arXiv:0901.3619v1 [cs.PL] 23 Jan 2009

Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Mechanized semantics for the Clight subset of the C language

Sandrine Blazy - Xavier Leroy

the date of receipt and acceptance should be inserted later

Abstract This article presents the formal semantics of a large sulfséte C language
called Clight. Clightincludes pointer arithmetig,ruct andunion types, C loops and struc-
turedswitch statements. Clight is the source language of the CompCefiedecompiler.
The formal semantics of Clight is a big-step operational ains that observes both ter-
minating and diverging executions and produces tracespoitfoutput events. The formal
semantics of Clight is mechanized using the Coq proof as#idn addition to the semantics
of Clight, this article describes its integration in the Gu@ert verified compiler and several
ways by which the semantics was validated.

Keywords The C programming languag®perational semanticdviechanized semantics
Formal proof- The Coq proof assistant

1 Introduction

Formal semantics of programming languages—that is, thdenadtical specification of
legal programs and their behaviors—play an important nolseveral areas of computer
science. For advanced programmers and compiler writersgicsemantics provide a more
precise alternative to the informal English descriptidmst usually pass as language stan-
dards. In the context of formal methods such as static aisaly®del checking and program
proof, formal semantics are required to validate the absitngerpretations and program log-
ics (e.g. axiomatic semantics) used to analyze and reasan ptograms. The verification of
programming tools such as compilers, type-checkerscsiatilyzers and program verifiers
is another area where formal semantics for the languageb/ew is a prerequisite. While

This work was supported by Agence Nationale de la Rechegrhet number ANR-05-SSIA-0019.

S. Blazy
ENSIIE, 1 square de la Résistance, 91025 Evry cedex, France
E-mail: Sandrine.Blazy@ensiie.fr

X. Leroy
INRIA Paris-Rocquencourt, B.P. 105, 78153 Le Chesnay,d&an
E-mail: Xavier.Leroy@inria.fr

http://arxiv.org/abs/0901.3619v1

formal semantics for realistic languages can be defined parpssing ordinary mathemat-
ics [31[16, 7], machine assistance such as the use of preista#ts greatly facilitates their
definition and uses.

For high-level programming languages such as Java anddaattanguages, there ex-
ists a sizeable body of mechanized formalizations and gatifins of operational semantics,
axiomatic semantics, and programming tools such as compiled bytecode verifiers. De-
spite being more popular for writing systems software antedded software, lower-level
languages such as C have attracted less interest: sewenal femantics for various subsets
of C have been published, but only a few have been mechanized.

The present article reports on the definition of the formahaetics of a large subset
of the C language called Clight. Clight features most of tjpes and operators of C, in-
cluding pointer arithmetic, pointers to functions, astduct andunion types, as well as
all C control structures excegbto. The semantics of Clight is mechanized using the Coq
proof assistant [10]4]. It is presented as a big-step dpaadtsemantics that observes both
terminating and diverging executions and produces trac@pot/output events. The Clight
subset of C and its semantics are presented in seffions[2 aeghactively.

The work presented in this paper is part of an ongoing prajatted CompCert that
develops a realistic compiler for the C language and foynagdtifies that it preserves the
semantics of the programs being compiled. A previous p&jeeports on the development
and proof of semantic preservation in Coq of the front-enithisfcompiler: a translator from
Clight to Cminor, a low-level, imperative intermediate dmage. The formal verification of
the back-end of this compiler, which generates moderatetynized PowerPC assembly
code from Cminor is described ih [28]. Sectigh 4 describesititegration of the Clight
language and its semantics within the CompCert compileiitanarification.

Formal semantics for realistic programming languagesageland complicated. This
raises the question of validating these semantics: how eamake sure that they correctly
capture the expected behaviors? In sedtibn 5, we argueh@atarrectness proof of the
CompCert compiler provides an indirect but original way atidate the semantics of Clight,
and discuss other approaches to the validation problenwihabnsidered.

We finish this article by a discussion of related work in smtif, followed by future
work and conclusions in sectifh 7.

Availability The Coq development underlying this article can be condutie-line at
http://compcert.inria.fr.

Notations [x, y[denotes the semi-open interval of integfms Z | x < n < y}. For functions
returning “option” types| x| (read: “somex”) corresponds to success with return vakje
and 0 (read: “none”) corresponds to failure. In grammatgjenotes 0, 1 or several occur-
rences of syntactic categosyanda’® denotes an optional occurrence of syntactic category

2 Abstract syntax of Clight

Clight is structured into expressions, statements andifum In the Coq formalization, the
abstract syntax is presented as inductive data types fdnergchieving a deep embedding
of Clight into Cog.

http://compcert.inria.fr

Signedness: signedness= Signed | Unsigned
Integer sizes: intsize:=1I8|I16|132
Float sizes: floatsize:= F32 | F64
Types: T ::= int(intsize signedness

| float(floatsize

| void

| array(T,n)

| pointer(T)

| function(7,T)

| struct(id,)

| union(id, ¢)

| comp_pointer(id)

Field lists: ¢ = (id, 7)*

Fig. 1 Abstract syntax of Clight types.

2.1 Types

The abstract syntax of Clight types is given in figule 1. Sufgabtypes include arithmetic
types (integers and floats in various sizes and signedragssy,types, pointer types (includ-
ing pointers to functions), function types, as wellsasuct andunion types. Named types
are omitted: we assume thatpedef definitions have been expanded away during parsing
and type-checking.

The integral types fully specify the bit size of integers #odts, unlike the C typemnt,
long, etc, whose sizes are left largely unspecified in the C standgpically, the parser
mapsint andlong to SizeI32, float t0 SizeF32, anddouble to SizeF64. Currently, 64-bit
integers and extended-precision floats are not supported.

