Compute hash of P1

(S2(xh(P1), xh(P0))||MB1(xP1
)) Output P1 and go to next state

Si(xh(Pi−1), xh(Pi−2))
.
= 2 ≤ i ≤ last

[mi xh(Pi−1) xh(Pi−2) ⊢triple xPi
] Create triple Pi

[xPi
⊢hash xh(Pi)] Compute hash of current packet

(Si+1(xh(Pi), xh(Pi−1))||MBi(xPi
)) Output Pi and go to next state

Ssign(xh(Plast), xh(Plast−1))
.
=

[xh(Plast) xh(Plast−1) ⊢triple xt] Create triple of final hashes

[xt sk(S) ⊢sign xPsign
] Sign the triple

MBsign(xPsign
) Output the signature packet

Again, the special process MB is responsible for potentially sending each packet an

unbounded number of times, in order to simulate a one-to-many (one-to-all) sending.

The process is parameterized by the packet the sender is to multicast (or broadcast).

MBi(xPi
)

.
= ci!xPi

.MBi(xPi
) 0 ≤ i ≤ last

MBsign(xPsign
)

.
= csign!xPsign

.MBsign(xPi
)

Among the set of receivers, each process behaves in the same way. The generic

receiver process at step i is parameterized by:
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– the two last packets it has received at steps i-1, i-2. Let them be Pi−1, Pi−2 - over

the real channel, with packet loss, we could have that one of them, or even both,

are empty fields. Empty fields are indicated with the term null.

– a tuple tupi−1
{mj}

. tup{mj} consists of the ordered sequence of payloads among

{mj}j=0,1,...last whose corresponding packets’ hashes h(Pj) the receiver was able

to check. tupi−1
{mj}

is the tuple updated at step i, by inserting either xmi−2 or xmi−3 .

The updated tuple could be either (xmi−2 , tupi−2
{mj}

) or (xmi−3 , tupi−2
{mj}

). Also, it

may remain unchanged, when both mi−2 and mi−3 are lost. Similarly, tuplast
{mj}

may either be (xmlast , tuplast−1
{mj}

) or (xmlast−1 , tuplast−1
{mj}

) or, unchanged, tuplast
{mj}

.

The unreliability of the transmission over UDP is modeled by considering that

process Rec non deterministically chooses whether to receive a packet or not. Finally,

we assume that the signature packet Psign is always received (this is likely since in the

original protocol multiple copies of the signature packets are sent). In the specification,

0 ≤ i ≤ last and last + 1 ≡ sign. P−1, P−2 are necessarily empty fields.

Reci(xPi−1
, xPi−2

, tupi−1
{mj}

)
.
=

Reci+1(xPi
, xPi−1

, tupi−1
{mj}

) + Packet loss : go to next state, otherwise

(ci?xPi
. Receive packet Pi

([xPi−1
= null] Was Pi−1 received? No, then

([xPi−2
= null] Was Pi−2 received? No, then

Reci+1(xPi
, xPi−1

, tupi−1
{mj}

); Go to next state

(Pi−1 and Pi−2 were not received),

otherwise

Rec′′i (xPi
, xPi−1

, xPi−2
, tupi−1

{mj}
) Go to state Rec′′i (Pi−2 was received),

otherwise

);

Rec′i(xPi
, xPi−1

, tupi−1
{mj}

Go to Rec′i (Pi−1 was received)

)

)

Rec′i(xPi
, xPi−1

, tupi−1
{mj}

)
.
=

[xPi
⊢2−nd xh(Pi−1)] Extract h(Pi−1) from Pi

[xPi−1
⊢hash xhMY (Pi−1)] Compute my hash hMY (Pi−1)

[xhMY (Pi−1) = xh(Pi−1)] Compare the hashes

([xPi−1
⊢1−st xmi−1 ] IF equal : extract mi−1 from Pi−1

Reci+1(xPi
, xPi−1

, (xmi−1 , tupi−1
{mj}

)) Update parameters and go to next state

);0 ELSE : abort

Rec′′i (xPi
, , xPi−1

, xPi−2
, tupi−1

{mj}
)

.
=

[xPi
⊢3−rd xh(Pi−2)] Extract h(Pi−2) from Pi

[xPi−2
⊢hash xhMY (Pi−2)] Compute my hash hMY (Pi−2)

[xhMY (Pi−2) = xh(Pi−2)] Compare the hashes

([xPi−2
⊢1−st xmi−2 ] IF equal : extract mi−2 from Pi−2

Reci+1(xPi
, xPi−1

, (xmi−2 , tupi−1
{mj}

)) Update parameters and go to next state

);0 ELSE : abort
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Recsign(xPlast
, xPlast−1

, tuplast
{mj}

)
.
=

csign?xPsign
. Receive signature packet

Rec∗sign(xPsign
, xPlast

, xPlast−1
, tuplast

{mj}
) Go to intermediate state Rec∗sign

Rec∗sign(xPsign
, xPlast

, xPlast−1
, tuplast

{mj}
)

.
=

[xPsign
pk(S) ⊢ver xver] V erify the signature

[xPlast
= null] Was Plast received? No, then

([xP
last−1

= null] Was Plast−1 received? No, then

capp!tuplast
{mj}

.0; Plast and Plast−1 were not received :

send the stream of verifiable payloads

to the application level and stop;

Rec′′sign(xver, xPlast−1
, tuplast

{mj}
) otherwise, if Plast−1 received,

go to Rec′′sign;

);

Rec′sign(xver, xPlast
, tuplast

{mj}
); otherwise, if Plast received,

go to Rec′sign

Rec′′sign(xver, xPlast−1
, tuplast

{mj}
)

.
=

[xver ⊢2−nd xh(Plast−1)] Extract h(Plast−1) from Psign

[xPlast−1
⊢hash xhMY (Plast−1)] Compute my hash hMY (Plast−1)

[xhMY (Plast−1) = xh(Plast−1)] Compare the hashes

[xPlast−1
⊢1−st xmlast−1 ] IF equal : extract mlast−1 from Plast−1

capp!(xmlast−1 , tuplast
{mj}

).0; Send the stream of verifiable payloads

0 to the application level and stop;

ELSE abort

Rec′sign(xver, xPlast
, tuplast

{mj}
)

.
=

[xver ⊢1−st xh(Plast)] Extract h(Plast) from Psign

[xPlast
⊢hash xhMY (Plast)] Compute my hash hMY (Plast)

[xhMY (Plast) = xh(Plast)] Compare the hashes

[xPlast
⊢1−st xmlast ] IF equal : extract mlast from Plast

capp!(xmlast , tuplast
{mj}

).0; Send the stream of verifiable payloads

0 to the application level and stop;

ELSE abort

In the final state Recsign (along with intermediate states Rec∗sign, Rec′sign, Rec′′sign)

the receiver aims at verifying the digital signature (we assume it has previously re-

trieved the public key pk(S) corresponding to the private key of the supposed sender).

The correct verification of the signature implies the receiver to have guarantees on the

integrity of the verifiable payloads. It can now send the stream to the application level

to consume it. In our formalization, this is modeled by a scenario where the receiver

sends the content of its parameter tuple (the accepted stream) over channel capp. If

the verification of the signature in the final state or the equality tests in the previous

states do not succeed the receiver should abort.
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2.3 The µTESLA protocol

In [31], Perrig et al. presented µTESLA (“micro” Timed Efficient Stream Loss-tolerant

Authentication), a protocol to provide authenticated broadcast in wireless sensor net-

works environments. [31] considers a scenario where sensors communicate with a base-

station connected to the external world. The base station may broadcast to all nodes

messages for routing updates, reprogramming, reset requests. The protocol is an ex-

tension of the TESLA stream authentication protocol developed in [29] and it was

intentionally developed for providing authenticated broadcast for the limited comput-

ing environments that are encountered in sensor networks.

In the original TESLA schema, a single sender broadcasts a continuous stream of

packets. Receivers may use information in later packets to authenticate earlier packets.

Each packet contains a message authentication code (MAC), i.e., a value computed

by applying a public algorithm and a secret encryption key to the packet itself. Given

a message m and an encryption key k, we call mac(m, k) the message authentication

code of m. The algorithm is known by all the receivers, while the encryption keys are

disclosed by the sender after a certain amount of time. When a receiver receives a key

Ki it can use it to compute the MAC from the related packet Pi and compare the

computed MAC with that previously received. If the two MACs match, the receiver

can consider the packet Pi authentic. To avoid the event that an intruder could use

a disclosed key Ki to fake the packet Pi a time synchronization protocol between the

sender and the receivers is needed. Then, each receiver will not accept the packet Pi if

the sender might have already disclosed the key Ki.

Bootstrapping authentication of the whole scheme is achieved in TESLA by sign-

ing the first packet with a regular digital signature scheme. Nevertheless, computation,

communication and storage overhead make the use of asymmetric cryptography un-

feasible for the net of sensors under investigation. Thus, µTESLA has been proposed

as an optimized extension for sensor networks. It just makes use of MACs. The base-

station randomly generates the last MAC key to be used, Klast, and derives a key chain

by repeatedly applying a publicly known one-way function F to that key, such that

Ki = F (Ki+1). Given the non-reversibility property (at least with high probability)

of function F, the disclosure of key Ki should not lead to any knowledge of Ki+1 and

subsequent keys.

