Declarative Representation of Proof Terms

Claudio Sacerdoti Coen*

Department of Computer Science, University of Bologna
sacerdot@cs.unibo.it

Abstract. We present a declarative language inspired by the pseudo-
natural language used in Matita for the explanation of proof terms. We
show how to compile the language to proof terms and how to automati-
cally generate declarative scripts from proof terms. Then we investigate
the relationship between the two translations, identifying the amount of
proof structure preserved by compilation and re-generation of declarative
scripts.

1 Introduction

In modern interactive theorem provers, proofs are likely to have several alterna-
tive representation inside the system. For instance, in a system based on Curry-
Howard implementation techniques, proofs could be input by the user in either a
declarative or a procedural proof language; then the script could be interpreted
and executed yielding a proof tree; from the proof tree we can generate a proof
term; from the proof term, the proof tree or the initial script we can generate
a description of the proof in a pseudo-natural language; finally, from the proof
term, the proof tree or a declarative script we can generate a content level de-
scription of the proof, for instance in the OMDoc + MathML content language.
For instance, the Coq proof assistant [I1] has had in the past or still has all these
representations but the last one; our Matita interactive theorem prover [2] also
has all these representations but proof trees.

It is then natural to investigate the translations between the different repre-
sentations, wondering how much proof structure can be preserved in the trans-
lations. In [9] we started this study by observing that Apuji-proof-terms are es-
sentially isomorphic to the pseudo-natural language we proposed in the HELM
and MoWGLI projects. In [3] we extended the result to OMDoc documents. At
the same time we started investigating the possibility of giving an executable
semantics to the grammatical constructions of our pseudo-language, obtaining
the declarative language described in this paper. The language, which still lacks
the justification sub-language, is currently in use in the Matita proof assistant.

In this paper we investigate the mutual translation between declarative scripts
in this language and proof terms. We use A-terms for an extension of System F to
keep the presentation simple but close to the actual implementation in Matita,
which is not based on Apjfi-proof-terms.

* Partially supported by the Strategic Project DAMA (Dimostrazione Assistita per la
Matematica e I’Apprendimento) of the University of Bologna.

Our main result is that the two translations preserve the proof structure and
behave as inverse functions on declarative scripts generated by proof terms. Com-
pilation and re-generation of a user-provided declarative script results in a script
where the original proof steps and their order are preserved, and additional steps
are added to make explicit all the justifications previously proved automatically.
Misuses of declarative statements are also corrected by the process.

Translation of procedural scripts to declarative scripts can now be achieved
for free by compiling procedural scripts to proof terms before generating the
declarative scripts. In this case the proof structure is preserved only if it is
preserved (by the semantics of tactic compilation) during the first translation.

In the companion paper [?] Ferruccio Guidi investigates the translation be-
tween proof terms of the Calculus of (Co)Inductive Constructions and a subset
of the procedural language of Matita. Thus the picture about the different trans-
lations is now getting almost complete, up to the fact that the papers presented
do not agree on the intermediate language used by all the translations, which is
the proof terms language.

An immediate application of this investigation, also explored in [?], is the
possibility to take a proof script from a proof assistant (say Coq), compile it
to proof terms, transmit them to another proof assistant (say Matita) based on
the same logic and rebuild from them either a declarative or a procedural proof
script that is easier to manipulate and to be evolved. A preliminary experiment
in this sense is also presented in the already cited paper.

The requirement for the translations investigated in this paper are presented
in Section [2| Then in Section [3| we present the syntax and the informal seman-
tics of our declarative proof language. Compared with other state of the art
declarative languages such as Isar [12] and Mizar [I3] we do not address the
(sub-)language for justification of proof steps. This is left to future work. Right
now justifications are either omitted (and provided by automation) or they are
proof terms.

In Section [d] we show the small steps operational semantics of the language
which, scripts being sequences of statements, is naturally unstructured in the
spirit of [I0]. The semantics of a statement is a function from partial proof
terms to partial proof terms, i.e. a procedural tactic. Thus the semantics of a
declarative script is a compilation to proof terms mediated by tactics in the
spirit of [6].

In Section [f] we show the inverse of compilation, i.e. the automatic generation
of a declarative script from a proof term. We prove that the two translations form
a retraction pair and that their composition is idempotent.

2 Requirements

In this paper we explain how to translate declarative scripts into proof terms and
back. By going through proof terms, procedural scripts can also be translated to
declarative scripts. Before addressing the details of the translations, we consider

here their informal requirements. We classify the requirements according to two
interesting scenarios we would like to address.

Re-generation of declarative scripts from declarative scripts (via proof terms). In
this scenario a declarative script is executed obtaining a proof term that is then
translated back to a declarative script. The composed translation should preserve
the structure of the user provided text, but can make more details explicit. For
instance, it can interpolate a proof step between two user provided proof steps
or it can add an omitted justification for a proof step. The translation must also
reach a fix-point in one iteration. The latter requirement is a consequence of the
following stronger requirement: the proof term generated executing the obtained
declarative script should be exactly the same proof term used to generate the
declarative script. In other terms, the composed translation should not alter the
proof term in any way and can only reveal hidden details.