Array types carry the numberof elements of the array, as a compile-time constant. Ar-
rays with unknown sizeg (1 in C) are replaced by pointer types in function parametés.lis
Their only other use in C is withiextern declarations of arrays, which are not supported
in Clight.

Functions types specify the number and types of the funetignments and the type of
the function result. Variadic functions and unprototypeddtions (in the style of Ritchie’s
pre-standard C) are not supported.

In C, struct andunion types are named and compared by name. This enables the
definition of recursivestruct types such astruct s1 { int n; struct * sl next;}.
Recursion within such types must go through a pointer typeiristance, the following is
not allowed in Cistruct s2 { int n; struct s2 next;}. To obviate the need to carry
around a typing environment mappiggruct andunion names to their definitions, Clight
struct andunion types are structural: they carry a local identifiéand the listp of their
fields (names and types). Bit-fields are not supported. Ttygms are compared by struc-
ture, like all other Clight types. In structural type sysgemecursive types are traditionally
represented with a fixpoint operatpir.7, wherea names the typeta.t within 1. We
adapt this idea to Clight: within struct or union type, the typecomp_pointer(id) stands
for a pointer type to the nearest enclos#iguct or union type namedd. For example, the
structures1 defined previously in C is expressed by

struct(si, (n,int(I32,signed))(next, comp_pointer(sil)))

Expressions: a:=id variable identifier
[n integer constant
| f float constant
| sizeof(T) size of a type
|op, a unary arithmetic operation
| a1 op, a2 binary arithmetic operation
| *a pointer dereferencing
|aid field access
| &a taking the address of
[(1)a type cast
|lag 7@ : a3 conditional expressions

Unary operators: op; :=-|"|!
Binary operators: op, =+ |- |*|/|%

arithmetic operators
bitwise operators
relational operators

Fig. 2 Abstract syntax of Clight expressions

Incorrect structures such as above cannot be expressed at all, sie@gp_pointer let us
refer to a pointer to an enclosirggruct Or union, but not to thestruct orunion directly.

Clight does not support any of the type qualifiers ofdonist, volatile, restrict).
These qualifiers are simply erased during parsing.

The following operations over types are definetkeof () returns the storage size, in
bytes, of typer, andfield offset(id, ¢) returns the byte offset of the field namiedin a
struct whose field list is¢, or 0 if id does not appear itp. The Coq development gives
concrete definitions for these functions, compatible with PowerPC ABI[48, chap. 3].
Typically, struct fields are laid out consecutively and padding is inserte¢habeach field
is naturally aligned. Here are the only properties that gl@lproducer or user needs to rely
on:

— Sizes are positivesizeof (7) > 0 for all typesrt.
— Field offsets are within the range of allowed byte offsetstfeir enclosingstruct: if
field offset(id,¢) = |d| andt is the type associated wittl in ¢, then

[0,0 +sizeof (T)[C [0,sizeof (struct id’ ¢)[.

— Different fields correspond to disjoint byte rangestitld offset(id;,¢) = |] and
T; is the type associated wittl; in ¢ andidy # id», then

[01,01+ sizeof(T1)[N [0, O + sizeof (T2)[= 0.

— When astruct is a prefix of anothestruct, fields shared between the tweruct have
the same offsets: ffield offset(id,¢)=|J], thenfield offset(id,¢.¢’) = |J] for
all additional fieldsp’.

2.2 Expressions
The syntax of expressions is given in figlile 2. All expressiand their sub-expressions

are annotated by their static types. In the Coq formalipatexpressions are therefore
pairs (b, T) of a typet and a termb of an inductive datatype determining the kind and

Statements: s:=skip empty statement
|lag=a assignment
|ag =ax(a*) function call
|a(a*) procedure call
| s1;8 sequence

| if(a) s1 else sp conditional
| switch(a) sw multi-way branch

|while(a) s “while” loop

| do swhile(a) “do” loop

| for(si,a2,53)s “for” loop

| break exit from the current loop

| continue next iteration of the current loop

| return a’ return from current function
Switch cases: sw::=default : s default case

| casen: s;sw labeled case

Fig. 3 Abstract syntax of Clight statements.

arguments of the expression. In this paper, we omit the typpe@tations over expressions,
but writetype(a) for the type annotating the express@amThe types carried by expressions
are necessary to determine the semantics of type-depeagerdtors such as overloaded
arithmetic operators. The following expressions can ogtieft-value positionid, *a, and
a.id.

Within expressions, only side-effect free operators of € sapported, but not assign-
ment operators=(+=, ++, etc) nor function calls. In Clight, assignments and fumcttalls
are presented as statements and cannot occur within expresAs a consequence, all
Clight expressions always terminate and are pure: theluatian performs no side effects.
The first motivation for this design decision is to ensuresdatnism of evaluation. The
C standard leaves evaluation order within expressionsafigrtinspecified. If expressions
can contain side-effects, different evaluation orderslead to different results. As demon-
strated by Norrish [36], capturing exactly the amount ofdeterminism permitted by the
C standard complicates a formal semantics.

It is of course possible to commit on a particular evaluatoter in a formal seman-
tics for C. (Most C compiler choose a fixed evaluation ordggically right-to-left.) This is
the approach we followed in an earlier version of this work [Beterministic side-effects
within expressions can be accommodated relatively easily some styles of semantics
(such as the big-step operational semantics of [6]), butpticate or even prevent other
forms of semantics. In particular, it is much easier to defin®matic semantics such as
Hoare logic and separation logic if expressions are tertimgand pure: in this case, syn-
tactic expressions can safely be used as part of the logisaltons of the logic. Likewise,
abstract interpretations and other forms of static anslge much simplified if expressions
are pure. Most static analysis and program verificationstémi C actually start by pulling
assignments and function calls out of expressions, andtbalyperform analyses over pure
expressions [9,183,42/8[1,)17].