Receivers’ requirements for correctly joining and executing the protocol are: i) they

are time synchronized with the base station; ii) they know the disclosure schedule of

the MAC keys; iii) they know at least one authenticated key of the key chain, serving

as a commitment to the entire chain. A protocol providing time synchronization and

one authenticated key has been proposed in [31]. Basically, the base-station shares with

each sensor a symmetric secret key KSM and establishes a secure channel over which

the exchange of a commitment to the key chain, K0, and a set of temporal parameters,

sett, takes place. There are as many symmetric keys as the number of sensors and this

initial communication is a point to point communication.

This inizialitazion phase can be informally described as follows:

cm S → Rm : P0 = K0, sett, mac(K0, sett, K
m
SM ) m ∈ N

where S is the identifier of the sender (i.e., the base station) and Rm, with m ∈ N , is

the m-th receiver (i.e., the sensor).
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Fig. 3 A µTESLA instantiation.

µTESLA is parameterized by the schedule time at which MAC keys are disclosed.

For the description of further steps in the protocol we consider a basic formalization,

Fig. 3, where we suppose that the sender discloses a MAC key with a delay δ = 1,

assumed to fall in the interval after that key has been used to compute the MAC. Fur-

ther, we suppose the sender sends one packet per time interval. Basically, in each time

slot a packet and a key packet will be sent, see Fig. 3. First of all, each receiver should

check the integrity of the received key, say Ki, by verifying it w.r.t. an authenticated

commitment (e.g., by checking K0 = F i(Ki)), then the verified key will be used to

verify the integrity of the packet received in the previous time slot.

ci S → {Rm} : Pi = mi, mac(mi, Ki) i ≥ 1

Packet Pi consists of a meaningful payload mi plus the message authentication

code computed on mi with key Ki. We assume that each shared key Km
SM cannot

be deduced from the sets {mi}, {Ki}. This is a multicast communication between the

base station S and each sensor in the set of receivers {Rm}.

Upon receiving the packet, the sensors store the packet until its MAC can be

verified, i.e., until the sender broadcasts packet disclosing Ki:

ci+1 S → {Rm} : Ki (Key Packet)

The integrity of key Ki can be checked by verifying K0 = F i(Ki) (or, equivalently,

Ki−1 = F (Ki)). Packets may be lost in transit from the base station to the sensors.

In particular µTESLA is tolerant to packet loss in the sense that receivers may still

be able to authenticate all the received packets Pi even when the corresponding keys’

disclosure packets are lost. Suppose Kj is lost, then a receiver is not able to verify

MAC packet Pj . The following key the receiver recovers, let it be Kj+1, can be verified

w.r.t. a previous authenticated key (e.g., K0 = F j+1(Kj+1)) and is used to derive Kj ,

i.e. Kj = F (Kj+1).

2.3.1 The tCryptoSPA specifications of the µTESLA protocol

Part of the complexity in the construction of protocols like µTESLA consists of the

temporal constraints that are present, since, e.g., a time synchronization is needed

among the actors in the protocol.

Within a formal framework aimed at modeling timed constraints in protocols and

at verifying security properties whose fulfilment is based on timed conditions, we give

here the tCryptoSPA specification of the basic µTESLA presented in Fig. 3.
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m m′

(m, m′)
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(m, m′)
m (fst)

(m, m′)
m′ (snd)

F m
F (m)

(one-way) m k
mac(m, k)

(mac)

Fig. 4 Inference system for µTESLA.

Indeed, the fundamental requirement of a time synchronization between the base

station and each sensor in µTESLA is naturally captured in tCryptoSPA (Appendix A.2)

by its time modeling action tick, upon which sender and receivers’ processes may syn-

chronize.

A suitable inference system that is used to model µTESLA is shown in Fig. 4. Rule

(one-way) allows to apply a one-way hash function F to message m and obtain digest

F (m); rule mac computes the message authentication code (MAC) of a message with

a key; rules (pair), (fst) and (snd) are the same as in the inference system for the

Gennaro-Rohatgi protocol.

We consider a sender machine with ample resources. It can be parallelized or split

into n senders, each of them possibly sending different streams, {mj
i }i≥1,1≤j≤n. We

first present the generic sender process Sj .

We assume the keys belonging to the key chain and the streams of packets to be

different for each process Sj , 1 ≤ j ≤ n2.

Sj
1

.
=

[mj
1 Kj

1 ⊢mac x] Compute MAC

[mj
1 x ⊢pair P1] Create packet P1

Bj
1(P1) Start to broadcast P1

Sj
i

.
=

[mj
i Kj

i ⊢mac x] Compute MAC

[mj
i x ⊢pair Pi] Create packet Pi

Bj
i (Pi) Start to broadcast Pi and disclose key Ki−1

Bj
i (Pi)

.
= ciPi.B

j
i (Pi) + tick.Sj

i+1 i = 1

Bj
i (Pi)

.
= ciPi.ciK

j
i−1.Bj

i (Pi) + tick.Sj
i+1 i ≥ 2

Construct Bj
i (. . .) is responsible for potentially sending packets (and keys) an un-

bounded number of times, in order to simulate multicast sessions. Sender Sj remains

in the same state repeatedly sending messages unless the non-deterministic choice is

resolved by choosing the derivative of the second summand in Bj
i ; this causes a time

unit to pass (a tick action is performed). The construction models the behaviour of a

wireless antenna making signals available only in a particular time interval. The pres-

ence of a non-deterministic choice in the construct makes it possible the passage to the

2 We remind the reader that the whole formalization we are going to give is based on personal
choices since some details are not explicitly given in [31]. In particular, the mechanism through
which a receiver possibly identifies each sender process (and consequently each stream) is not
defined in [31], since the original construction is described with a single sender.
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following time interval without performing any number of, possibly zero, communica-

tion. This may implicitly model the unreliability of the wireless transmission and the

occurrence of packet loss.

Among the receivers’ set, each process behaves in the same way. The generic receiver

process at step i is parameterized by the packets it should still authenticate (fields for

parameters are left empty when no packet must be verified).

We assume the receiver’s set is divided into subgroups. Receivers belonging to sub-

group number j, governed by Sender Sj , are devoted to a particular service. As an

example, let us consider pay per view-based applications. Among the receivers’ set, the

subgroup number j may consist of all the paying spectators for movie number j. For

environments closer to those depicted for µTESLA, let us consider a scenario in which

sensors are used to periodically transmit readings regarding heating and air condition-

ing control in a building (and consequently receive broadcasted messages for routing

updates or reprogramming): sensors in subgroup j may be all the sensors devoted to

carry out the service for room number j, Sj being the base station responsible for room

number j.

Below, we refer to Rj,q
i to indicate the q-th receiver process belonging to subgroup

j and acting at step i.

Rj,q
1 ()

.
=

(c1(yP1
). Receive packet and

tick.Rj,q
2 (yP1

) Allow a time unit to pass and go to next state

) + tick.Rj,q
2 () Or : go to next state after a time unit

Rj,q
1 is willing to accept any arbitrary packet, because it cannot perform any verification

yet. If nothing is received before the end of a time unit, a transition takes place to next

state Rj,q
2 . Below, we model the generic Ri, i ≥ 2.

Rj,q
i (yPi−1

)
.
=

ci(yPi
).R′j,q

i (yPi
, yPi−1

) Receive i-th packet ; go to intermediate state R′j ,q
i

+tick.Rj,q
i+1() Or : go to next state after a time unit

Rj,q
i is willing to accept packet Pi and travels to an intermediate state R′j,q

i . If

nothing is received before the end of a time unit, a transition takes place to the next

state.

R′j,q
i (yPi

, yPi−1
)

.
=

ci(xKi−1
). Receive key packet

[Kj
0 = F i−1(xKi−1

)] Verify the key w .r .t . the commitment K0

[yPi−1
⊢fst ypay] Extract payload

([ypay xKi−1
⊢mac z] If xKi−1

= K j
i−1 then : Compute MAC

[yPi−1
⊢snd ymac] Extract MAC

[z = ymac] Verify MAC

appypay. Send mj
i−1 to application level

tick.Rj,q
i+1(yPi

) Allow a time unit to pass and go to next state;

); R′j,q
i (yPi

, yPi−1
) Otherwise, wait for the correct key



18

In intermediate state R′j,q
i receives a key packet and verifies the correctness of the

key w.r.t. the authenticated commitment Kj
0 (here modeled as a constant the process

has in its initial knowledge, thanks to an opportune bootstrapping phase). Given the

collision-free property of one-way functions, if the verification does not succeed it means

xKi−1
6= Kj

i−1 and R′j,q
i simply stays in the same state waiting for the right subgroup

key. If the verification succeeds, the correctness of Pi−1 is verified by checking that

the enclosed MAC is authentic. The successful outcome is here modeled by a scenario

where the receiver sends the payload of the accepted packet over channel app3.

Suppose packet Pi−1 was correctly received, suppose also packet disclosing Kj
i−1

is lost. At step i the receiver still cannot authenticate packet Pi−1. The key chain

mechanism of the original protocol takes into account such a possibility: in interval

i+1 the base station broadcasts key Kj
i , which the receiver authenticates by verifying

Kj
0 = F i(Kj

i ). The receiver can authenticate Pi and derives Kj
i−1 = F (Kj

i ), so it

can also authenticate Pi−1. Actually, our formalization does not take into account

recovering lost keys. For the sake of simplicity, we prefer to suppose that the key

packet related to subgroup j is received (state R′j,q
i ).

