Skip to main content
Log in

An Intuitionistic Proof of a Discrete Form of the Jordan Curve Theorem Formalized in Coq with Combinatorial Hypermaps

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

This paper presents a completely formalized proof of a discrete form of the Jordan Curve Theorem. It is based on a hypermap model of planar subdivisions, formal specifications and proofs assisted by the Coq system. Fundamental properties are proven by structural or noetherian induction: Genus Theorem, Euler Formula, constructive planarity criteria. A notion of ring of faces is inductively defined and a Jordan Curve Theorem is stated and proven for any planar hypermap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bauer, G., Nipkow, T.: The 5 colour theorem in Isabelle/Isar. In: Theorem Proving in HOL Conf. LNCS, vol. 2410, pp. 67–82. Springer, New York (2002)

    Chapter  Google Scholar 

  2. Bertot, Y., Castéran, P.: Interactive theorem proving and program development—Coq’art: the calculus of inductive construction. In: Text in Theoretical Computer Science, An EATCS Series. Springer, New York (2004)

    Google Scholar 

  3. Bertrand, Y., Dufourd, J.-F.: Algebraic specification of a 3D-modeler based on hypermaps. Graph. Models Image Process. 56, 1 29–60 (1994)

    Article  Google Scholar 

  4. Chen, L.: Note on the discrete Jordan Curve Theorem. In: SPIE Conf. on Vision Geometry VIII, vol. 3811, pp. 82–94. SPIE, Bellingham (1999)

    Google Scholar 

  5. The Coq Team Development-TypiCal Project: The Coq proof assistant reference manual—version 8.1. INRIA, Le Chesnay http://coq.inria.fr/doc-fra.html (2007)

  6. Coquand, T., Huet, G.: Constructions: a higher order proof system for mechanizing mathematics. In: EUROCAL. LNCS, vol. 203. Springer, New York (1985)

    Google Scholar 

  7. Cori, R.: Un code pour les graphes planaires et ses applications. Astérisque 27 (1970) (Société Math. de France)

  8. Dehlinger, C., Dufourd, J.-F.: Formalizing the trading theorem in Coq. Theor. Comp. Sci. 323, 399–442 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dufourd, J.-F., Puitg, F.: Functional specification and prototyping with combinatorial oriented maps. Comput. Geom. Theory Appl. 16, 129–156 (2000)

    MATH  MathSciNet  Google Scholar 

  10. Dufourd, J.-F.: Design and certification of a new optimal segmentation program with hypermaps. Pattern Recogn. 40, 2974–2993 (2007). doi:10.101b/j.patcog.2007.02.013

    Article  MATH  Google Scholar 

  11. Dufourd, J.-F.: Polyhedra genus theorem and Euler formula: a hypermap-formalized intuitionistic proof. Theor. Comp. Sci. 403, 133–159 (2008). doi:10.101b/j.tcs.2008.02.012

    Article  MATH  MathSciNet  Google Scholar 

  12. Dufourd, J.-F.: Discrete Jordan Curve Theorem: a proof formalized in Coq with hypermaps. In: Weil, P. (ed.) Symp. on Theoretical Aspects on Computer Science, 12 pp (2008). doi:hal-archives-ouvertes.fr/hal-002211501~v1

  13. Filliâtre, J.C.: Formal proof of a program: FIND. Sci. Comput. Program. 24(3), 332–340 (2006)

    Google Scholar 

  14. Françon, J.: Discrete combinatorial surfaces. CVGIP, Graph. Models Image Process. 57(1), 20–26 (1995)

    Article  Google Scholar 

  15. Gonthier, G.: A computer-checked proof of the four colour theorem, 57 pp. Microsoft Research, Cambridge. http://research.microsoft.com/~gonthier (2005)

  16. Gonthier, G., Mahboubi, A.: A small scale reflection extension for the Coq system, 75 pp. RR 6455, Microsoft Research-INRIA. http://hal.inria.fr/inria-00258384/ (2007)