Variable declarations: dcl::= (Tid)* name and type

Internal function definitions: F = tid(dcly) {dclp; s} (dcl; = parametersdicl, = local variables)
External function declarations:Fe ::= extern T id(dcl)

Functions: Fd:=F|Fe internal or external

Programs: P :=dcl;Fd*;main =id global variables, functions, entry point

Fig. 4 Abstract syntax of Clight functions and programs.

Some forms of C expressions are omitted in the abstractxsymitacan be expressed as
syntactic sugar:

array access: a[ay]
indirect field access: a->id
sequential “and™ a1 && ap
sequential “or”; a |l a

*(a1 +ap)

*(aid)
a?7(a7?1:0):0
a7l: (a2?1:0)

2.3 Statements

Figure[3 defines the syntax of Clight statements. All stmgztucontrol statements of C
(conditional, loops, Java-stykesitch, break, continue andreturn) are supported, but
not unstructured statements suclgéaso and unstructuregwitch like the infamous “Duff's
device” [12]. As previously mentioned, assighment= a, of an r-valuea, to an |-valueay,
as well as function calls, are treated as statements. Fotifuncalls, the result can either
be assigned to an |-value or discarded.

Blocks are omitted because block-scoped variables areippbsted in Clight: variables
are declared either with global scope at the level of programwith function scope at the
beginning of functions.

The for loop is writtenfor(sy,ap,S3) S, Wheres; is executed once at the beginning of
the loop,a, is the loop conditionss is executed at the end of each iteration, aiglthe loop
body. In C,s; ands; are expressions, which are evaluated for their side effetSlight,
since expressions are pure, we use statements insteadeyeiowhe semantics requires that
these statements terminate normally, but not byte.eak.)

A switch statement consists in an expression and a list of cases.eAicasstatement
labeled by an integer constantage n) or by the keyworddefault. Contrary to C, the
default case is mandatory in a Clightitch statement and must occur last.

2.4 Functions and programs

A Clight program is composed of a list of declarations fortglbvariables (name and type),
a list of functions (see figuid 4) and an identifier naming thieyepoint of the program (the
main function in C). The Coq formalization supports a rudimeyfarm of initialization for
global variables, where an initializer is a sequence ofjat®r floating-point constants; we
omit this feature in this article.

Functions come in two flavors: internal or external. An intdrfunction, written
T id(dcl) {dcl; s}, is defined within the language. is the return typeid the name of

the function,dcl; its parameters (names and typekl, its local variables, and its body.
External functionssxtern 7 id(dcl) are merely declared, but not implemented. They are
intended to model “system calls”, whose result is providedhe operating system instead
of being computed by a piece of Clight code.

3 Formal semantics for Clight

We now formalize the dynamic semantics of Clight, using redtsemantics, also known as
big-step operational semantics. The natural semantieabdshe final result of program ex-
ecution (divergence or termination), as well as a traceirthocations of external functions
performed by the program. The latter represents the inpiptih behavior of the program.
Owing to the restriction that expressions are pure (se@idh the dynamic semantics is
deterministic.

The static semantics of Clight (that is, its typing rules$ hat been formally specified
yet. The dynamic semantics is defined without assuming llegptogram is well-typed, and
in particular without assuming that the type annotatiorer @xpressions are consistent. If
they are inconsistent, the dynamic semantics can be unddfimeprogram goes wrong), or
be defined but differ from what the C standard prescribes.

3.1 Evaluation judgements

The semantics is defined by the 10 judgements (predicasés)l below. They use semantic
guantities such as values, environments, etc, that are admed in figurd b and explained
later.

GEFaM<«/ (evaluation of expressions in |-value position)
GEFaM=v (evaluation of expressions in r-value position)
GEFa' M= v (evaluation of lists of expressions)

G,Et+ sM L out, M’ (execution of statements, terminating case)
GEFswM L out,M’ (execution of the cases ofsaitch, terminating case)
G Fd(v*),M _S v, M’ (evaluation of function invocations, terminating case)

G,Et+ sM Lo (execution of statements, diverging case)
GEFswM L (execution of the cases ofsaitch, diverging case)
G Fd(v*),M AP (evaluation of function invocations, diverging case)
FP=B (execution of whole programs)

Each judgement relates a syntactic element to the resukeafuéing this syntactic el-
ement. For an expression in I-value position, the result liscation ¢: a pair of a block
identifierb and a byte offsed within this block. For an expression in r-value position and
for a function application, the result is a valuethe discriminated union of 32-bit integers,
64-bit floating-point numbers, locations (representirghlue of pointers), and the special
valueundef representing the contents of uninitialized memory. Clidies not support as-
signment betweegtruct Or union, NOr passing atruct Or union by value to a function;
thereforestruct andunion values need not be represented.

Following Norrish [36] and Huisman and Jacobs|[21], the lteassociated with the
execution of a statemestis anoutcome outndicating how the execution terminated: ei-
ther normally by running to completion or prematurely viar@ak, continue O return
statement.

