Skip to main content
Log in

HOL-Boogie—An Interactive Prover-Backend for the Verifying C Compiler

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

Boogie is a verification condition generator for an imperative core language. It has front-ends for the programming languages C# and C enriched by annotations in first-order logic, i.e. pre- and postconditions, assertions, and loop invariants. Moreover, concepts like ghost fields, ghost variables, ghost code and specification functions have been introduced to support a specific modeling methodology. Boogie’s verification conditions—constructed via a wp calculus from annotated programs—are usually transferred to automated theorem provers such as Simplify or Z3. This also comprises the expansion of language-specific modeling constructs in terms of a theory describing memory and elementary operations on it; this theory is called a machine/memory model. In this paper, we present a proof environment, HOL-Boogie, that combines Boogie with the interactive theorem prover Isabelle/HOL, for a specific C front-end and a machine/memory model. In particular, we present specific techniques combining automated and interactive proof methods for code verification. The main goal of our environment is to help program verification engineers in their task to “debug” annotations and to find combined proofs where purely automatic proof attempts fail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alkassar, E., Hillebrand, M.A., Leinenbach, D.C., Schirmer, N.W., Starostin, A., Tsyban, A.: Balancing the load: leveraging semantics stack for systems verification. J. Autom. Reason. 42(2–4), 389–454 (2009)

    Article  MATH  Google Scholar 

  2. Barnes, J., Barnes, J.G.: High Integrity Software: The SPARK Approach to Safety and Security. Addison-Wesley Longman, Boston (2003)

    Google Scholar 

  3. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a modular reusable verifier for object-oriented programs. In: FMCO 2005. LNCS, vol. 4111, pp. 364–387, Springer (2006)

  4. Barnett, M., Fähndrich, M., Leino, K.R.M., Logozzo, F., Müller, P., Schulte, W., Venter, H., Xia, S.: Spec#. Microsoft Research, Redmond. http://research.microsoft.com/specsharp (2008)

  5. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In: PASTE ’05, pp. 82–87, ACM, New York (2005)

    Chapter  Google Scholar 

  6. Barnett, M., Leino, K.R.M., Moskal, M., Rümmer, P.: Boogie program verification. Microsoft Research, Redmond. http://research.microsoft.com/boogie/ (2008)

  7. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an overview. In: CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, New York (2005)

    Google Scholar 

  8. Basin, D., Kuruma, H., Miyazaki, K., Takaragi, K., Wolff, B.: Verifying a signature architecture: a comparative case study. Form. Asp. Comput. 19(1), 63–91 (2007)

    Article  MATH  Google Scholar 

  9. Beyer, S., Jacobi, C., Kröning, D., Leinenbach, D., Paul, W.J.: Putting it all together: formal verification of the VAMP. Int. J. Softw. Tools Technol. 8(4–5), 411–430 (2006)

    Article  Google Scholar 

  10. Blazy, S., Leroy, X.: Formal verification of a memory model for C-like imperative languages. In: Lau, K.-K., Banach, R. (eds.) ICFEM. Lecture Notes in Computer Science, vol. 3785, pp. 280–299, Springer, New York (2005)

    Google Scholar 

  11. Bobot, F., Conchon, S., Contejean, E., Lescuyer, S.: Implementing polymorphism in SMT solvers. In: Barrett, C., de Moura, L. (eds.) SMT 2008: 6th International Workshop on Satisfiability Modulo (2008)

  12. Böhme, S.: HOL-Boogie. http://www4.in.tum.de/~boehmes/hol-boogie.xhtml (2008)

  13. Böhme, S., Leino, K.R.M., Wolff, B.: HOL-Boogie—an interactive prover for the Boogie program-verifier. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs. Lecture Notes in Computer Science, vol. 5170, pp. 150–166. Springer, New York (2008)

    Google Scholar 

  14. Brucker, A.D., Wolff, B.: An extensible encoding of object-oriented data models in HOL with an application to IMP+ +. J. Autom. Reason. 41(3–4), 219–249 (2008)