Re-generation of declarative scripts from procedural scripts (via proof terms). In
this scenario a procedural script is executed obtaining a proof terms that is then
translated back to a declarative script. Ideally the two scripts should be equally
easy to modify and maintain. Moreover, the “structure” of the procedural script
(if any) should be preserved. Gory details or unnecessary complex sub-proofs
that are not explicit in the procedural proof should be hidden in the declarative
one. This last requirement is not really a constraint on the declarative language,
but on the implementation of the tactics of the proof assistant [§].

Some of the requirements, in particular the preservation of the structure of
the user provided text, seem quite difficult to obtain. In [9] we claimed that the
latter requirement is likely to be impossible to fulfil when proof terms are Curry-
Howard isomorphic to natural deduction proof trees, i.e. when proof terms are
simply A-terms. On the contrary, we expect to be able to fulfil the requirements if
proof terms are Curry-Howard isomorphic to sequent calculus. This is the case,
for instance, for the Apji-terms [5] we investigated as proof terms in [9I3]. In
particular, automatic structure preserving generation of Mizar/Isar procedural
scripts from Apji-terms have been attempted in the Fellowship theorem prover [7]
(joint work with Florent Kirchner).

Matita proof terms are A-terms of the Calculus of (Co)Inductive Construc-
tions (CIC). The calculus is so rich that several of the required constructs of the
Mufi-calculus are somehow available. Thus we expect to be able to fulfil at least
partially the requirements just presented. Even in case of failure it is interesting
to understand exactly how close we can get.

In the present paper we restrict ourselves to a fragment of CIC, although
the implementation in Matita considers the whole calculus. The fragment is
an extension of System F obtained by adding explicit type conversions, local
definitions and local proofs. The distinction between the last two corresponds to
the distinction between A and A in System F. We will present the proof terms
for this fragment in Section [

assume id : type [that is equivalent to type]

suppose prop [(id)] [that is equivalent to prop]

let id := term

by just we proved prop (id) [that is equivalent to prop]
by just we proved prop [that is equivalent to prop| done
by just done

by just let id : type such that prop (id)

by just we have prop (id) and prop (id)

we need to prove prop [(id)] [or equivalently prop]

we proceed by [cases|induction] on term to prove prop
case id [(id:type)|(id:prop)]*

by induction hypothesis we know prop (id) [that is equivalent to prop]
the thesis becomes prop [or equivalently prop]
conclude term rel term by just [done]

obtain id term rel term by just [done]

rel term by just [done]

Non terminals:

id identifiers term inhabitants of data types
type data types just justifications, e.g. proof terms or automation
prop propositions rel transitive relations (e.g. =, <, <)

Table 1. Syntax

3 The Declarative Language

The syntax of the declarative language we propose is an adaptation of the syntax
of the pseudo natural language already generated by Matita and studied in [IJ.
It is also a super-set of the language proposed in [9] and studied also in [3].
The sub-language for justifications has not been developed yet. Thus currently
a justification is either provided as a proof term or it is omitted and recovered
by automation. Because of the lack of the sub-language for justifications we
post-pone a comparison with other declarative languages.

We have explicit statements that deal with conversion, a feature of the log-
ical framework of Matita that is not available in first and higher order logics.
Two formulae are convertible when they can be reduced by computation to a
common value. For instance, 2 * 2 is convertible with 3 + 1. Since conversion is a
decidable property (in a confluent and strongly normalizable calculus), conver-
sion and reduction steps are not recorded in the proof term (e.g. as rewriting
steps). However, since conversion steps are not always obvious to the reader, it is
sometimes necessary to make them explicit in the declarative language. Thus the
need for the additional statements. In Isar the same steps would be represented
by (chains of) rewriting steps.

We now present informally the semantics of the proposed language state-
ments, whose syntax is summarised in Table [T}

assume id : typel [that is equivalent to type2]
Introduces in the context a new generic but fixed term id whose type is
typel. If specified, type2 must be convertible to typel. In this case id will be
used later on with type type2, but in the conclusion of the proof typel! will
be used. Example:

we need to prove Vz : T.P(z)
assume z: carrier of T' that is equivalent to N x N
let y := m(x) (* first projection *)

by _ we proved P(x)
done

suppose propl [(id)] [that is equivalent to prop2]
Introduces in the context the hypothesis prop1 labelled by id. If the proposi-
tion prop2 is specified, it must be convertible with propi. In this case id will
stand later on for the hypothesis prop2, but in the conclusion of the proof
prop1 will be used.

let id := term
Introduced in the context a new local definition.

by just we proved prop! (id) [that is equivalent to prop2]
Concludes the proposition prop! by means of the justification just. The
(proof of the) proposition is labelled by id for further reference. If prop2 is
specified, it must be convertible with prop1. In this case id will stand for a
proof of the proposition prop2.