Block references: b €Z
Memory locations: L= (b,9d)
Values: Vi=int(n)

| float(f)

| ptr(f)

| undef

Statement outcomes:out::= Normal
| Continue
| Break

byte offsetd (a 32-bit integer) within bloclk
integer valuetf is a 32-bit integer)
floating-point value { is a 64-bit float)
pointer value

undefined value

continue with next statement

go to the next iteration of the current loop
exit from the current loop

| Return function exit

| Return(v) function exit, returning the value
Global environments: G ::= (id — b) map from global variables to block references
x (b+— Fd) and map from function references to function definitions

Local environments: E:=id+—b map from local variables to block references
Memory states: M ::=b~ (lo,hi,d — v) map from block references to bounds and contents

Memory quantities: K :i= int8signed | int8unsigned
| int16signed | int16unsigned
| int32 | float32 | float64

I/O values: vy =1int(n) | float(f)
1/0 events: vi=id(w* —w) name of external function, argument values, result value
Traces: ti=¢g|vit finite traces (inductive)

Ti=¢|v.T finite or infinite traces (coinductive)

Program behaviors: B::=terminates(t,n) termination with trace and exit coden
| diverges(T) divergence with trac@

Operations over memory states:

alloc(M,lo,hi) = (M’,b) Allocate a fresh block of bound, hi[.

free(M,b) = M’ Free (invalidate) the block.

load(k,M,b,n) = |v| Read one or several consecutive bytes (as determineq at/blockb,
offsetn in memory stateM. If successful return the contents of these
bytes as valus.

store(k,M,b,n,v) = [M’] Store the value into one or several consecutive bytes (as determined
by k) at offsetn in block b of memory stateM. If successful, return an
updated memory statd’.

Operations over global environments:
funct(G,b) = |b] Return the function definitiofrd corresponding to the block b, if any.
symbol(G,id) = |b| Return the blocl corresponding to the global variable or function nahe
globalenv(P)=G Construct the global environme@tassociated with the prograf
initmem(P)=M Construct the initial memory staid for executing the prograr.

Fig. 5 Semantic elements: values, environments, memory stasésnent outcomes, etc

Most judgements are parameterized by a global environGeatlocal environmeni,
and an initial memory statél. Local environments map function-scoped variables tarefe
ences of memory blocks containing the values of these \agalThis indirection through
memory is needed to allow theoperator to take the address of a variable.) These blocks
are allocated at function entry and freed at function re{sge rulé_3R in figure_10). Like-
wise, the global environmef@ associates block references to program-global variallegs a
functions. It also records the definitions of functions.

The memory model used in our semantics is detailed_in [29]mbty statesM are
modeled as a collection of blocks separated by construetimhidentified by integerb.
Each block has lower and upper boumdghi, fixed at allocation time, and associates values

Expressions in |-value position:

E(id) =bor (id ¢ Dom(E) andsymbol(G,id) = |b]) o G,E+a,M = ptr(()
G,EFid,M < (b,0) GEF*xaM</
G,ErFaM <« (b,d) type(a)=struct(id,¢) field offset(id,d)=[d]
G.Eraid,M«< (bd+d)
GEFaM<«/{ type(d)=union(id’,¢)
G,EFaid,M </

@)

®

4)

Expressions in r-value position:

G,EFn,M = int(n) (5) G,E+ f,M = float(f) (6)
G,EFaM<«< /¢ 1loadval(type(a),M, ()= |v
G,E+ sizeof(T),M = int(sizeof (7)) (7) (type(@)=V G
G EFaM=vVv
GEFaM«</ ©) G,EFa;,M=v; eval_unop(Op;,vi,type(ai)) = [V| (10)
G,E+&a,M = ptr({) G,EFop ag,M=v

GEFa,M=vi; GEFaM;=Vv, eval_binop(op,,Vvi,type(ai),v2,type(az))=|v| (11)

G,Eraiop, a,M=v

G,EFa,M=v; is_true(vi,type(a1)) GEFaM=w, (12)

GEtra?7ay:a3,M=Vv,

G,Era;,M=v; is_false(vi,type(a1)) G,EFagM=v3 13)

GEra;?7ay:a3,M=v3
GEFaM=v; cast(v,type(a),T)=V|
GEF(naM=v

(14)

Fig. 6 Natural semantics for Clight expressions

to byte offsets € [lo, hi[. The basic operations over memory statesaafc, free, load
andstore, as summarized in figufé 5.

Since Clight expressions are pure, the memory state is ndifie during expression
evaluation. It is modified, however, during the executiorstatements and function calls.
The corresponding judgements therefore return an updatadony stateM’. They also
produce a trace of the external functions (system calls) invoked duringceien. Each
such invocation is described by an input/output ewergécording the name of the external
function invoked, the arguments provided by the progrard,thae result value provided by
the operating system.

In addition to terminating behaviors, the semantics alsvatterizes divergence during
the execution of a statement or of a function call. The treatnof divergence follows the
coinductive natural approach of Leroy and Gralll[30]. Theuteof a diverging execution is
the traceT (possibly infinite) of input/output events performed.

In the Coq specification, the judgements of the dynamic séosaare encoded as mu-
tually inductive predicates (for terminating executioasjl mutually coinductive predicates
(for diverging executions). Each defining case of each pegdicorresponds exactly to an in-
ference rule in the conventional, on-paper presentatiorabfral semantics. We show most
of the inference rules in figurés$ 6[fcl12, and explain theménrémainder of this section.

10

Access modes: i ::=By_value(k) access by value
| By-reference access by reference
| By-nothing no access

Associating access modes to Clight types:

o/(int(I8,Signed)) = By.value(int8signed) of (array(-,-)) = By-reference
</ (int(I8,Unsigned)) = By_value(int8unsigned) ./(function(.,.)) = By_reference
o/ (int(I16,Signed)) = By_value(int16signed) o/ (struct)(.,-)) = By-nothing
o/(int(I16,Unsigned)) = By_value(intl6unsigned) o/ (union)(.,-)) = By-nothing
o/ (int(I32,.)) = By_value(int32) o/ (void) = By_nothing
o/ (pointer(.)) = By.value(int32)

Accessing or updating a value of typeat location(b,) in memory stateM:

loadval(T,M,(b,d)) = load(k,M,b,d) if o/(T) =By_value(k)

loadval(T,M,(b,d)) = [(b,d)] if o/ (T) =By.reference

loadval(T,M,(b,d)) =0 if «/(T) =By_nothing
storeval(T,M,(b,d),v) = store(k,M,b,d,v) if &/(T) = By_value(k)
storeval(T,M,(b,d),v) =0 otherwise

Fig. 7 Memory accesses.