We report below the formalization at step i, with i ≥ 2, when a packet was not

received at step i − 1.

Rj,q
i ()

.
=

ci(pi).tick.Rj,q
i+1(yPi

) Receive i-th packet ; go to next state

+tick.Rj,q
i+1() Or : go to next state after a time unit

2.4 The N Root/Leaf pairwise keys protocol

Secrecy in multicast groups means that only the group members (and all of them)

should be able to decipher transmitted data ([6]).

To achieve secrecy, the approach presented in [35] is a “brute force method to

provide a common multicast group key to the group participants”.

The N Root/Leaf pairwise keys protocol assumes the existence of a multicast session

with an initiator that controls the multicast group. Each of the N members of the

multicast group is called a leaf. The initiator is the root of the group. In a preliminary

phase, the initiator generates a pairwise key with each of the leaves in the multicast

group (e.g., using some standard public key exchange technique).

Then, it generates the group key K and, in order to distribute it to the leaves, the

initiator encrypts K with the pairwise keys shared with them. This distribution can

happen through a transmission to the whole group via multicast (the transmission on

channel c1). On receiving that message, each leaf can retrieve K from the appropriate

segment of the message using its own secret pairwise key. Once the group key has been

distributed, it can be used to multicast to the group some ciphered message m.

c1 I → {Ln} : {K}KIL1
|{K}KIL2

| . . . |{K}KILN

c2 I → {Ln} : {m}K

3 We omitted to insert an idling behavior when a deduction construct fails to be executed
and in our formalization the system simply stops without letting time pass. This is not realistic,
but it has no consequences since we use trace semantics for the analysis and makes it simpler.
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In the above notation, I is the initiator of the multicast group. {Ln} is the set of

the N leaves. | stands for concatenation. KILi
is the pairwise key shared between the

initiator and the i-th leaf. K is the group key.

The Crypto-CCS specification of the protocol is the following.

I1
.
=

[k kIL1 ⊢enc x{k}kIL1

] Encrypt group key

. . . Repeat encryption N times

[x{k}kIL1

. . . x{k}kILN

⊢tuple xP1
] Create tuple

I2||MB1(xP1
) Output P1 and go to next state

I2
.
=

[m k ⊢enc xmk ] Encrypt message

MB2(xmk ) Output xmk

Process MB simulates a one-to-many sending and it is specified as follows.

MBi(x)
.
= ci!x.MBi(x) i = 1, 2

The specification of the n-th receiver process is as follows:

Ln
1

.
= 1 ≤ n ≤ N

c1?x. Receive concatenation

[x ⊢nth z] Retrieve encryption

[z KILn
⊢dec xK ]Ln

2 (xK) Decrypt and go to next state

Ln
2 (xK)

.
=

c2?x. Receive encrypted message

[x xK ⊢dec xm].0 Retrieve m

3 Analysis

In this section, we perform a security analysis of the protocols presented in the previous

sections. In particular, we consider two integrity properties, one in an untimed version

and one in a timed version, for what concerns, respectively, the EMSS protocol and

the µTESLA protocol, while a secrecy property will be taken into account for a study

on the N Root/Leaf pairwise protocol. As far as the analysis of an integrity property

of the Gennaro-Rohatgi protocol is concerned, here we will limit ourselves to recalling

the guidelines of the procedure, since it is very similar to what has be done for EMSS.

For details about the analysis methodology, the reader is referred to the appendixes,

as well as to several references cited throughout the paper. However, aiming at pro-

ducing, as much as possible, a self contained paper, we recall here the general flavor of

the methodology (in the untimed version only).

The foundation of the analysis is the seminal idea of non interference, [14] for in-

vestigating the unauthorized information flow in multilevel systems, e.g., from a high

level to a lower one. By starting from there, a general schema for the definition of secu-

rity properties has been formulated, [9,12,11], in order to encompass in a uniform way
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a variety of properties. The schema, namely Generalized Non Deducibility on Com-

positions, GNDC for short, basically compares what it is expected to be the correct

behaviour of a system with a modified behaviour due to the fact that the system is not

running in isolation, but it is running together with a malicious process, the so called

intruder, trying to interfere with the normal execution of the system. If the two behav-

iors appear to be the same, then it means that the intruder has not sufficient means

to significantly interfere with the honest system and that the investigated property is

guaranteed.

More formally, a system P satisfies property GNDCα
� if the behavior of P , despite

the presence of a hostile environment X that can interact with P only through a fixed

set of channels C, appears to be same (w.r.t. a behavioral relation � of observational

equivalence) to the behavior of a modified version α of P that represents the expected

(correct) behavior of P . As behavioral relation between processes we consider hereafter

the trace inclusion relation ≤trace (App. A).

The formula expressing the GNDC schema is as follows:

Definition 1 Given a behavioral relation � between processes, � : P → P, a function

α between processes, α : P → P, and a set EφX

C
of all the admissible hostile processes,

(App. B), we say that a process P ∈ GNDCα
� ⇐⇒ ∀X ∈ EφX

C
: (P ||X) \ C � α(P ).

Basically, what we are going to do in the following subsections is, for each protocol:

1) first, to define, as a Crypto-CCS process, the correct behaviour that the system P

should have with respect to the security property to be investigated (e.g., in the next

subsection, αint will denote the correct behaviour of EMSS with respect to integrity);

2) then, to verify that the behaviour of system P , when considering just one sender

plus the intruder and one receiver plus the intruder, is included in the defined correct

behaviour (this is done accordingly to the GNDC theory); 3) finally, to exploit com-

positional principles in order to assert the validity of the property within the whole

system.

A compositional principle (in its untimed version) is the following:

Definition 2 Stability of a process. We say that a process P is stable w.r.t. φX

if, whenever (P ||XφX
) \ C

γ
=⇒ (P ′||X ′

φ′

X
) \ C, then D(φX) = D(φ′

X).

This was introduced in [16]. We denote the set of messages initially known by

process X as φX . D(φ′
X) is a set of messages representing what can be inferred by X

at the end of a certain computation γ run in parallel with process P , while D(φX)

represents what can be inferred with φX solely. Basically, process P is stable when X

does not increase significantly φX during the execution of P .

When two (or more) processes are stable with respect to a certain knowledge φX ,

and they enjoy a certain GNDC property, the following compositionality proposition

holds, [16].

Proposition 1 Given φX and a set of public channels C, assume processes Pr ∈

GNDC
αr(Pr)
≤trace

with 1 ≤ r ≤ n and Pr stable w.r.t. φX . It follows that (P1|| . . . ||Pn) is

stable w.r.t. φX and (P1|| . . . ||Pn) ∈ GNDC
α1(P1)||...||αn(Pn)
≤trace

.

Also, a timed version of GNDC, namely tGNDC, a timed version of the stability

principle, [18,16], and a timed version of the proposition of compositionality of a GNDC

property exist [16]. They will be used in the analysis of µTESLA.
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3.1 An analysis of the EMSS protocol: integrity

The specification of the (1,2) EMSS has been given in Subsection 2.2.1. Here, we

perform a protocol analysis for verifying the integrity of the packets received by the

receiver process.

Integrity for EMSS is defined within the GNDC schema as the ability to accept

only the message mi by a receiver as the i-th message sent by the sender (assuming mi

is not lost, that is of course a necessary condition for its verifiability). Let us assume

that a receiver signals the acceptance of a stream of messages as a legitimate one, by

issuing it, as a unique list of messages, on a special channel capp. Thus, let αint be the

Crypto-CCS process Specsign =
∑

s∈streams
capp!s.0, where streams is the set of all

the possible ordered sub streams of m0 . . . mlast.

Definition 3 A system P , consisting of a sender of a stream of messages {mi} and a

receiver, enjoys the integrity property whenever P ∈ GNDCαint

≤trace
.

Basically, integrity holds when the receiver accepts exactly a subset of the messages

mi in the correct order even in presence of an adversary. The key point is that the

intruder will never acquire the private key of the sender to successfully sign the final

packet of the stream.

In a multi-receiver setting with one sender, a protocol guarantees integrity whenever

each receiver accepts only the stream of messages that the sender wishes to deliver.

In our case, the specification for n receivers is simply the parallel composition of αint

n-times.

The first part of the analysis consist of verifying the stability of the involved sender

and receiver processes. S0, Rec0 are stable w.r.t. the following initial knowledge φX :

φX = {P0} ∪ {P1} ∪ {Pi | i = 2, . . . , last} ∪ {pk(S), Psign}

This can be proved by looking at the specifications of S0 and Rec0 given in Sub-

section 2.2.1.

The initial knowledge φX includes indeed all the messages an adversary would

be able to add to its knowledge by eavesdropping on a run of the protocol (in other

words, X does not increase its knowledge when S0 and Rec0 run). This implies that

the considered intruder has the most powerful means to act since the beginning of

the computation. One may comment that this is not correct, since it does not follow

the reality. On the other hand, this is only a trick in the model, and, if the protocol

satisfies the integrity property in this very hostile environment, then it means that it

will satisfy this property in a less powerful one. This may be formally justified, [12].