by just we proved propl [that is equivalent to prop2] done
Similar to the previous statement. However, the conclusion prop1 (or prop2
if specified and convertible with prop1) is the current thesis. Thus this state-
ment ends the innermost sub-proof.

by just done
Similar to the previous statement. However, the conclusion, equal to the
current thesis, is not repeated.

by just let id! : type such that prop (id2)
Concludes the proposition 3idl : type s.t. prop by means of the justification
just. Exist-elimination is immediately performed yielding the new generic
but fixed term id! of type type and the new hypothesis prop labelled by id2.

by just we have propl (id1) and prop2 (id2)
Concludes the proposition propl A prop2 by means of the justification just.
And-elimination is immediately performed yielding the new hypotheses
propl and prop2 labelled respectively by id! and #d2.

we need to prove prop! [(id)] [or equivalently prop2]
If id is omitted, it repeats the current thesis propl. Moreover, if prop2 is
specified and convertible with prop1, it replaces the current thesis with prop2.
Otherwise, if id is specified, it starts a nested sub-proof of prop! that will
be labelled by id. If prop2 is specified and convertible with prop1, the thesis
of the nested sub-proof is prop2, but id will label prop1.

we proceed by [cases|induction] on term to prove prop

case idl [(id2:type2)|(id2:prop)]*

by induction hypothesis we know prop! (id) [that is equiv. to prop2]

the thesis becomes prop! [or equivalently prop2]
This set of statements are used for proofs by structural induction or by case
analysis. The initial statement must be followed by a proof for each case.
Each proof must be started by the case id statement, where id is the label
of the case (i.e. the name of the inductive constructor the case refers to). The
list of arguments that follows id binds the local non inductive assumptions
for the case. The inductive assumptions are postponed and introduced by
the next statement in the set. Only proofs by inductions have inductive
assumptions. The last statement in the set, the thesis becomes, is used to
state explicitly what is the current thesis for each proof. Example:

we proceed by induction on n to prove P(n)
case 0
the thesis becomes P(0)

case S(m : nat)
by induction hypothesis we know P(m)
the thesis becomes P(S(m))

conclude terml rel term2 by just [done]

obtain id term rel term by just [done]

rel term by just [done]
This set of statements are used for chains of (in)equalities. A chain is started
by either the first or the second command in the set. All the remaining steps
in the chain are made by the third command. In all commands rel must be
a transitive relation. Chains with mixed relations are possible as soon as the
different relations enjoy generalised transitivity (e.g. ¢ < yAy < z = z < 2).
Every step in the chain must have a justification just. The end of the chains
is marked by done. In every step but the first one the left hand side of the
inequation is the right hand side of the previous step.
If the first step of the chain is a conclude statement, then the chain must
prove the current thesis, and the last step of the chain ends the innermost
sub-proof. Otherwise, if the first step of the chain is a conclude statement,
the chain only proves a local lemma that is labelled by id in the rest of the
innermost sub-proof.

obtain H
(z+y)?=(@+y)(=+y) by _
= z(z +y) + y(x + y) by distributivity
=22+ zy +yx +1y> by distributivity
= 22 4 2zy + 12 by _
done

Types

T:=T-—-T function space
| nat basic type
Propositions
P:=P=P logical implication
| Vz:T.P universal quantification
| Jz:T.P existential quantification
| PAP conjunction
| E=F equality
| F(E1,...,En) n-ary predicate

Expressions (inhabitants of types)

E: ==z bound variable ranging over expressions
| O(En,...,Ey) n-ary function
| 7 placeholder
Proof terms
t n=Xx: Tt function
| AH: Pt type abstraction
| letz:=Fint local definition
| Let H: P:=tint logical cut
| (t:P=P) explicit type conversion
| (HE, ... Eo Hi... Hy) application with 0 or more arguments; H is a

and,elimp, P,P

bound variable ranging over proof terms or one
of the constants below
conjunction elimination

ex_elim existential elimination
nat_indp induction over Peano natural numbers
nat_casesp case analysis over Peano natural numbers

eq_transitive

transitivity of equality

Table 2. Proof term syntax

4 Formal Semantics

We now show the formal semantics of our language in terms of compilation of
a declarative script to a proof term. In Tables [2] and [3| we show the syntax and
typing rules for the proof terms we will use to encode first order logic natural
deduction trees. We only show the inference rules for proof terms, omitting all
the conditions about the well-formedness of contexts, types and propositions
occurring in the inference rules, since they are quite standard and not relevant
to the present work. Moreover we restrict induction and case analysis to natural
numbers and we only consider chains of equalities over natural numbers.