3.2 Evaluation of expressions

Expressions in I-value positiofthe first four rules of figurkl6 illustrate the evaluation of an
expression in |-value position. A variabi@ evaluates to the locatiofb, 0), whereb is the
block associated withd in the local environmeni or the global environmer® (rule[d). If

an expressiom evaluates (as an r-value) to a pointer vapte(¢), then the location of the
dereferencing expressiea is ¢ (rule[2).

For field accessea. id, the location? = (b,) of a is computed. Ifa hasunion type,
this location is returned unchanged. (All fields afmdion share the same position.)dfhas
struct type, the offset of fieldd is computed using theield_offset function, then added
to d.

From memory locations to valueShe evaluation of an |-value expressiaim r-value posi-
tion depends on the type af(rule[8). If a has scalar type, its value is loaded from memory
at the location of. If a has array type, its value is equal to its location. Finallyne types
cannot be used in r-value position: this includead in C andstruct andunion types

in Clight (because of the restriction that structs and usicannot be passed by value). To
capture these three cases, fidure 7 defines the funefidhat maps Clight types taccess
modeswhich can be one of: “by value”, with a memory quanttyan access loads a quan-
tity k from the address of the I-value); “by reference” (an accesply returns the address
of the I-value); or “by nothing” (no access is allowed). Theadval andstoreval func-
tions, also defined in figufd 7, exploit address modes to imetd the correct semantics for
conversion of |-value to r-valua éadval) and assignment to an |-valugtpreval).

Expressions in r-value positioRules[® td_I¥ of figur€l6 illustrate the evaluation of an
expression in r-value position. RUlk 8 evaluates an |-vakg@ession in an r-value context.
The expression is evaluated to its locatibrFrom this location, a value is deduced using

11

G,E |- skip,M = Normal,M (15) G,E I break,M = Break,M (16)
G,E I continue,M = Continue,M (17) G,E - (return 0),M = Return,M (18)
GEFaM=v (19)

G,E - (return |a]),M = Return(V),M

GEra;,M<{¢ GEra,M=vVv storeval(type(ai),M,{,v)=|M| 20)

GEF (a1 = &),M = Normal,M’

G,EFs;,M 2L Normal,M; G,EF 5,M; 2 out M,

(21)
G,EF (s1;%),M "2 out My

t /
G,E+s,M =outM’ out# Normal 22)

G,E (s1;5),M = out M’

Fig. 8 Natural semantics for Clight statements (other than looplsaitch statements)

theloadval function described above. By rile &3 evaluates to the pointer valper(¢) as
soon as the |-valua evaluates to the locatioh

Ruled 10 and_11 describe the evaluation of unary and binasatipns. Taking binary
operations as an example, the two argument expressiongauated and their valueg, v»
are combined using the theal_binop function, which takes as additional arguments the
typest; and 1, of the arguments, in order to resolve overloaded and typesttent oper-
ators. To give the general flavor efal_binop, here are the cases corresponding to binary
addition:

T1 [p) V1 Vo eval_binop(+,V1, T1,V2, Tz)

int()) int(_) int(n;) int(np) [int(ng+ny)]

float(_) float(_) float(f1) float(fy) |float(f1+ f2)]

ptr('l') int(_) ptr(b7 5) int(n) |_ptr(b,5+n X sizeof(T))J

int(_) ptr('l') int(n) ptr(b, 5) |_ptr(b,5+n X sizeof(T))J
otherwise ()]

The definition above rejects mixed arithmetic such as-ifibat” because the parser that
generates Clight abstract syntax (described in sefidnn&der produces this: it inserts
explicit casts from integers to floats in this case. Howelerould be easy to add cases
dealing with mixed arithmetic. Likewise, the definition &koadds two single precision
floats using double-precision addition, in violation of %0 C standard. Again, it would
be easy to recognize this case and perform a single-pradsidition.

Rules[12 and 13 define the evaluation of conditional expressi; ? a; : ag. The
predicatesis_true andis_false determine the truth value of the value @f, depending
on its type. At afloat type,float(0.0) is false and any otherloat value is true. At arint
or ptr type,int(0) is false andint(n) (n # 0) andptr(¢) values are true. (The null pointer
is represented amt(0).) All other combinations of values and types are neithee tar
false, causing the semantics to go wrong.

Rule[1I4 evaluates a cast expressfoha. The expressiom is evaluated, and its value
is converted from its natural typgrpe(a) to the expected type using the partial function
cast. This function performs appropriate conversions, truiecatand sign-extensions be-
tween integers and floats. We take a lax interpretation a§éagolving pointer types: if the

12

Outcome updates (at the end of a loop execution):
loop loop loop
Break ~ Normal Return ~ Return Return(V) ~ Return(V)
while loops:

GEFaM=v is_true(v,type(a))
GEFaM=v is_false(v,type(a))

(23) GEFsM=SoutM out’Pout (24)
G,Et (while(a) s),M = Normal,M t
G,E + (while(a) s),M = out,M’
GEFaM=v is_true(vtype(a))
G,E+sM LY (Normal | Continue),M; G,E I (while(a)s),M; L out', My 25)
G,E (while(a) s),M L2 gy, My
for loops:
sy #skip G,EFs,M t:]> Normal,M; G,Et (for(skip,ap,s3) S),Mi1 % out, My 26)