Here, we prefer to give an informal discussion of the matter: let us suppose that there

exists a sequence of actions, leading to an attack w.r.t. a procedure, performed by an

intruder whose initial knowledge is φ. Then, let us suppose that the intruder knows

φ′, with φ ⊆ φ′. Again, there will be at least the attack found starting from φ. On the

other hand, if no attack exists with φ′, one may reasonably conclude that no attack

will exist by starting from a subset φ of φ′.

Now, we check if the specifications of the sender and the receiver, separately, sat-

isfy the integrity property. We can prove that S0 enjoys GNDC0

≤trace
and Rec0 enjoys

GNDCαint

≤trace
, that is to say that, for all X ∈ EφX

C
, we have (S0||X)\C ≤trace 0
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and (Rec0||X)\C ≤trace αint. This may be done by finding a suitable weak simula-

tion relation between (S0||X) \ C and 0, and between (Rec0||X) \ C and Specsign

(∀X ∈ EφX

C
), respectively. (The easiest way is to prove the same with one check, by

simply considering the top element TopC
φ , i.e., the most powerful intruder, see also

Appendix B).

Let C = {csign}∪{ci | 0 ≤ i ≤ last} be the set of channels over which each element

of set EφX

C
is able to communicate.

The candidate weak simulation relation we consider for dealing with the sender

specifications is the following:

RS = (((Si(...)||X)\C,0) | X ∈ EφX

C
, 0 ≤ i ≤ last)

∪(((Ssign(...)||X)\C,0) | X ∈ EφX

C
)

The candidate weak simulation relation we consider for dealing with the receiver

specifications is the following:

RR = (((Reci(xPi−1
, xPi−2

, tupi−1
{mj}

)||X)\C, Specsign) | X ∈ EφX

C
, 0 ≤ i ≤ last)

∪(((Rec′i(xPi
, xPi−1

, tupi−1
{mj}

)||X)\C, Specsign) | X ∈ EφX

C
, 0 ≤ i ≤ last)

∪(((Rec′′i (xPi
, xPi−1

, xPi−2
, tupi−1

{mj}
)||X)\C, Specsign) | X ∈ EφX

C
, 0 ≤ i ≤ last)

∪(((Recsign(xPlast
, xPlast−1

, tuplast
{mj}

)||X)\C, Specsign) | X ∈ EφX

C
)

∪(((Rec∗sign(xPsign
, xPlast

, xPlast−1
, tuplast

{mj}
)||X)\C, Specsign) | X ∈ EφX

C
)

∪(((Rec′sign(xver, xPlast
, tuplast

{mj}
)||X)\C, Specsign) | X ∈ EφX

C
)

∪(((Rec′′sign(xver, xPlast−1
, tuplast

{mj}
)||X)\C, Specsign) | X ∈ EφX

C
)

tupi−1
{mj}

, tuplast
{mj}

are lists of meaningful payloads (also updated). By inspection of the

possible cases we may show that RS and RR are weak simulations. We omitted to

explicitly put in RS and RR the pairs in which the first process performs deduction

constructs.

We give a sketch of the proof dealing with the receiver specification. When the first

process performs inference (or match) constructs and it gets stuck because an inference

rule does not apply, or it simply travels to the next state, it can be weakly simulated

by whatever process, in particular Specsign. When Rec0 performs a receiving action,

the process on the left may perform a τ action and it can be weakly simulated by

whatever process, in particular Specsign. The significant case is when the first process

outputs a tuple of messages tup{mj} over channel capp /∈ C. In this case, it must be

{xver}sk(S) = Psign and, assuming that digital signatures and hash functions cannot

be forged, all the messages in tup{mj} must be replaced with one of all the possible

ordered sub streams of m0 . . . mlast. This can be weakly simulated by Specsign that has

been defined as the process sending all the possible ordered sub streams of m0 . . . mlast.

Each resulting pair consisting of the derivatives still belong to RR.

Proposition 2 S0 ∈ GNDC0

≤trace and Rec0 ∈ GNDCαint

≤trace
.

The following proposition follows by the fact that S0, Rec0 are stable w.r.t. φX , by

Proposition 1 and Proposition 2.

Proposition 3 S0||Rec0 ∈ GNDCαint

≤trace
.

Then, the following statement holds because Proposition 1 is applicable once again.
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Proposition 4 The (1,2) EMSS Protocol enjoys integrity for whatever number of re-

ceivers.

To check a system with an arbitrary number of components, what we do is simply

consider the components separately. The result follows by Proposition 1 where index

r is not fixed a priori and P1 = S0 and Pr, 2 ≤ r ≤ n is Rec0.

3.2 Hints to an analysis of the Gennaro-Rohatgi protocol: integrity

In [17], the stability principle of Def. 2 and the compositionality proposition Prop. 1

have been applied also to the Gennaro-Rohatgi scheme. The steps of the analysis are

very similar to those presented for the EMSS case study.

The correct behaviour of the system was specified to be αint = Spec1 where Speci =

couti !bi.Speci+1 with 1 ≤ i ≤ l − 1, and Specl = coutl
!bl.0.

Sender0 and Receiver0, specified in Subsection 2.1, are stable with respect to the

following initial knowledge φ:

φ = {pk(S), b′0} ∪ {b′i, bi, h(b′i) | i = 1, . . . , l − 1} ∪ {b′l, bl}

Then, it is possible to find suitable weak simulation relations between (Sender0||X)\

C and 0 and between (Receiver0||X) \ C and Spec1, respectively.

Finally, one can apply Proposition 1 to prove integrity on whatever number of

receivers.

3.3 An analysis of the µTESLA protocol: timed integrity

The specification of the µTESLA protocol has been given in Subsection 2.3. Here, we

perform an analysis of the protocol concerning one of its timed security properties. To

do this, we use the timed version of the GNDC scheme, namely tGNDC, App. B. The

definition of tGNDC is similar to Def. 1, provided that one could consider a timed

behavioral relation between processes, timed functions between processes expressing

the expected correct behaviour and a set of timed admissible hostile processes.

So called timed integrity belongs to a new class of security properties defined in [16].

A stream signature protocol guarantees timed integrity on a set of messages {mi} if,

whenever the generic receiver accepts an item in a time interval i, let us say item x,

then x = mi−δ, i − δ being the time interval in which x has been received. (δ = 1 in

the formalization of µTESLA given in Subsection 2.3).

In µTESLA, let us assume that a receiver signals the acceptance of a payload as a

legitimate one, by issuing it on a special channel app.

Let P q .
= Sj

1||R
j,q
1 be the system consisting of a single sender and the q-th receiver

in subgroup j, agreeing on the commitment Kj
0 . Thus, we define the correct behaviour

of the system P q to be the tCryptoSPA process αtInt(P
q)

.
= tSpec1, where

tSpec1
.
= tick.tSpec2

tSpeci
.
= tick.tSpeci+1 + app(mj

i−1).tick.tSpeci+1 i ≥ 2

In the first step, αtInt(P
q) simply lets time pass, while in further steps it may either

let time pass (denoting packet loss) or let a verified payload to be sent on the special
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channel app and then let time pass. The set of all messages sent on channel app is

the set of all the possible ordered substreams of {mj
i}i≥1. Let function αj

tInt
(P j)

.
=

Π1≤q≤nj
αtInt(P

q), nj being the cardinality of the receivers in subgroup j.

Definition 4 The system P j .
= Sj

1||R
j,1
1 ||Rj,2

1 || . . . ||R
j,nj

1 , consisting of a sender of

streamed data {mj
i } and the receivers in subgroup j enjoys the timed integrity property

whenever P j ∈ tGNDC
α

j

tInt
(P j)

≤ttrace
.

Basically, it means that each receiver accepts exactly the messages belonging to

{mj
i} in the correct order and within the time interval following the one in which

the sender actually sent the messages, even in presence of an intruder (unless packets

Pi are lost). The key point is that the intruder will never acquire the shared keys

Km
SM to establish a secure channel over which the commitment Kj

0 to the key chain is

exchanged4.

For the analysis of timed security properties, we use a refined notion of stability,

called time-dependent stability [18,16].

We let γ be a sequence of actions (possibly empty) ranging over Act\{τ}. Let

#tick(γ) be the number of occurrences of tick actions in the sequence γ.

Definition 5 We say that a process P is time-dependent stable w.r.t. the sequence of

knowledges {φi}i≥0 if, whenever (P ||Xφ0
)\C

γ
=⇒ (P ′||X ′

φ′)\C and #tick(γ) = i, then

D(φ′) = D(φi).

The concept of time-dependent stability is similar to the one of stability introduced in

Section 3. Basically, a process P is time-dependent stable if process X cannot increase

its knowledge when P runs in the space of a time slot.

When two (or more) processes are t. d. stable with respect to a certain sequence

of knowledges {φi}i>0, and they enjoy a certain tGNDC property (Appendix B), the

following compositionality proposition holds (proofs in [16]).

Proposition 5 Given a sequence {φi}i>0 and a set of public channels C, assume

Pr ∈ tGNDC
αr(Pr)
≤ttrace

with 1 ≤ r ≤ n. Assume also Pr t. d. stable w.r.t. {φi}i>0. It

follows that

(P1||P2|| . . . ||Pn) ∈ tGNDC
α1(P1)||α2(P2)||...||αn(Pn)
≤ttrace

and (P1||P2|| . . . ||Pn) is t. d. sta-

ble w.r.t. {φi}i>0.