The semantics of each statement of Table [1] is a function from a partial
proof term to a partial proof term. Intuitively, a partial proof term is a proof

Proof term typing rules.
I'H :Vxy1:Ty..... Ve, :Th.Pr=...= P, = P
I'-E;,:T; Vze{l,,n} F"HZPZ{E1/CE1, e En/azn} VZE{l,,m}
I'-(HEi ... E,H ... Hp): P

x:TkHt: P IH:PibHt: P I'tt: P I'EP =5
I'EXe:Tt:NVNx:T.P I'FAH : Pit: P, = Py I'({t:PA=P): P
INx:=FEFt:P I'Ht1: P I'H:PiFt: P

I'tletz:=Fint: P{E/x} I'FLet H: P :=t1inty: P»

We also assume the following constant schemes (that are always supposed to be applied
to arguments in S-long normal form):

and-elimp, p, p; : PL APy = (P1 = P2 = P3) = P3
exelimr p, ,p,: (Fz:T.P)= NVz:T.PL= P)= P,

nat_indp : Vn : nat.P(0) = (VYm : nat.P(m) — P(S(m))) = P(n)
nat_casesp : Vn : nat.P(0) = (Vm : nat.P(m)) = P(n)
eq-transitive : Ve,y,z:natxr=y=>y=z=>x==2

Table 3. Proof term typing rules (standard well-formed conditions on expres-
sions, contexts, and types omitted)

term with linear placeholders for missing sub-proofs and non-linear placeholders
for missing sub-expressions. Each placeholder must be replaced with a proof
term or an expression, of the appropriate type, closed in the logical context
of the placeholder. The logical context of the placeholder is the ordered set of
hypothesis, definitions and declarations collected navigating the proof term from
the root to the placeholder. A partial proof term is complete (i.e. it represents
a completed proof) when it is placeholder-free. When a proof is started, it is
represented by the partial proof term made of just one placeholder.

Formally, we represent a partial proof term as a triple (X, X’ IT). X' is an
ordered list of sequents I' F P providing context and type for the proof term
placeholders occurring in the partial proof. X’ does the same for expression
placeholders. II, the actual partial proof term, is a function from “fillings” for
both kinds of placeholders to placeholder-free proof terms.

partial_proof :=
(context * proposition) list
(context * type) list *
(proof _term list * expression list — proof_term)

We denote the empty list with [], the concatenation of two lists with [;@ly and
the insertion of an element at the beginning of a list with x :: [. With (I,1') — ¢
we denote an anonymous function from pairs of lists to terms. With C[l,1’] we

represent a proof term having all the proof-terms in [and all the expressions in
" as sub-terms. Finally, 73 is the third projection of a tuple.

The semantic function C[[-] shown in Table 4| maps statements to functions
from partial proof terms to partial proof terms. C[-]* extends the semantics to
a list of statements (a declarative script). Given a declarative script S1 -+ Sy,
the proof term generated executing the script S from the initial proof state for
a proposition P is given by C[-]s applied to (S, P).

C[] : statement — partial_proof — partial_proof

C[-]* : statement list — partial_proof — partial_proof

C[S1 -+ Su]* = C[Su] 00 C[S1]

C[]s : statement list * proposition — proof_term

CLSy-- - Snls = ms(C[Sy --- Sn, PT* ([P, [, ([H], [)) — H)) ([, 1)

For instance, consider the statement Vz : nat.P(z) and a script “assume z :
nat 8” where we suppose that S produces for the sequent « : nat - P(z) a proof
term 7 (i.e. that C[S]*([z : nat = P(x)], [], 1) = ([}, [}, ([l [}) = L ([=],[])))

We have:

Classume z : nat S,Vz : nat.P(z)]s
= m3((C[S]* o CJassume z : T]) ([F Vx : nat.P(x)],[], (H,[]) — H)) ([J,[])
= m3(C[S]*([z : nat = P(z)], [], ([hd], []) = Az : nat.hd)) ([}, [])

= m3(([; [, (0,) = Az : mat.x)) ([], 1)

= \x : nat.w

“obtain H E; = E5” is the only statement whose semantics introduces in %’
a new expression placeholder 7. The placeholder 7 stands for the right hand side
of the last expression of the chain. Its instantiation will be known only in the last
step of the chain, i.e. in the next “= F3 done” statement. Since equation chains
cannot be nested, in a partial proof term there can be at most one placeholder,
i.,e. X’ can have at most one element and one placeholder symbol ? is sufficient.