G,E I (for(s,az,53)),M "2 out My
G,EFa;M=v is_true(v,type(az))

GEFaM=v isfalse(vtype(a)) (27) GEFsMZout.M out Pout

(28)

G,E I (for(skip,a,s3) S),M £ Normal,M t
G,E |- (for(skip,ap,S3) S),M = out,M;

G,Era;,M=v is_true(v,type(az))
G,EFsM 4 (Normal | Continue),M; G,Et s3,M; 2 Normal, M,
G,E |- (for(skip,ap,S3) S),M2 3 out, M3

(29)
G,E |- (for(skip,az,s3)),M s out, M3

Fig. 9 Natural semantics for Clight loops

source and destination types are both either pointer typ82-bit int types, any pointer
or integer value can be converted between these types withaunge of representation.
However, thecast function fails when converting between pointer types enght or small
integer types, for example.

3.3 Statements and function invocations, terminating case

The rules in figur€18 define the execution of a statement thatither a loop nor awitch
statement. The execution ofRrip statement yields theormal outcome and the empty trace
(rule[IB). Similarly, the execution of reak (resp.continue) statement yields thBreak
(resp.Continue) outcome and the empty trace (ruled 16 17). Rulés 18-4&ide
the execution of aeturn statement. The execution ofr@turn statement evaluates the
argument of theeturn, if any, and yields &eturn outcome and the empty trace.

Rule[20 executes an assignment statement. An assignmtmhetda; = ap evaluates
the |-valuea; to a location/ and the r-valuea, to a valuev, then stores at ¢ using the
storeval function of figure ¥, producing the final memory staté. We assume that the
types ofay anday are identical, therefore no implicit cast is performed dgrassignment,
unlike in C. (The Clight parser described in secfiod 4. 1itssan explicit cast on the r-value

13

Function calls:

G,EtFafyn,M = ptr(b,0) G,EF aargs,M = Vargs

funct(G,b) = [Fd] type_of_fundef(Fd) = type(asun) G Fd(Vargs),M iy Vres, M’ (30)

G,E F asyn(aargs), M :t> Vres, M’
GEFaM<«(GEFamM=ptr(b0) G,EF augsM = Vags
funct(G,b) = |[Fd| type_of fundef (Fd) = type(asun) G+ Fd(Vargs),M = Vies, M1
storeval(type(a),M1,ptr({),Vies) = |[M2| (31)

t
G,EF a= asun(aargs),M = Vres, M2

Compatibility between values, outcomes and return types:
Normal,void #undef Return, void #undef Return(v), T#vwhenTt # void
Function invocations:

F = tid(dcl){dcly; s}
alloc_vars(M,dcly +dch, E) = (M1,b*) bind_params(E,Mg,dcly,Vargs) = M2

G,E+sMy & outM3z out, T#Vres (32)

GF F(Vargs),M = Vies, free (Ma, b*)

Fe=extern Tid(dcl) v =id(Vargs,Vres) (33)

G Fe(Vargs), M = Vies, M

Fig. 10 Natural semantics for function calls

a; when necessary.) Note thattoreval fails if a; has astruct orunion type: assignments
between composite data types are not supported in Clight.

The execution of a sequence of two statements starts witlexbeution of the first
statement, thus yielding an outcome that determines wh#thesecond statement must be
executed or not (rulds 21 afd]22). The resulting trace is dineatenation of both traces
originating from both statement executions.

The rules in figur€19 define the executionwafile andfor loops. (The rules describing
the execution oflowhile loops resemble the rules fehile loops and are omitted in this
paper.) Once the condition ofiaile loop is evaluated to a valuegif vis false, the execution
of the loop terminates normally, with an empty trace (rif@®8d2Y). lfv is true, the loop
bodysis executed, thus yielding an outcomet (ruled24[2H, 28 arid 29). ¢futis Normal or
Continue, the whole loop is re-executed in the memory state modifietth®yirst execution
of the body. Ins, the execution of &ontinue Statement interrupts the current execution
of the loop body and triggers the next iterationsofif out is Break, the loop terminates
normally; if outis Return, the loop terminates prematurely with the same outcome<{2d

and28). The2% relation models this evolution of outcomes after the premeaend of the
execution of a loop body.

Rules[26E29 describe the execution of & (s;,ap,S3) s loop. Rule[26 executes the
initial statements; of a for loop, which must terminate normally. Then, the loop with an
empty initial statement is executed in a way similar to tHat ehile loop (ruled2VE29). If
the bodys terminates normally or by performingcntinue, the statemerds is executed
before re-executing theor loop. As in the case o, it must be the case thaj terminates
normally.

14

GEFs, M=o G,EF si,M = Normal,M; G,EF Sp,M; = o
—— " T (34 (35)

GEFsiMa o GEFsuoME e

GEFaM=vV istrue(vtype(a) GEFSM=o @)

G,EF (while(a) s),M = o
G, EFaM=vVv is_true(v,type(a))
G,EFsM L (Normal | Continue),M; G,Et (while(a)s),Mg LA

(37)
G,EF (while(a)s),M L o
G,EFafyn,M = ptr(b,0) G,EF aargs,M = Vargs

funct(G,b) = |[Fd] type_of_fundef(Fd)=type(asun) G+ Fd(Vargs),M Lo (38)

T
G,E I asun(@args),M = o
F = tid(dcl){dcly; s}

alloc_vars(M,dcly +dch, E) = (M1,b*) bind_params(E,My,dcli,Vargs) = M2

T
G,EF s My =
S, Mz = o (39)

G F(Vargs),M Lo

Fig. 11 Natural semantics for divergence (selected rules)

We omit the rules foswitch(a) swstatements, which are standard. Based on the integer
value of a, the appropriate case sfvis selected, and the corresponding suffixsef is
executed like a sequence, therefore implementing the-thadlugh” behavior ofswitch
cases. ABreak outcome for one of the cases terminatessiitecch normally.