Sj
1 and Rj,q

1 (Subsection 2.3.1) are time-dependent stable w.r.t. the sequence {φi} =

φ1, φ2, φ3, . . . defined as follows:

φ1 = {mj
1, mac(mj

1, Kj
1) | 1 ≤ j ≤ n}

φ2 = φ1 ∪ {mj
2, mac(mj

2, Kj
2), Kj

1 | 1 ≤ j ≤ n}

. . .

φi = φi−1 ∪ {mj
i , mac(mj

i , K
j
i ), Kj

i−1 | 1 ≤ j ≤ n}

. . .

where n is the number of senders. This can be verified by inspection of the specifications

in Subsection 2.3.

4 We remind the reader that Km
SM

6= Kn
SM

if m 6= n and Km
i 6= Kn

l
if m 6= n or i 6= l.
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φi is equal to φi−1 plus the set of all the messages an intruder would be able

to add to its knowledge by eavesdropping on a run of the protocol during the whole

time interval i (of course including those messages coming from all the other senders

processes). The same considerations about the power of the intruder hold as in the

previous section. Actually, the intruder has more powerful means to act since the

beginning of each time interval.

Now we check if Sj
1 and Rj,q

1 , specified in Subsection 2.3.1, separately satisfy the

properties of interest. Let 0′ be the process that simply lets time pass, 0′ = tick.0′.

Then, Sj
1 enjoys tGNDC0

′

≤ttrace
and Rj,q

1 enjoys tGNDC
αtInt(P

q)
≤ttrace

, that is to say for

all X ∈ tEφ1

C
we have (Sj

1||X)\C ≤ttrace 0′ and (Rj,q
1 ||X)\C ≤ttrace αtInt(P

q). This

may be proved by finding a suitable weak simulation relation between (Sj
1||Xφ1

) \ C

and 0′ and between (Rj,q
1 ||Xφ1

) \ C and tSpec1, respectively. The set C of channels

over which an intruder is able to communicate is C = {ci | i > 0}.

Lemma 1 Sj
1 and Rj,q

1 are t. d. stable w.r.t. {φi}.

Lemma 2 Sj
1 ∈ tGNDC0

′

≤ttrace
and Rj,q

1 ∈ tGNDC
αtInt(P

q)
≤ttrace

.

The proof of Lemma 2 is in the Appendix.

The following proposition follows by Lemmas 1 and 2 and by Proposition 5, where

r = 1, 2, P1 = Sj
1, P2 = Rj,q

1 .

Proposition 6 P q ∈ tGNDC
αtInt(P

q)
≤ttrace

5.

The correctness of the multiple receivers version (considering all the receivers belonging

to subgroup j), can be also proved using results of Lemmas 1 and 2 and Proposition

5, where index r is not fixed a priori and P1 = Sj
1 and Pr = Rj,q

1 with 1 ≤ q ≤ nj .

Proposition 7 For the system P j of Definition 4, we have P j ∈ tGNDC
α

j

tInt
(P j)

≤ttrace
.

We get into the issue of considering a multiple senders/receivers environment. Let us

consider Γ = Π1≤j≤nP j and αtInt(Γ ) = Π1≤j≤nαj
tInt

(P j), where n is the cardinality

of the senders processes.

Proposition 8 System Γ ∈ tGNDC
αtInt(Γ )
≤ttrace

.

The result follows by application of Propositions 5 and 7.

We note that, in order to have timed integrity on the messages mi, µTESLA must

ensure timed secrecy on the keys Ki. Indeed, we could also check explicitly timed

secrecy on the keys with the same machinery.

3.4 An analysis of the N Root/Leaf pairwise keys protocol: secrecy

A secrecy analysis on the protocol presented in Section 2.4, with respect to an intruder

that tries to discover m, is achieved by exploiting the principle on the persistent stability

of the parallel composition of stable processes, introduced as part of Prop. 1. For the

sake of clarity, we report this result as a stand-alone lemma.

5 Note that 0′||αtInt(P
q) ≤ttrace αtInt(P

q).
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Lemma 3 Given an intruder’s initial knowledge φX , assume that P1 and P2 are stable

processes w.r.t. φX ; then P1||P2 is stable w.r.t. φX .

We informally motivate the guidelines of the analysis, before showing its steps. The

intruder is provided with an initial knowledge φX , that can be increased to the set φ′
X

during the execution of the protocol by the messages the intruder process receives.

Accordingly, the intruder’s knowledge becomes at most D(φ′
X).

Thus, to carry out an analysis on the secrecy of messages, one can act in the

following way. We must analyze how the knowledge of the intruder is altered in the

course of the protocol execution. If, by increasing its knowledge, message m happens to

be in that knowledge, this means that the intruder has discovered m. In other words,

there is a secrecy attack on the protocol.

Thus, let φX be the set {{K}KIL1
|{K}KIL2

| . . . |{K}KILN
} ∪ {{m}K}.

One can easily check that the initiator process I1 is stable w.r.t. φX and each leaf

process Ln
1 , with 1 ≤ n ≤ N , is stable w.r.t. φX . Let C be the set {c1, c2}.

During its computation, the initiator process performs only two output actions,

whose corresponding messages exactly correspond to φX . On the other hand, each leaf

in the set of the receivers does not perform any output action, thus not contributing

to augmenting the initial knowledge φX .

By applying Lemma 3, one can conclude that process P
.
= I1||L

n
1 is stable w.r.t. φX ,

meaning that the knowledge of the intruder does not significantly evolve during the

computation of the protocol. In particular, this means that the protocol preserves the

secrecy of message m (given of course the initial confidentiality of m and the correct

choice and delivery of {KILn
} and K).

4 Conclusions

Multicast and wireless security are a fertile field for computer science and engineering

researchers and developers. In this paper an attention was focused on methodologies

for certifying the correctness of some architectures for authenticating digital streams

and giving them data confidentiality.

The modeling and the verification approaches have been presented through some

case studies. In particular, the protocols’ models have been given by exploiting a

process-algebraic framework dealing with cryptographic and timed primitives. Also,

the framework is rich enough to describe wireless communications (at the level of

details useful for our goals). The verification has been performed using appropriate

methods derived from usual process-algebras techniques, such as simulation checking.

A key feature is the application of compositional analysis techniques that allowed us

to check systems even with an unbounded number of participants.

The choice of the case studies involving the signature of digital streams has not

been random. Indeed, the first is considered a pioneering protocol in the field. However,

it suffers from the problem of packet loss, in the sense that, if a packet is missing, the

authentication chain is broken and the integrity of the subsequent packets cannot be

verified. Several protocols were born with the intent of fighting against this problem.

In particular, we have chosen EMSS, in order to model also packet loss. We achieve it

through a non-deterministic choice performed at the receiver’s side. Finally, also timed

issues in wireless environments have been considered. To this aim, a process algebra

enriched with timed primitives has been used, able to model the passing of time.



27

An analysis has been also conducted in order to prove that the multicast data are

not modified en-route, i.e., in their traveling from one sender to the set of receivers.

To analyze this sort of robustness against packet modification, also called integrity of

packets, a compositional analysis has been applied. The methodology can work both

in a timed and in an untimed setting and, for some protocols, it has the advantage of

carrying out the analysis over an unbounded number of components.

In the timed case study, the fulfillment of the property of timed integrity is a

consequence of the fulfillment of the property of timed secrecy over the keys that are

going to be disclosed. We could also have checked explicitly timed secrecy over those

keys, with the same proposed machinery. On the contrary, what has been proposed here

is a case study dealing with secure group communication. Whereas the modeling of the

protocol has been done within the same process-algebraic framework, another principle

has been used for the analysis. The aim of the analysis was checking the fulfillment of

the secrecy of data exchanged within the group’s members. To this aim, the property

of secrecy has been mapped into a property over the intruder’s knowledge, by checking

how it changes during the computation. A possible extension to this kind of analysis

could be enlarging the scenario to protocols guaranteeing forward and backward secrecy

in dynamic groups, see, e.g., [36].

To sum up, the number of protocols, the different scenarios and the properties we

were able to deal with suggest the feasibility of our verification approach. By starting

from these results, we are also going to develop techniques to automatize the proofs

as well as a more precise modeling of wireless communication. This could allow us to

deal with other relevant properties such as denial of service, location-based security

properties (as privacy location) and similar issues.
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APPENDIX

A Crypto-CCS and tCryptoSP A

This appendix presents a concise description of the Crypto-CCS and the tCryptoSPA syntax
and semantics. Some constructs of the languages are here omitted, since they are not of direct
interest for the investigated topics. For a complete description, the interested reader is invited
to see [22,16], respectively.

A.1 Crypto-CCS

The model of the language consists of sequential agents able to communicate by exchanging
messages.

The data handling part of the language consists of messages and inference systems. Mes-
sages are the data manipulated by agents, they form a set Msgs of terms possibly containing
variables. The set Msgs is defined by the grammar:

m ::= x | b | F 1(m1, . . . , mk1
) | . . . | F l(m1, . . . , mkl

)

where F i (for 1 ≤ i ≤ l) are the constructors for messages, x ∈ V and V is a countable set of
variables, b ∈ B and B is the set of basic messages and ki, for 1 ≤ i ≤ l, gives the number of
arguments of the constructor F i. Messages without variables are closed messages.