Table 4: Formal semantics

Classume z : T|(I'FVz : T.P :: X, X' IT) =
(C'; 2:TEP): X5 (hd = tll) — I((Ax : T.hd) :: tl,1))
Classume z : T; that is equivalent to To|(I'F Ve : T1.P = X, X/ 1) =
(I'; z:Th b P): X)X,
(hd: P' = P) :: tl,l) — II((Ax : To.hd : Vx : To.P' =Vx : T1.P) :: tl,1)
(hd :: tl,1) — II(A\x : Ta.hd : Va : T5.P =V : T1.P) = tl,1)
Clsuppose P, (H)|[(I'FVYP : PPy :: X, 5" IT) =
(I'; H: P+ Py X5 (hd =2 tl,1) — I ((AH : Py.hd) :: tl,1))
C[suppose P, (H) that is equivalent to P (I'FVH : P,.P : X, X' II) =
(I; H:P,FP) = 5,5,

((hd: P3y=P)::tll) — II((AH : Po.hd : P, —» Py =P, — P) :: tl,1)
(hd :: tl,1) II((AH : Po.hd: P, — P =P, — P) :: tl,1)
Cllet x .= EJ|(I'+- P :: E,E’ =
(I'; x:=FEFP):X X (hd::tl])— I((let x := E in hd) :: tl,1))
C[by j we proved P, (H)|(I'F Py : X, X/, II) =
(I'; H: P+ Py X, 5 (hd :: tl,1) — I ((Let H : Py :=j in hd) :: €1,1))
C[by j we proved P, (H) that is equivalent to RJ(I'+ P :: X, X' II) =
((r'; H: P EP) X5,
(hd :: tl,1) — I ((Let H: Py :=(j: P, = P,) in hd) :: tl,1))
C[by j we proved P done|(I' - P :: X, X' IT) =
(22,37 (¢, 1) — II(j == t,1))
C[by j we proved P; that is equivalent to P, done](I"'+ Py :: X, X' IT) =
(2,2 (0D — I((j: PL = P)) = t,1))
Cl[by j done(I'+ P : X, 3/ II) = (X, %, (tl,1) — II(j :: tl,1))
Clby jlet z : T such that P, (H)|(I'+ Py :: X, %', 1T) =
(I';z:T; H:PFPy):: XX,
(hd :: ¢1,1) — II((ex-elimp p, p,j (Ax : T.AH : Py.hd))) :: ¢l,1))
C[by j we have P, (Hy) and P, (Ho)|(I'F P = X, X/ II) =
((F, H1 P1 N HQ P2|_P) 22,2/7
(hd :: tl,1) — II((and_elimp, p, p j (AHy : P1.AHs : Py.hd))) :: tl,1))
C[we need to prove P|(I'+ P :: X, X' II) =
(I'kP) =X, % (hd :: tl,1) — IT((Rd) :: £,1))
C[we need to prove P; or equivalently PQ]](I’ FPoc XY I =
(I'k Py) = X, % (hd 2 tl,1) — IH((hd : Py = Py)) =: tl l))
C[we need to prove P, (H)[(I'+ Py :: X, X' 1) =
(F'EP)=('; H: P EPy) 2 XY,
(hdy :: hdg =2 tl,1) — II((Let H : Py := hdy in hds) :: tl,1))
C[we need to prove P; (H) or equivalently P(I'+ P :: X, X' IT) =
(I'tP) (' H: PLEP) = X, X,
(hdy :: hdg =2 tl,1) — I ((Let H : Py := (hdy : P, = Py) in hds) :: tl,1))
Clconclude FEy = E; by j|(I'+ Ey = E3 = X, X' 1) =
(- By = Es) = 5,5,
(hd :: tl,1) — II(((eq-transitive By Fy E3 j hd) :: t1,1)))
C[conclude E; = E; by j done](I' - Ey = Ey = X, 2’ I =
(32,57, (t,1) — II(j :: t,1))
Clobtain H E, = By by j|(I'F P = 2,5, 1T) =
('FEy=?)u("; H: By =?FP) X (I'Fnat) = X,
(hdy == hds = tl, hd' = ')
II((Let H : Ey = hd' := (eq-transitive F1 Fy hd' j hdy) in hds) :: tl,tl"))
Clobtain H Ey = E; by j done](I'F P :: X, X II) =
((Ir'; H: By =FEy - P) X X
(hd :: tl, 1) — H((Let H : Ey = Eg :=j in hd) :: tl,1))
C[= E2 by j done|(I' + Ey =7 :: X, (" Fnat) : X/, IT) =
(2, 5", (t,1) v II(j = tl, By 1))
Cl[= E2 by jdone|(I'+Ey =Ey : X, X' 1) = (X, % (tl 1) II(5 = t,1))
C[we proceed by induction on n to prove P(n)|(I'+ P(n) = X, X', H) =

(I'+ P(O)) :: (I' F ¥Ym : nat.P(m) = P(S(m))) =+ X, 2/,
(hdy :: hds :: 1,1") — I ((nat_indp n hdy hds) :: 1,1"))
C[we proceed by cases on n to prove P(n)[(I'+ P(n) = X, X' 1) =
(I'F P(O)) «: (I' - Ym : nat.P(S(m))) «: X, %',
(hdy :: hdg = 1,1") — II((nat_casesp n hdy hds) :: 1,1))
Clcase H argy ---arg,] = Clargi]a - -Clargn]a
Cl(x : T"]o = C[assume z : T
Cl[(H : P)], = C[suppose P (H)]
C[by induction hypothesis we know P (H)] = C[suppose P (H)]
C[by induction hypothesis we know P; (H) that is equivalent to P =
C[suppose P, (H) that is equivalent to P]
C[the thesis becomes P] = C[we need to prove P]
C[the thesis becomes P; or equivalently P;] =
C[we need to prove P; or equivalently P]

5 Natural Language Generation

We present in Table [5| the inverse translation G[—] from proof terms to declara-
tive proof scripts. The translation is recursive and proceeds by pattern matching
over the proof term. Rules coming first take precedence.