The rules of figure[10 define the execution of a call staten@nh(dargs) OF
a = afun(@args). The expressiorasy, is evaluated to a function pointgitr(b,0), and
the reference is resolved to the corresponding function definitied using the global
environmen(G. This function definition is then invoked on the values of éingumentSags
as per the judgmer®s F Fd(Vargs),M tres t,M’. If needed, the returned valugss is then
stored in the location of the I-value(rules30 and31).

The invocation of an internal Clight functida (rule[32) allocates the memory required
for storing the formal parameters and the local variables,afsing thealloc_vars func-
tion. This function allocates one block for each variatlet, with lower bound 0 and upper
boundsizeof(T), using thealloc primitive of the memory model. These blocks initially
containundef values. Then, theind_params function iterates thetoreval function in
order to initialize formal parameters to the values of theesponding arguments.

The body off is then executed, thus yielding an outcome (fourth premiBeg return
value of F is computed from this outcome and from the return typé& dfifth premise):
for a function returningroid, the body must terminate l§ormal or Return and the return
value isundef; for other functions, the body must terminate Iaturn(v) and the return
value isv. Finally, the memory blocké* that were allocated for the parameters and local
variables are freed before returning to the caller.

A call to an external functiofire simply generates an input/output event recorded in the
trace resulting from that call (rule B3).

15

G =globalenv(P) M = initmem(P)

symbol(G,main(P)) = |b| funct(G,b)=|f| GF f(nil),M = int(n),M’ (40)

F P= terminates(t,n)
G=globalenv(P) M = initmen(P)
symbol(G,main(P)) = |b] funct(G,b)=[f| GF f(nil),M LA
P = diverges(T)

(41)

Fig. 12 Observable behaviors of programs

3.4 Statements and function invocations, diverging case

Figure[11 shows some of the rules that model divergence trsemts and function invo-
cations. As denoted by the double horizontal bars, thess rafle to be interpretexbin-
ductively as greatest fixpoints, instead of the standard inductiegpretation (smallest fix-
points) used for the other rules in this paper. In other wgrds like terminating executions
correspond to finite derivation trees, diverging execugtioarrespond to infinite derivation
trees[[30].

A sequences;; s, diverges either i diverges, or ifs; terminates normally ansb di-
verges (rule 34 add B5). Likewise, a loop diverges eithigs ody diverges, or if it termi-
nates normally or byontinue and the next iteration of the loop diverges (rilek 36[and 37).
A third case of divergence corresponds to an invocation ahatfon whose body diverges

(rules38 an@ 39).

3.5 Program executions

Figure[I2 defines the execution of a progrévand the determination of its observable
behavior. A global environment and a memory state are coedpfatr P, where each global
variable is mapped to a fresh memory block. Then, the maiotiim of P is resolved and
applied to the empty list of arguments. If this function iogtion terminates with tradeand
result valueint (n), the observed behavior Bfis terminates(t, n) (rule[4Q). If the function
invocation diverges with a possibly infinite trate the observed behavior & verges(T)
(rule[43).

4 Using Clight in the CompCert compiler

In this section, we informally discuss how Clight is usedria CompCert verified compiler
[27]6[28].

4.1 Producing Clight abstract syntax

Going from C concrete syntax to Clight abstract syntax isasaibvious as it may sound. Af-
ter an unsuccessful attempt at developing a parser, typekehand simplifier from scratch,
we elected to reuse the CIL library of Necuwta al. [33]. CIL is written in OCaml and
provides the following facilities:

16

1. A parser for ISO C99 (plus GCC and Microsoft extensionsjgdpcing a parse tree that
is still partially ambiguous.

. Atype-checker and elaborator, producing a precise;&yp®tated abstract syntax tree.

3. A simplifier that replaces many delicate constructs of Gibypler constructs. For in-
stance, function calls and assignments are pulled out afsegns and lifted to the
statement level. Also, block-scoped variables are liftefdthction scope or global scope.

4. A toolkit for static analyses and transformations perfed over the simplified abstract
syntax tree.

N

While conceptually distinct, (2) and (3) are actually perfed in a single pass, avoiding the
creation of the non-simplified abstract syntax tree.

Thomas Moniot and the authors developed (in OCaml) a simatestator that produces
Clight abstract syntax from the output of CIL. Much inforioat produced by CIL is simply
erased, such as type attributes and qualifietsuct andunion types are converted from
the original named representation to the structural retesion used by Clight. String
literals are turned into global, initialized arrays of cheters. Finally, constructs of C that
are unsupported in Clight are detected and meaningful det@s are produced.

The simplification pass of CIL sometimes goes too far for cegds. In particular, the
original CIL transforms all C loops intehile(1) { ... } loops, sometimes inserting
goto statements to implement the semanticz@ftinue. Such CIL-inserte¢oto State-
ments are problematic in Clight. We therefore patched Cltetnove this simplification of
C loops and natively suppothile, do andfor loops

CIL is an impressive but rather complex piece of code, andé ot been formally
verified. One can legitimately wonder whether we can trukt&id our hand-written trans-
lator to preserve the semantics of C programs. Indeed, tyge buthis part of CompCert
were found during testing: one that we introduced when agdative support fofor loops;
another that is present in the unmodified CIL version 1.316was corrected since then.