Inference systems model the possible operations on messages. They consist of a set of rules
r, e.g., :

r =
m1 . . . mn

m0

where {m1, . . . , mn} is a set of premises (possibly empty) and m0 is the conclusion. An instance
of the application of rule r to closed messages mi is denoted as m1 . . . mn ⊢r m0. Given
an inference system, a deduction function D is defined such that, if φ is a finite set of closed
messages, then D(φ) is the set of closed messages that can be deduced starting from φ by
applying instances of the rules in the system. The syntax and semantics of Crypto-CCS are
parametric with respect to a given inference system.

The control part of the language consists of compound systems, i.e., sequential agents
running in parallel. The language syntax is as follows:

Compound systems: S ::= (S1||S2) | S \ C | Aφ

Sequential agents: A ::= 0 | p.A | A1 + A2 | [m1 . . . mn ⊢r x]A1; A2

| [m = m′]A1; A2 | E(m1, . . . , mn)
Prefix constructs: p ::= c!m | c?x

where m, m′, m1, . . . , mn are closed messages or variables, x is a variable, c ∈ Ch (a finite set
of channels), φ is a finite set of closed messages, C is a subset of Ch.

0 is the process that does nothing.
p.A is the process that can perform an action according to the particular prefix construct

p and then behaves as A. In particular,

– c!m denotes a message m sent on channel c;
– c?x denotes the receiving of a message m on channel c. The received message replaces the

variable x.

A1 + A2 represents the non deterministic choice between A1 and A2.
[m1 . . . mn ⊢r x]A1; A2 is the inference construct. If, by applying an instance of rule r,

with premises m1 . . . mn, a message m can be inferred, then the process behaves as A1 (where
m replaces x), otherwise it behaves as A2.

[m = m′]A1; A2 is the match construct, to check message equality. If m = m′ then the
system behaves as A1, otherwise it behaves as A2.

A compound system S1||S2 denotes the parallel execution of S1 and S2. S1||S2 performs
an action p if one of its sub-components performs p. A synchronization, or internal action,
denoted by τ , may take place whenever S1 and S2 are able to perform two complementary
actions, i.e., send-receive actions on the same channel.
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(!)
(c!m.A)φ

c!m
−→ (A)φ

(?)
m ∈ Msgs

(c?x.A)φ
c?m
−→ (A[m/x])φ∪{m}

(D)
m1 . . . mn ⊢r m (A[m/x])φ∪{m}

a
−→ (A′)φ′

([m1 . . . mn ⊢r x]A; A1)φ
a

−→ (A′)φ′

(||1) S
a

−→ S′

S||S1
a

−→ S′||S1

(||2)
S

c!m
−→ S′ S1

c?m
−→ S′

1

S||S1
τ

−→ S′||S′
1

(\1)S
c!m
−→ S′ c /∈ L

S \ L
c!m
−→ S′ \ L

(+2)
S

a
−→ S′

S + S1
a

−→ S′

(D1)
6 ∃m s.t. m1 . . . mn ⊢r m (A1)φ

a
−→ (A′

1)φ′

([m1 . . . mn ⊢r x]A; A1)φ
a

−→ (A′
1)φ′

(=)
m = m′ (A)φ

a
−→ (A′)φ′

([m = m′]A; A1)φ
a

−→ (A′)φ′

(=1)
m 6= m′ (A1)φ

a
−→ (A′

1)φ′

([m = m′]A; A1)φ
a

−→ (A′
1)φ′

(Const)
E(x1, . . . , xn) =def A A[m1/x1, . . . , mn/xn]

a
−→ A1

E(m1, . . . , mn)
a

−→ A1

Fig. 5 Operational semantics of Crypto-CCS.

A compound system S\C allows only visible actions whose channels are not in C. (Internal
action τ being the invisible action).

The term Aφ is a single sequential agent whose knowledge, i.e., the set of messages which
occur in its term, is described by φ. The knowledge of an agent increases either when it receives
messages (see rule (?) in Fig. 5) or it infers new messages from the messages it knows (see rule
D in Fig. 5). For every sequential agent Aφ, it is required that all the closed messages that
appear in Aφ belong to its knowledge φ.

The activities of the agents are described by the actions that they can perform. The set Act
of actions which may be performed by a compound system ranges over by a and it is defined
as: Act = {c?m, c!m, τ | c ∈ C, m ∈ Msgs, m closed}. P is the set of all the Crypto-CCS closed
terms (i.e., with no free variables). sort(P) is the set of all the channels that syntactically
occur in the term P.

The operational semantics of a Crypto-CCS term is described by means of the labeled

transition system (lts, for short) 〈P, Act, {
a

−→}a∈Act〉, where {
a

−→}a∈Act is the least relation
between Crypto-CCS processes induced by the axioms and inference rules of Fig. 5 (in that
figure the symmetric rules for ||1, ||2, \1, +2 are omitted).

The expression S
a

−→ S′ means that the system can move from the state S to the state S′

through the action a. The expression S =⇒ S′ denotes that S and S′ belong to the reflexive

and transitive closure of
τ

−→; let γ = a1 . . . an ∈ (Act\{τ})∗ be a sequence of actions. Then,

S
γ

=⇒ S′ if S =⇒
a1
−→=⇒ . . . =⇒

an
−→ =⇒ S′.

As behavioral relations among Crypto-CCS terms, we are interested in trace inclusion
(equivalence) and (weak) simulation.

Definition 6 We say that the traces of P are included in the traces of Q (P ≤trace Q)

whenever, if P
γ

=⇒ P1 then Q
γ

=⇒ Q1. We write that P=traceQ iff P ≤trace Q and Q ≤trace P .

Definition 7 We say that a relation R among processes is a weak simulation, if for every
(P, Q) ∈ R we have:
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– If P
a

−→ P ′, a 6= τ , then there exists Q′ s.t. Q
a

=⇒ Q′ and (P ′, Q′) ∈ R.

– If P
τ

−→ P ′ then there exists Q′ s.t. Q =⇒ Q′ and (P ′, Q′) ∈ R.

The union of all weak simulations is a weak simulation and it is denoted by ≺. As usual,
it holds that if P ≺ Q then P ≤trace Q.

A.2 tCryptoSPA

The timed extension of the Cryptographic Security Process Algebra (for short, CryptoSPA)
of [12,9] has been proposed in [16]. The new language, timedCryptoSPA (tCryptoSPA for
short), is adopted for describing cryptographic protocols where information about the concrete
timing of events is necessary. We remind the reader of the syntax, the operational semantics
of the language and some auxiliary notions. The description is not exhaustive, since some
constructs are not of direct interest for the investigated topics. Furthermore, some terms of
the language are the same as in the Crypto-CCS language. Finally, the interested reader is
referred to [16] for a more complete discussion of tCryptoSPA.

The set L of tCryptoSPA processes is defined as:

P ::= 0| c(x).P | cm.P | τ.P | tick.P | P1 + P2 | P1||P2 | P\L |

A(m1, . . . , mn) | [〈m1, . . . , mr〉 ⊢rule x]P1; P2

We omit to describe terms whose meaning has been already explained in the previous part
of the appendix, section A.1. To this aim, note that the tCryptoSPA sequential construct
cm.P is syntactically and semantically equivalent to the Crypto-CCS sequential construct
c!m.P . Thus, cm.P is the process that can send m on channel c, then behaving like P .

m, m1, . . . , mr, mn are messages or variables and L is a set of channels. Both the operators
c(x).P and [〈m1 . . . mr〉 ⊢rule x]P1; P2 bind the variable x in P and P1, respectively.

Let Def : Const −→ L be a set of defining equations of the form A(x1, . . . , xn)
.
= P ,

where P may contain no free variables except x1, . . . , xn, which must be distinct. Constants
permit us to define recursive processes. A term P is closed with respect to Def if all the
constants occurring in P are defined in Def (and, recursively, for their defining terms). A
term P is guarded w.r.t. Def if all the constants occurring in P (and, recursively, for their
defining terms) occur in a prefix context [26].

The set Act of actions which may be performed by a system is defined as: Act = {c(m), cm, τ, tick, |
c ∈ I, c ∈ O, m ∈ M, m closed}. τ is the internal, invisible action. tick is the special action
used to model time elapsing. We let l range over Act\{tick}. We call L the set of all the
tCryptoSPA closed terms (i.e., with no free variables) that are closed and guarded w.r.t. Def .
We define sort(P) to be the set of all the channels syntactically occurring in the term P .

τ.P is the process that executes the internal action τ and then behaves like P ;
tick.P is a process willing to let one time unit pass and then behaving as P ;
P1 + P2 (choice) represents the nondeterministic choice between the two processes P1 and

P2; with respect to tick actions, time passes when both P1 and P2 are able to perform a tick
action – and in such a case by performing tick a configuration where both the derivatives of
the summands can still be chosen is reached. When only one of the two processes can perform
tick, say P1, it could be either that P1 performs tick – and in such a case P2 is discarded –
or P2 performs its normal activity – and in such a case P1 is discarded; moreover, τ prefixed
summands have priority over tick prefixed summands;

P1||P2 (parallel) is the parallel composition of processes that can proceed in an asyn-
chronous way but they must synchronize on complementary actions to make a communication,
represented by a τ . Both components must agree on performing a tick action, and this can be
done even if a communication is possible.

P\L allows only visible actions whose channels are not in L;
A(m1, . . . , mn) behaves like the respective defining term P where all the variables x1, . . . , xn

are replaced by the messages m1, . . . , mn.