Recursion on equality chains is performed by the auxiliary function G[—]=
where the argument in subscript position is used to remember the right hand
side of the last step in the chain.

Table 5: Natural language generation

G[\x : T.t] = assume z : T G[{]
G[AH : P.t] = suppose P (H) G[t]
Gllet x := E in t] = let x := E G[{]
Gl(Ax : Tot : Vo : To.P =Vx : T1.P)] =
assume z : T) that is equivalent to T G[t]
g[[(AHPQtP2:>PEP1:>P)]] =
suppose P, (H) that is equivalent to P, G[t]
Q[[()\a? : Tgt Vo TQ.PQ =V : TIPI)]] =
assume z : 77 that is equivalent to T,
we need to prove P; or equivalently P, G[t]
g[[(AHIPQ.tIP2:>P4EP1:>P3)H =
suppose P, (H) that is equivalent to P»
we need to prove P; or equivalently P, G[t]
GlLet K :P:=(H E,...E, Hy...Hp,) int] =
by (H E,...E, H,...H,,) we proved P (K) G[t]
g[[L@tK:PQ = ((H ElEn Hle)Pl EPQ) mt]] =
by (H Ey...E, Hy...H,,) we proved P; (K)
that is equivalent to P; G[t]
GlLet H: Py :=(t;: P = Py) in t3] =

we need to prove P, (H) or equivalently P; G[t1] G[t2]
g[[(eq,transitive Ei Eé Eé (H E1 e En H1 7”) tg 3)H
conclude E{ = E, by (H Ey...E, Hy...Hyp,) G[te, 3]5
GlLet H : E| = E} :=
(eq-transitive Ef Ef E4 (H Ey...E, Hy...Hy,) ta3) int] =
G[Let H : P :=t; in ts] = we need to prove P (H) G[t1] G[t2]
GI(H Ey...E, Hy...Hy)|5 =
=F by (H FE,...E, H,...H,) done
Gl(eq-transitive Ey EY E5 (H Ey...E, Hy...Hy,) 152,3)]]1?,s =
= E2 by (H E1 . En H1 . Hm)gﬂ t273]]gé
g[[(ex,elim t Pl P2 H (AZL’ : TAHQ : Pgt))ﬂ =
by H let z : T such that P, (H,) G[t]
g[[(and,elim P1 P2 P3 H (AHl : Pl.AH2 : Pgt))]] =
by H we have P1 (Hl) and P2 (Hg) g[[t]]
Gl(nat_indp n t; (Am : nat.AH : P(m).t2))] =
we proceed by induction on n to prove P(n)
case O
the thesis becomes P(O)
Glt]
case S (m : nat)
by induction hypothesis we know P(m) (H)
the thesis becomes P(S(m))
Glt2]
Gl(nat_indp n t; (Am : nat.
(AH : P(m).ty : P, = P(S(m)) = P(m) = P(S(m)))))] =
we proceed by induction on n to prove P(n)
case O
the thesis becomes P(O)
Gt
case S (m : nat)
by induction hypothesis we know P(m) (H)
that is equivalent to P,
the thesis becomes P(S(m))
Glt2]
Gl(nat_indp n t; (Am : nat.
(AH : Py.ty : P(m) = Py = P(m) = P(S(m)))] =
we proceed by induction on n to prove P(n)
case O
the thesis becomes P(O)
Glt1]
case S (m : nat)
by induction hypothesis we know P(m) (H)
that is equivalent to P,
the thesis becomes P(S(m)) or equivalently P;

Gta]
Gl(nat_indp n t; (Am : nat.AH : P(m).(t2 : Po = P(S(m)))))] =
we proceed by induction on n to prove P(n)
case O
the thesis becomes P(O)
Glt]
case S (m : nat)
by induction hypothesis we know P(m) (H)
the thesis becomes P(S(m)) or equivalently P
Gllt2]
by (H E,...E, H,...H,,) we proved P,
that is equivalent to P, done
G[(HE,.. E,H...Hy,)]= by(HE,...E, H...H,)done

The following important theorem shows that the proof term generated pro-
cessing a declarative script generated from a given proof term is identical to the
starting proof term. Thus, we fully satisfy the strongest requirement of Section
about re-generation of declarative scripts.

Theorem 1 (Round-tripping from proof terms).
VI VPVt such that I' =t : P, VX, %', II we have
CIGI), PL. (I P) = 3,5 IT) = (¥, X", II')
and
either X' = X" and VI,U', I (¢t :: 1,1") = II'(1,1')
or X' = (I bFnat) : X and IENVL U IT(¢ = L, E V) =1T(LT).