  17. Gonthier, G.: Formal proof - the four-Colour theorem. Not. Am. Math. Soc. 55(11), 1382–1393 (2008)

    MATH  MathSciNet  Google Scholar 

  18. Griffiths, H.: Surfaces. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  19. Hales, T.: Formalizing the proof of the Kepler conjecture. In: Theorem Proving in HOL Conf. LNCS, vol. 3223, p. 117. Springer, New York (2004)

    Google Scholar 

  20. Hales, T.: A verified proof of the Jordan Curve Theorem. Seminar talk. Dep. of Math., University of Toronto http://www.math.pitt.edu/~thales (2005)

  21. Hales, T.: The Jordan Curve Theorem, formally and informally. Am. Math. Mon. 114(10), 882–893 (2007)

    MATH  MathSciNet  Google Scholar 

  22. Huet, G., Kahn, G., Paulin-Mohring, C.: The Coq proof assistant—a tutorial—version 8.0. Tech. report, INRIA, France http://coq.inria.fr/doc-fra.html (2004)

  23. Khachan, M., Chenin, P., Deddi, H.: Digital pseudomanifolds, digital weakmanifolds and Jordan-Brower separation theorem. Discrete Appl. Math. 125(1), 45–57 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kornilowicz, A.: Jordan Curve Theorem. Formaliz. Math. 13(4), 481–491 (2005) (Univ. of Bialystock)

    Google Scholar 

  25. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Image Process. 48, 357–393 (1989)

    Article  Google Scholar 

  26. Malgouyres, R.: A definition of surfaces of Z3—a new 3D discrete Jordan theorem. Theor. Comp. Sci. 186, 1–41 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Paulin-Mohring, C.: Inductive definition in the system Coq—rules and properties. In: Typed Lambda-Calculi and Applications. LNCS, vol. 664, pp. 328–345. Springer, New York (1993)

    Chapter  Google Scholar 

  28. Simpson, C.: Explaining Gabriel-Zisman localization to the computer. J. Autom. Reason. 36 (2006). doi:10.1007/s10817-006-9038-x,259–285

    Article  MATH  MathSciNet  Google Scholar 

  29. Slapal, J.: A digital analog of the Jordan Curve Theorem. Discrete Appl. Math. 139(1–3), 231–251 (2004)

    MATH  MathSciNet  Google Scholar 

  30. Stahl, S.: A combinatorial analog of the Jordan Curve Theorem. J. Comb. Theory B 26, 28–38 (1983)

    MathSciNet  Google Scholar 

  31. Tutte, W.T.: Combinatorial oriented maps. Can. J. Math. XXXI(5), 986–1004 (1979)

    MathSciNet  Google Scholar 

  32. Tutte, W.T.: Graph theory. In: Encyclopedia of Mathematics and its Applications. Addison Wesley, Reading (1984)

    Google Scholar 

  33. Veblen, O.: Theory on plane curves in non-metrical analysis situs. Trans. Am. Math. Soc. 6, 83–98 (1905)

    Article  MATH  MathSciNet  Google Scholar 

  34. Vince, A., Little, C.H.C.: Discrete Jordan Curve Theorems. J. Comb. Theory B 47, 251–261 (1989)

    MathSciNet  Google Scholar 

  35. Yamamoto, M., Nishizaki, S., Hagiya, M., Tamai, T.: Formalization of planar graphs. In: Theorem Proving in HOL Conf. LNCS, vol. 971, pp. 369–384. Springer, New York (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Dufourd.

Additional information

This research is supported by the “white” project GALAPAGOS, French ANR, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dufourd, JF. An Intuitionistic Proof of a Discrete Form of the Jordan Curve Theorem Formalized in Coq with Combinatorial Hypermaps. J Autom Reasoning 43, 19–51 (2009). https://doi.org/10.1007/s10817-009-9117-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-009-9117-x

Keywords

Navigation