The time model adopted in the language is known as the fictitious clock approach of, e.g.,
[20]. A global clock is supposed to be updated whenever all the processes agree on this, by
globally synchronizing on the special action tick, representing the passing of a time unit. All
the other actions are assumed to take no time.
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(tick)
tick.P

tick
−→ P

(||1)
P1

l
−→ P ′

1

P1||P2
l

−→ P ′
1||P2

(||2)
P1

c(x)
−→ P ′

1 P2
cm
−→ P ′

2

P1||P2
τ

−→ P ′
1||P

′
2

(||3)
P1

tick
−→ P ′

1 P2
tick
−→ P ′

2

P1||P2
tick
−→ P ′

1||P
′
2

(+1)
P1

l
−→ P ′

1

P1 + P2
l

−→ P ′
1

(+2)
P1

tick
−→ P ′

1 P2
tick
−→ P ′

2

P1 + P2
tick
−→ P ′

1 + P ′
2

(+3)
P1

tick
−→ P ′

1 P2 6
tick
−→ P2 6

τ
−→

P1 + P2
tick
−→ P ′

1

Fig. 6 Semantics of tCryptoSPA involving action tick.

The expression P
a
⇒ P ′ is a shorthand for P (

τ
−→)∗P1

a
−→ P2(

τ
−→)∗P ′, a 6= τ , where

(
τ

−→)∗ denotes a (possibly empty) sequence of transitions labeled τ . The expression P ⇒ P ′

is a shorthand for P (
τ

−→)∗P ′. Let γ = a1, . . . , an ∈ (Act\{τ})∗ be a sequence of actions;

then P
γ
⇒ P ′ iff there exist P1, . . . , Pn−1 ∈ P such that P

a1
⇒ P1

a2
⇒, . . . , Pn−1

an
⇒ P ′. Let

0′ .
= tick.0′.
For timed behavioural relations among tCryptoSPA processes, we will be mainly interested

in timed trace inclusions.

Definition 8 For any P ∈ L the set T (P ) of timed traces associated with P is defined

as follows T (P ) = {γ ∈ (Act\{τ})∗ | ∃P ′.P
γ
⇒ P ′ }. The timed trace pre-order, denoted by

≤ttrace, is defined as follows: P ≤ttrace Q iff T (P ) ⊆ T (Q). P and Q are timed trace
equivalent, denoted by P =ttrace Q, if T (P ) = T (Q).

We define the concept of weak simulation as usual.

Definition 9 We say that a relation R among processes is a weak simulation, if for every
(P, Q) ∈ R we have:

– If P
a

−→ P ′, a 6= τ , then there exists Q′ s.t. Q
a

=⇒ Q′ and (P ′, Q′) ∈ R.

– If P
τ

−→ P ′ then there exists Q′ s.t. Q =⇒ Q′ and (P ′, Q′) ∈ R.

Let ≺ the union of all weak simulations among processes. Then, we have ≺⊆≤ttrace.

B GNDC and tGNDC

In this appendix, we present the general schema Generalized Non Deducibility on Compositions
(GNDC), for the definition of security properties given in [9,12,11], and its timed extension
tGNDC given in [16].

In the literature, several efforts have been made to prevent the unauthorized information
flow in multilevel computer systems [4], i.e. systems where processes and objects are bound
to a specific security level. An example from military jargon is the fact that documents are
generally hierarchized from unclassified to top secret. The seminal idea of non interference
proposed in [14] aims at assuring that information can only flow from low levels to higher
ones. The first taxonomy of non-interference-like properties has been uniformly defined and
compared in [8] in the context of a CCS-like process algebra. In particular, processes in the
algebra were divided into high and low processes, according to the level of actions that they can
perform. To detect whether an incorrect information flow (i.e. from high to low) has occurred,
a particular non-interference-like property has been defined, the so-called Non Deducibility on
Compositions (NDC). NDC essentially says that a process is secure with respect to wrong
information flows if its low behaviour in isolation appears to be the same as its low behaviour
when interacting with any high-level process. NDC can be reformulated from the world of
multilevel systems to the one of network security. See [12,10], where the low-level process
becomes a specification of a cryptographic communication protocol and the behaviour of the
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protocol running in isolation is compared with that of the protocol running in parallel with
any possible adversary.

As a further step, a Generalized NDC (GNDC) has been formulated in [12], in order to
encompass in a uniform way many security properties. The main idea of GNDC is the following:
a system P satisfies property GNDCα

�
if the behavior of P , despite the presence of a hostile

environment X that can interact with P only through a fixed set of channels C, appears to be
same (w.r.t. a behavioral relation � of observational equivalence) to the behavior of a modified
version α(P ) of P that represents the expected (correct) behavior of P .

The analysis of cryptographic protocols involves specifying a set of messages known by the
adversary at the beginning of the computation. This static (initial) knowledge of the hostile
environment must be bound to a specific set of messages. This limitation is needed to avoid
a too strong hostile environment that would be able to corrupt any secret (as it would know
all cryptographic keys, etc.). Given an adversary X, we call ID(X) the set of closed messages
that syntactically appear in X. This set, intuitively, contains all the messages that are initially
known by X. Let φX be a set of messages representing the static, initial knowledge that we
would like to give to X. We want ID(X) to be consistent with φX . This can be obtained by
requiring that all the messages in ID(X) are deducible from φX by means of the deduction
function D.

The set E
φX

C
of processes that can communicate on a subset of public channels C and have

an initial knowledge bound by φX can be therefore defined as follows:

E
φX

C
= {X ∈ P | sort(X) ⊆ C and ID(X) ⊆ D(φX)}

We consider as hostile processes only the ones belonging to E
φX

C
.

We define the property GNDCα
�

as follows:

Definition 10 A process P is GNDCα
�

⇐⇒ ∀X ∈ E
φX

C
: (P ||X)\C�α(P ) where � : P → P

is a behavioral relation between processes and α : P → P is a function between processes.

For the sake of completeness, it is worth noticing that a slightly extended GNDC schema
has been recently defined in [11], incorporating the fact that the set of bad behaviours of P
may depend on P itself and on the property under scrutiny.

For the analysis of safety properties it is enough to consider the trace inclusion relation
≤trace as behavioral relation among the terms of the algebra. When the ≤trace relation is
considered, there exists a sufficient criterion for the static characterization, i.e., not involving
the universal predicate ∀, of GNDCα

�
properties. In the following, we give hints to the definition

of GNDC without the need of the universal predicate, since some notions will be useful in the
rest of the paper. For further details about this static characterization, the interested reader
can see [9,12], where the following statements were first declared and proved.

Informally, the so called most powerful intruder in the trace setting ((TopC
trace)φ, hereafter,

for short TopC
φ

) is that intruder whose knowledge is φ, that can communicate only over channels

in C, that can receive every message passing over these channels (increasing in such a way its
knowledge) and, finally, that can send over these channels every message that it can deduce
starting from φ.

More formally, TopC
φ

is defined as follows in [12]:

Definition 11

TopC
φ =

∑

c∈C

c(x).T opC
φ∪{x} +

∑

c∈C,m∈D(φ)

cm.TopC
φ

It has been proved, [9,12], that the general way in which Topφ
C

is specified implies that its

behaviour includes that of any X belonging to the set E
φX

C
of admissible hostile processes.

Corollary 1 For every function α : P → P, a process P is GNDCα
≤trace

⇐⇒ (P ||TopC
φ

) \

C ≤trace α(P ).

The corollary implies that, for the analysis of safety properties in the trace setting, to check
if a specification enjoys GNDC w.r.t. all the admissible hostile environments, it is sufficient
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to check if the same specification enjoys GNDC with respect to the most powerful intruder

Topφ
C

.

By varying the parameter α, the GNDC schema can be used to define and verify many
security properties—among which secrecy, integrity, and entity authentication [8–10,12,17,23].
As an example, we remind here how the secrecy and the entity authentication properties have
been formalized in [9] (relation � for specifying these properties is trace inclusion ≤trace).

The requirements for a secrecy property to be satisfied are quite intuitive: a certain message
M, declared to be secret, should not be learnt by unauthorized users. Thus, let us consider the
event learnt(M), signaling that M has been learnt by the hostile environment. Then, αS(P (m))
“is the set of processes where the event learnt(M) can never occur”. For more details, the
interested reader can see [10].

On the other hand, entity authentication “should allow the verification of an entity’s
claimed identity, by another entity” [9]. To formalize this action, the followed approach is
the one proposed in [21] and based on a so called correspondence between actions. Let us
consider two users A and B, participating through a protocol. To assure the property, one would
like that, whenever A concludes the protocol apparently with B, B has indeed executed the
protocol. This can be tested with the introduction of two events, commit(A,B) and run(B,A),
representing the fact that A has indeed terminated the protocol apparently with B, (action
commit), and B has indeed started communicating with A, (action run). To fulfill entity
authentication means to require that event commit(A,B) is always preceded by event run(B,A).
In the GNDC definition, αEA(P ) is the process where commit(A,B) is always preceded by
run(B,A).

Along with GNDC, a general schema for the definition of timed security properties, called
timed Generalized Non Deducibility on Compositions (tGNDC for short) has been proposed
in [16].

Property tGNDC rephrases the analogue GNDC, but in a timed setting. A system S
is tGNDCα

�
⇐⇒ for every enemy X the composition of the system with X satisfies the

timed specification α(S). Basically, tGNDC guarantees that the timed property α is satisfied,
with respect to the � timed behavioral relation, even when the system is composed with any
possible adversary X.