The two branches of the statement deserve an explanation. They differ in
whether a placeholder for expressions can be closed. This is the case only if G[t]
syntactically contains the last step of a rewriting chain and if one placeholder
occurs in I (and, consequently, X’ is not empty). The existentially quantified
placeholder instantiation F is proved to be the right hand side of the last step
in the equality chain.

Proof. The proof is by structural induction on t. We only show one significant
case.

Let t be Az : To.t' : Vo : To.Py = Va : T1.P;. We have G[t] = S1 Se G[t']
where S; = “assume z : T} that is equivalent to 75” and Sy = “we need to
prove P; or equivalently P,”. Assume generic, but fixed X, X/, IT. We have

LS, So GIII]* (I Ve : Tv.Py) = X, 5, 1)
= (C[G[t']] o C[S2] o C[* assume z : T} that is equivalentto T3])
('Y :Ty.Py) = X, 5 0T
_CIGINCISA((: @2 Ty - Py) = 5,57,
{ ((hd: Po=Py) i tl) — H((Ax: To.hd Vo : To. Py =V : T1.Py) i tl,]))
(hd :: tl,1) — II((Ax: To.hd : Vo : To.Py =V : T1.Py) = 1)

=CIGI'TI((I"; = : To b Py) =2 3,57,
(hd :: tl,1) — II((Ax : To.hd : Vo : Ty.Po = Vo : T1.Py) = t1)))
= (2,2, (L)~ I((Ax : Tot' : Vo : TPy =Va : T1.Py) : L)

The last identity is justified by the inductive hypothesis on ¢'.

Thus X" = 3’ and we have to prove the “either” part of the thesis i.e.
VLU, II((Ax 2 Tot! : Vo : To.Po = Vo : T1.Py) = L) = I((Ax : Tat' @ Vo -
T5.Py =V : Ty.Py) :: [,1’), which is trivially true. O

The next theorem shows that all the requirements about re-generation of
declarative scripts of Section [2| are fulfilled: the declarative script re-generated
from a proof term is an improved version of the starting declarative script.
Moreover re-generation is idempotent. Improvement is captured by the relation
= (not formally described here due to space constraints). It consists in:

1) interpolating new statements corresponding to the explicitation of justifi-
cations previously found automatically or given by means of a proof term more
complex than an application. For instance

“by AH : A.H done” < “suppose A (H)” “by H done”

2) replacing statements with other statements that are more appropriate
with respect to the context and have the same semantics. For instance the for-
mal semantics of Table [4] shows that the thesis becomes P is equivalent to
we need to prove P. However the former is supposed to be used only to state
the thesis of a branch in a proof by induction or case analysis. The relation <
also captures the notion of “being less appropriate then”. For instance

“conclude F; = E; by ji” “by j, done”
= “conclude F = F5 by j1” “= F5 by j; done”

(1)

since, once a chain of inequation is started, the same style must be used until
the end of the chain.

Note that the relation < is not an order relation since it is reflexive only
on scripts that cannot be improved (i.e. only on scripts that have reached the
fixpoint).

Lemma 1 (Idempotence of improvement).
VS1, ...y Sn, ST, S, Sy S if Sy e S RS e S XSy - ST

then m =m' and Vi <m,S. =S/

Theorem 2 (Round-tripping from declarative scripts).
Sy, Sp, VXX, if C[S1 -+ Su]* (X, X, 1) = (X4, X, ') where Xy =
YoQX (Xs of length k) then 3\C' such that

either X' = X1 and VI, U 14,11, I (C[l1, 1] - 1,I") = II'(l;@l, 1} Q")

or X' =F X and VI,V 1y, 1y, I(Clly, 1) = L E = 1) = IV (1QL 1 Q)
anthl,...,tk,VEl,...7Eh

z'fg[[C[tl,...,tk7E1,...,Eh]]] :S{S{n then

S - S, g[[tl]] g[tk]] 551 S;n,

The second branch in the statement correspond to the case where one S; is
“obtain H F; = E5” and the equality chain is not terminated in Sy,...,S,. In
this case X’ will contain a placeholder whereas X was empty.

Proof. The proof is by induction on n and then by structural induction on S;.
We only show one simple, but significant case (since it shows an improvement
of the script).
Let n = 2,5, = “conclude E; = F, by j;”,52 = “by j» done”.
C[S1 So*(I'+ Ey = E3) = X, X 1)

= (C[S2] o C[S1])(I'+ Ey = E3) = X, X' 1)

= C[S2](C[S:1]((I' - By = B3) = X, X', IT))

=C[S:]J(I'- By = E3) = X, 5,

(hd :: tl,1) — II(((eq-transitive Ey Es E3 j1 hd) :: tl,1)))
= (X, %, (I,I") — II(((eq-transitive By Ey E3 j1 jo2) :: 1,1'))

Since X1 = X and X{ = X’ we have £k = 0 and C[] = (eq-transitive F;