    Article  MATH  Google Scholar 

  15. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T., Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In: Theorem Proving in Higher Order Logics (TPHOLs 2009). Lecture Notes in Computer Science, vol. 5674. Springer, Munich Germany (2009, to appear)

    Google Scholar 

  16. Cohen, E., Moskal, M., Schulte, W., Tobies, S.: A precise yet efficient memory model for C. In: 4th International Workshop on Systems Software Verification (SSV 2009). Electronic Notes in Theoretical Computer Science. Elsevier Science B.V. (2009, to appear)

  17. Corp., M.: Visual studio 2005 developer library. Online documentation. http://msdn.microsoft.com/en-us/library/ms235402(VS.80).aspx (2005)

  18. Crocker, D., Carlton, J.: Verification of C programs using automated reasoning. In: SEFM ’07: Proceedings of the Fifth IEEE International Conference on Software Engineering and Formal Methods, pp. 7–14. IEEE Computer Society, Los Alamitos (2007)

    Chapter  Google Scholar 

  19. Das, M.: Formal specifications on industrial-strength code—from myth to reality. In: Ball, T., Jones, R.B. (eds.) CAV. Lecture Notes in Computer Science, vol. 4144, p. 1. Springer, New York (2006)

    Google Scholar 

  20. Daum, M., Dörrenbächer, J., Wolff, B.: Proving fairness and implementation correctness of a microkernel scheduler. J. Autom. Reason. 42(2–4), 349–388 (2009)

    Article  MATH  Google Scholar 

  21. Dawson, J.E.: Isabelle theories for machine words. In: Seventh International Workshop on Automated Verification of Critical Systems (AVOCS’07). Elsevier, Amsterdam (2007)

    Google Scholar 

  22. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, New York (2008)

    Google Scholar 

  23. DeLine, R., Leino, K.R.M.: BoogiePL: a typed procedural language for checking object-oriented programs. Tech. Rep. 2005-70, Microsoft Research (2005)

  24. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program checking. J. ACM 52(3), 365–473 (2005)

    Article  MathSciNet  Google Scholar 

  25. Erkök, L., Matthews, J.: Using Yices as an automated solver in Isabelle/HOL. In: Automated Formal Methods’08, Princeton, New Jersey, USA, pp. 3–13. ACM, New York (2008)

    Google Scholar 

  26. Filliâtre, J.-C.: Why: a multi-language multi-prover verification condition generator. Tech. Rep. 1366, LRI, Université Paris Sud (2003)

  27. Filliâtre, J.-C., Marché, C.: Multi-prover verification of C programs. In: ICFEM 2004. LNCS, vol. 3308, pp. 15–29. Springer, New York (2004)

    Google Scholar 

  28. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive program verification. In: CAV 2007. LNCS, vol. 4590, pp. 173–177. Springer, New York (2007)

    Google Scholar 

  29. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended static checking for Java. In: PLDI 2002, pp. 234–245. ACM, New York (2002)

    Chapter  Google Scholar 

  30. Fontaine, P., Marion, J.-Y., Merz, S., Prensa Nieto, L., Tiu, A.: Expressiveness + automation + soundness: towards combining SMT solvers and interactive proof assistants. In: Hermanns, H., Palsberg, J. (eds.) 12th International Conference on Tools and Algorithms for the Construction and Analysis of Systems—TACAS’06, 03/2006. Lecture Notes in Computer Science, vol. 3920, pp. 167–181. Springer, New York (2006)

    Chapter  Google Scholar 

  31. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Tinelli, C.: DPLL(T): fast decision procedures. In: Proceedings of the 16th International Conference on Computer Aided Verification, CAV’04, pp. 175–188. Springer, New York (2004)

    Google Scholar 

  32. Heiser, G., Elphinstone, K., Kuz, I., Klein, G., Petters, S.M.: Towards trustworthy computing systems: taking microkernels to the next level. SIGOPS 41(4), 3–11 (2007)