We give here the set of admissible hostile environments for our timed setting. For a certain
enemy X, we call ID(X) the set of closed messages that syntactically appears in X, all the
messages initially known by X. Let φ0 be the initial knowledge we would like to give to the
enemy at the beginning of the computation. We require that all the messages in ID(X) are

deducible from φ0. We consider as hostile processes only the ones belonging to the set tEφ0

C
6.

They can communicate on a subset of public channels C and have an initial knowledge bound
by φ0:

tEφ0

C
= {X ∈ L | sort(X) ⊆ C and ID(X) ⊆ D(φ0)}

The property tGNDCα
�

is defined as follows:

Definition 12 S is tGNDCα
�

⇐⇒ ∀X ∈ tEφ0

C
: (S||X)\C � α(S) where � : L → L is a

timed behavioral relation between processes and α : L → L is a function between processes
defining the property specification for S as the process α(S).

As for the case of GNDC, it has been shown that,[16], for the analysis of safety properties
in the timed-trace setting, it is possible to prove the existence of a most general intruder
(tTopC

ttrace)φ, acting as its companion in the non timed setting. Moreover, (tTopC
ttrace)φ can

let time pass, by performing tick actions. Again, the timed traces of (tTopC
ttrace)φ include

those of any X belonging to the set tEφ0

C
, [16].

Thus, the following corollary holds:

Corollary 2 For every function α : L → L, a process S is tGNDCα
≤ttrace

⇐⇒ (S||(tTopC
ttrace)\

C ≤ttrace α(S).

6 Actually, there is another constraint that imposes that the enemy must eventually let time
pass. This is however not useful for safety properties we are going to study in this paper and
so it has been omitted for the sake of simplicity.
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C Proofs

Lemma 3.12. Sj
1 ∈ tGNDC0

′

≤ttrace
and Rj,q

1 ∈ tGNDC
αtInt(P

q)
≤ttrace

This may be proved by finding a suitable weak simulation relation between (Sj
1||Xφ1

) \C

and 0′ and between (Rj,q
1 ||Xφ1

)\C and tSpec1, respectively. The set C of channels over which
an intruder is able to communicate is C = {ci | i > 0}.

The weak simulation relation for the sender specifications is the following:

RS = (((Sj
i
(...)||Xφi

)\C,0′) | ∀i, Xφi
∈ tE

φi

C
)

∪(((Bj
i
(...)||Xφi

)\C,0′) | ∀i, Xφi
∈ tE

φi

C
)

∪(((ciK
j
i−1.Bj

i
(. . .)||Xφi

)\C,0′) | i > 1, Xφi
∈ tE

φi

C
)

The weak simulation relation we consider for dealing with the receiver specifications is the
following (superscript q is omitted for simplicity):

R = (((Rj
1()||Xφ1

)\C, tSpec1) | Xφ1
∈ tEφ1

C
)

∪((tick.(Rj
2()||Xφ1

)\C, tSpec1) | Xφ1
∈ tEφ1

C
)

∪(((Rj
i
()||Xφi

)\C, tSpeci) | i ≥ 2, Xφi
∈ tE

φi

C
)

∪((tick.(Rj
i
(yPi−1

)||Xφi−1
)\C, tSpeci−1) | i ≥ 2, Xφi−1

∈ tE
φi−1

C
)

∪(((Rj
i
(yPi−1

)||Xφi
)\C, tSpeci) | i ≥ 2, Xφi

∈ tE
φi

C
)

∪(((Rj′

i
(yPi

, yPi−1
)||Xφi

)\C, tSpeci) | i ≥ 2, Xφi
∈ tE

φi

C
)

∪((tick.(Rj
i
(yPi−1

)||Xφi−1
)\C, tick.tSpeci) | i ≥ 2, Xφi−1

∈ tE
φi−1

C
)

We omitted to explicitly put in RS and R the pairs in which the first process performs
deduction constructs.

Proof Throughout the proof, we omit to consider the cases in which the sender and the receiver
by themselves perform internal actions.

– Sj
1 ∈ tGNDC0

′

≤ttrace
. Let us consider relation RS . RS is a weak simulation:

– ((Sj
i
||Xφi

)\C,0′). Sj
i

may
• either perform a tick action: in this case the whole system on the left performs

tick and (Sj
i
||Xφi

)\C
tick
−→ (Sj

i+1||Xφi+1
)\C. 0′ is able to simulate it and

((Sj
i+1||Xφi+1

)\C,0′) ∈ RS .

• or go to intermediate state Bj
i
. 0′ is able to simulate it and

((Bj
i
||Xφi

)\C,0′) ∈ RS .

– ((Bj
i
||Xφi

)\C,0′). Bj
i

may perform a sending action, whereas Xφi
synchronizes on

that action: the whole system performs τ . It may happen:

• (Bj
i
||Xφi

)\C
τ

−→ (Bj
i
||Xφi

)\C, i = 1. 0′ is able to simulate it and ((Bj
i
||Xφi

)\C,0′) ∈
RS .

• (Bj
i
||Xφi

)\C
τ

−→ (ciK
j
i−1.Bj

i
||Xφi

)\C, i > 1. 0′ is able to simulate it and

((ciK
j
i−1.Bj

i
||Xφi

)\C,0′) ∈ RS .

– ((ciK
j
i−1.Bi(. . .)||Xφi

)\C,0′). The process on the left may perform a τ action, i.e.

(ciK
j
i−1.Bj

i
(. . .)||Xφi

)\C
τ

−→ (Bj
i
(. . .)||Xφi

)\C. Similar to the previous item.

– Rj,q
1 ∈ tGNDC

αtInt(P
q)

≤ttrace
. Let us consider relation R. R is a weak simulation:

– ((Rj
1()||Xφ1

)\C, tSpec1).

• The first process may perform tick and go to (Rj
2()||Xφ2

)\C. Note that also

tSpec1
tick
−→ tSpec2 and

((Rj
2()||Xφ2

)\C, tSpec2) ∈ R.

• If Rj
1() performs a receiving action and Xφ1

the corresponding sending action (by
sending messages ∈ D(φ1)), then

((Rj
1()||Xφ1

)\C
τ

−→ (tick.Rj
2(yP1

)||Xφ1
), where yP1

could be either the authentic
packet send by the sender P1 or another one x1. Note that

((tick.Rj
2(yP1

)||Xφ1
), tSpec1) ∈ R.
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– (tick.(Rj
2()||Xφ1

)\C, tSpec1). The first process may only perform tick by reaching the

configuration (Rj
2()||Xφ2

)\C. Note that also tSpec1
tick
−→ tSpec2 and

((Rj
2()||Xφ2

)\C, tSpec2) ∈ R.

– ((Rj
i
()||Xφi

)\C, tSpeci).

• If Rj
i
() performs a receiving action and Xφi

the corresponding sending action,

then ((Rj
i
()||Xφi

)\C
τ

−→

(tick.Rj
i+1(yPi

)||Xφi
). Note that

((tick.Rj
i+1(yPi

)||Xφi
), tSpeci) ∈ R.

• If the first process performs tick, it reaches the configuration

(Rj
i+1()||Xφi+1

)\C. Note that also tSpeci
tick
−→ tSpeci+1

and ((Rj
i+1()||Xφi+1

)\C, tSpeci+1) ∈ R

– (tick.Rj
i
(yPi−1

)||Xφi−1
\C, tSpeci−1). The first process may only perform a tick action

reaching the configuration (Rj
i
(yPi−1

)||Xφi−1
)\C. Note that also tSpeci−1

tick
−→ tSpeci

and ((Rj
i
(yPi−1

)||Xφi−1
)\C, tSpeci) ∈ R.

– ((Rj
i
(pi−1)||Xφi

)\C, tSpeci).
• The first process may perform tick by reaching

{(Rj
i+1()||Xφi+1

)\C. Note that also tSpeci
tick
−→ tSpeci+1 and

((Rj
i+1()||Xφi+1

)\C, tSpeci+1) ∈ R.

• If Rj
i
(yPi−1

) performs a receiving action then

((Rj
i
(yPi−1

)||Xφi
)\C

τ
−→ (Rj′

i
(ypi

, yPi−1
)||Xφi

)\C.

Note that ((Rj′

i
(ypi

, yPi−1
)||Xφi

)\C, tSpeci) ∈ R.

– ((Rj′

i
(yPi

, yPi−1
)||Xφi

)\C, tSpeci). The process on the left may either output a mes-
sage over channel app, or it may not.

• If Rj′

i
outputs a message over channel app, it must be z = ymac, yPi−1

=

snd(ymac), xKi−1
= Kj

i−1 and fst(yPi−1
) must be replaced with

mj
i−1. Rj′

i
(yPi

, yPi−1
)||Xφi

)\C
appm

j

i−1
−→ tick.Rj

i+1(yPi
)||Xφi

)\C and

tSpeci

appm
j

i−1
−→ tick.tSpeci+1. Both derivatives ∈ R.

• If Rj′

i
does not output anything over channel app, it is because the equality check

among hashes did not succeed. In this case, the system gets stuck. tSpeci is always
able to simulate it.

– ((tick.Rj
i
(yPi−1

)||Xφi−1
)\C, tick.tSpeci). Both processes may perform tick and the

derivatives ∈ R.