Ey E3 j1 j2). Hence we need to prove: G[C[]] = Sy ... S), for some m and
S1 83 <x8] ... S/, Now
glen

= G[(eq-transitive E; Fy F3 j1 j2)]
= “conclude E| = E; byji” G[j2]z,
= “conclude E; = E; byj;” “= E3 by js done”

Hence the thesis by . a

6 Conclusions

In this paper we study the compilation of declarative scripts into proof terms,
and the opposite translation of proof terms into declarative scripts. The study
is done on the declarative language of the Matita interactive theorem prover
(which lacks an elaborated sub-language for justifications) and on proof terms
for a sub-calculus of the Calculus of (Co)Inductive Constructions used in Matita.
The actual implementation in Matita already considers a larger calculus that
comprises, for instance, fully general inductive types.

We observe that the translation from declarative scripts to declarative scripts
via proof terms respects the initial script structure and can even improve it by
fixing misuses of statements. Moreover this (double) translation is idempotent. It
is an open question whether the same results can be achieved for more complex
declarative languages whose statements could alter partial proof terms in a non
structural way. Our understanding is that this is the case at least for the proof
language presented in [4].

Exportation of formalised results between proof assistants having the same
proof terms but different high level proof languages is an immediate application

of our technique. Another obvious application is the translation of procedural
scripts into executable declarative scripts for their use in education. This way it
is possible to present to students or mathematicians, which only understand the
declarative language, proofs found in the procedural style.

The work must be completed by designing the (mostly orthogonal) language

for proof step justifications and by extending the translations proposed to cover
the full language. Whether we will be able to be as close to the mathematical
vernacular as Isar is, retaining automatic generation of declarative scripts with
the current properties, is another open question.

References

1.

10.

11.
12.

13.

Andrea Asperti, Iris Loeb, and Claudio Sacerdoti Coen. Stylesheets to intermediate
representation and presentational stylesheets. MoWGLI Report D2d,D2f, 2003.
Andrea Asperti, Claudio Sacerdoti Coen, Enrico Tassi, and Stefano Zacchiroli. User
interaction with the Matita proof assistant. Journal of Automated Reasoning, 2007.
Special Issue on User Interfaces for Theorem Proving. To appear.

Serge Autexier and Claudio Sacerdoti Coen. A formal correspondence between
omdoc with alternative proofs and the lambda-bar-mu-mu-tilde-calculus. In Pro-
ceedings of Mathematical Knowledge Management 2006, volume 4108 of Lectures
Notes in Artificial Intelligence, pages 67-81. Springer-Verlag, 2006.

Pierre Corbineau. A declarative proof language for the Coq proof assistant. Poster
at Bricks midterm Simposium.

Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In ICFP ’00:
Proceedings of the fifth ACM SIGPLAN international conference on Functional
programming, pages 233-243, New York, NY, USA, 2000. ACM Press.

John Harrison. A Mizar Mode for HOL. In J. von Wright, J. Grundy, and J. Har-
rison, editors, Theorem Proving in Higher Order Logics: 9th International Confer-
ence, TPHOLs’96, volume 1125 of LNCS, pages 203—-220. Springer-Verlag, 1996.
Florent Kirchner and Claudio Sacerdoti Coen. The Fellowship super-prover. http:
//www.lix.polytechnique.fr/Labo/Florent.Kirchner/fellowship/|

Claudio Sacerdoti Coen. Tactics in modern proof-assistants: the bad habit of
overkilling. In Supplementary Proceedings of the 14th International Conference
TPHOLS 2001, pages 352—-367, 2001.

Claudio Sacerdoti Coen. Explanation in natural language of lambda-bar-mu-mu-
tilde-terms. In Andrea Asperti, Bruno Buchberger, and James H. Davenport,
editors, Post-Proceedings of the Fourth International Conference on Mathematical
Knowledge Management, MKM 2005, volume 3863 of Lecture Notes in Computer
Science, pages 234—249. Springer-Verlag, 2006.

Claudio Sacerdoti Coen, Enrico Tassi, and Stefano Zacchiroli. Tinycals: step by
step tacticals. In Proceedings of User Interface for Theorem Provers 2006, volume
174 of Electronic Notes in Theoretical Computer Science, pages 125-142. Elsevier
Science, 2006.

The Coq Development Team. The Coq proof assistant reference manual, 2005.
Markus Wenzel. Isar - a generic interpretative approach to readable formal proof
documents. In Theorem Proving in Higher Order Logics, pages 167-184, 1999.
Markus Wenzel and Freek Wiedijk. A comparison of Mizar and Isar. J. Autom.
Reasoning, 29(3-4):389-411, 2002.

http://www.lix.polytechnique.fr/Labo/Florent.Kirchner/fellowship/
http://www.lix.polytechnique.fr/Labo/Florent.Kirchner/fellowship/

	Declarative Representation of Proof Terms
	Claudio Sacerdoti Coen