    Article  Google Scholar 

  33. Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In: Archer, M., Vito, B.D., Muñoz, C. (eds.) Design and Application of Strategies/Tactics in Higher Order Logics (STRATA 2003), no. NASA/CP-2003-212448 in NASA Technical Reports, pp. 56–68 (2003)

  34. Jacobs, B., Smans, J., Piessens, F., Schulte, W.: A simple sequential reasoning approach for sound modular verification of mainstream multithreaded programs. Electr. Notes Theor. Comput. Sci. 174(9), 23–47 (2007)

    Article  Google Scholar 

  35. Leinenbach, D., Paul, W., Petrova, E.: Towards the formal verification of a C0 compiler: code generation and implementation correctness. In: SEFM 2005, pp. 2–12. IEEE, Piscataway (2005)

    Google Scholar 

  36. Leino, K.R.M., Millstein, T., Saxe, J.B.: Generating error traces from verification-condition counterexamples. Sci. Comput. Program. 55(1–3), 209–226 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Leino, K.R.M., Saxe, J.B., Stata, R.: Checking Java programs via guarded commands. In: FTfJP 1999, Tech. Rep. 251, Fernuniversität Hagen (1999)

  38. McLaughlin, S., Barrett, C., Ge, Y.: Cooperating theorem provers: a case study combining HOL-light and CVC lite. Electr. Notes Theor. Comput. Sci. 144(2), 43–51 (2006)

    Article  Google Scholar 

  39. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated resolution problems. In: ESCoR: Empirically Successful Computerized Reasoning, pp. 53–69 (2006)

  40. Morgan, C.: The specification statement. ACM TOPLAS 10(3), 403–419 (1988)

    Article  MATH  Google Scholar 

  41. Mürk, O., Larsson, D., Hähnle, R.: KeY-C: A Tool for Verification of C Programs. In: Pfenning, F. (ed.) CADE. Lecture Notes in Computer Science, vol. 4603, pp. 385–390. Springer, New York (2007)

    Google Scholar 

  42. Nelson, G.: A generalization of Dijkstra’s calculus. ACM TOPLAS 11(4), 517–561 (1989)

    Article  Google Scholar 

  43. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, New York (2002)

    MATH  Google Scholar 

  44. Norrish, M.: C formalised in HOL. Ph.D. thesis, Computer Laboratory, University of Cambridge (1998)

  45. Paul, W., Santen, T., Tobies, S.: Verifying 50000 Lines of Code. Futures—Microsoft’s European Innovation Magazine, pp. 42–43 (2008)

  46. Paul, W., von der Rhieden, T., Santen, T., Schulte, W.: The Verisoft XT Project. Universität des Saarlandes (2007)

  47. Ranise, S., Tinelli, C.: The SMT-LIB standard: version 1.2. Tech. rep., Dept. of Comp. Sci., The University of Iowa (2006)

  48. Schirmer, N.: Verification of sequential imperative programs in Isabelle/HOL. Ph.D. thesis, Technische Universität München (2006)

  49. Schulte, W., Xia, S., Smans, J., Piessens, F.: A glimpse of a verifying C compiler (extended abstract). In: C/C+ + Verification Workshop (2007)

  50. Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: Hofmann, M., Felleisen, M. (eds.) POPL, pp. 97–108. ACM, New York (2007)

    Chapter  Google Scholar 

  51. Wenzel, M., Wolff, B.: Building formal method tools in the Isabelle/Isar framework. In: TPHOLs 2007, LNCS, vol. 4732, pp. 351–366. Springer, New York (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Böhme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhme, S., Moskal, M., Schulte, W. et al. HOL-Boogie—An Interactive Prover-Backend for the Verifying C Compiler. J Autom Reasoning 44, 111 (2010). https://doi.org/10.1007/s10817-009-9142-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10817-009-9142-9

Keywords

Navigation