We see two ways to address this concern. First, we developeetty-printer that dis-
plays Clight abstract syntax tree in readable, C concratt@agy This printer makes it possi-
ble to conduct manual reviews of the transformations peréat by CIL. Moreover, exper-
iment shows that re-parsing and re-transforming the sfiegliC syntax printed from the
Clight abstract syntax tree reaches a fixed point in onetiteranost of the time. This does
not prove anything but nonetheless instills some confidenttee approach.

A more radical way to establish trust in the CIL-based Cligtaducer would be to
formally verify some of the simplifications performed. A meé candidate is the simplifi-
cation of expressions, which transforms C expressionsdgtgvalent pairs of a statement
(performing all side effects of the expression) and a pumression (computing the final
value). Based on initial experiments on a simple “while"daage, the Coq verification of
this simplification appears difficult but feasible. We le#vis line of work for future work.

4.2 Compiling Clight

The CompCert C compiler is structured in two parts: a framd-eompiler translates Clight
to an intermediate language called Cminor, without perfoghany optimizations; a back-
end compiler generates PowerPC assembly code from the €inteamediate representa-
tion, performing good register allocation and a few optatians. Both parts are composed
of multiple passes. Each pass is proved to preserve semaifitice input progranP has
observable behavids, and the pass translatBgo P’ without reporting a compile-time er-
ror, then the output progra® has the same observable behaBomhe proofs of semantic

17

preservation are conducted with the Coq proof assistariiCliitate the proof, the compiler
passes are written directly in the specification languageogf, as pure, recursive functions.
Executable Caml code for the compiler is then generatedvattoally from the functional
specifications by Coq’s extraction facility.

The back-end part of CompCert is described in great detd28h We now give an
overview of the front-end, starting with a high-level oview of Cminor, its target interme-
diate language. (Refer to [28, section 4] for detailed djmtions of Cminor.)

Cminor is a low-level imperative language, structured {Iifight into expressions, state-
ments, and functions. A first difference with Clight is thattanetic operators are not over-
loaded and their behavior is independent of the static tgpé®eir operands: distinct oper-
ators are provided for integer arithmetic and floating-panithmetic. Conversions between
integers and floats are explicit. Likewise, address contjpuis are explicit in Cminor, as
well as individual load and store operations. For instatieeC expressioa[x] wherea is
a pointer toint is expressed akad(int32, a + x * 4), making explicit the memory
guantity being addressefin{32) as well as the address computation.

At the level of statements, Cminor has only 5 control strreguif-then-else condition-
als, infinite loopsplock-exit, early return, angoto with labeled statements. Th&it n
statement terminates tie+ 1) enclosingolock Statements.

Within Cminor functions, local variables can only hold sgalalues (integers, pointers,
floats) and they do not reside in memory. This makes it easyldoage them to registers
later in the back-end, but also prohibits taking a pointea tocal variable like the C op-
eratorg does. Instead, each Cminor function declares the size aick-stlocated block,
allocated in memory at function entry and automaticalleéret function return. The ex-
pressioraddrstack(n) returns a pointer within that block at constant offseThe Cminor
producer can use this block to store local arrays as well eal kcalar variables whose
addresses need to be taken.

To translate from Clight to Cminor, the front-end of CompGetherefore performs the
following transformations:

1. Resolution of operator overloading and materializatiball type-dependent behaviors.
Based on the types that annotate Clight expressions, themjgte flavors (integer or
float) of arithmetic operators are chosen; conversionséatvints and floats, truncations
and sign-extensions are introduced to reflect casts; asldmeBputations are generated
based on the types of array elements and pointer targetapgmdpriate memory chunks
are selected for every memory access.

2. Translation ofihile, do andfor loops into infinite loops with blocks and early exits.
Thebreak andcontinue Statements are translated as appropsata constructs.

3. Placement of Clight variables, either as Cminor localdes (for local scalar variables
whose address is never taken), sub-areas of the Cminortdtadkfor the current func-
tion (for local non-scalar variables or local scalar vaeahwvhose address is taken), or
globally allocated memory areas (for global variables).

In the first version of the front-end, developed by Zaynahgage and the authors and
published in[[6], the three transformations above weregoered in a single pass, resulting
in a large and rather complex proof of semantic preservafionmake the proofs more
manageable, we split the front-end in two passes: the firdbmes transformations (1)

and (2) above, and the second performs transformation (3w intermediate language
called C#minor was introduced to connect the two passes.ir@#ris similar to Cminor,

except that it supports & operator to take the address of a local variable. Accorging|

18

the semantics of C#minor, like that of Clight, allocates omemory block for each local
variable at function entrance, while the semantics of Cmatiocates only one block.

To account for this difference in allocation patterns, theop of semantic preservation
for transformation (3) exploits the techniquensémory injectionformalized in[29, section
5.4]. It also involves nontrivial reasoning about separatbetween memory blocks and
between sub-areas of a block. The proof requires about 2289 df Coq, plus 800 lines for
the formalization of memory injections.

The proof of transformations (1) and (2) is more routinecsithe memory states match
exactly between the original Clight and the generated Cémimo clever reasoning over
memory states, blocks and pointers is required. The Cod peomins relatively large (2300
lines), but mostly because many cases need to be consideseelcially when resolving
overloaded operators.

5 Validating the Clight semantics

Developing a formal semantics for a real-world programnianmgguage is no small task; but
making sure that the semantics captures the intended loebafiprograms (as described,
for example, by ISO standards) is even more difficult. Thellestamistake or omission in
the rules of the semantics can render it incomplete or dghihihcorrect. Below, we list
a number of approaches that we considered to validate a f@enaantics such as that of
Clight. Many of these approaches were prototyped but noiechio completion, and should
be considered as work in progress.

5.1 Manual reviews

The standard way to build confidence in a formal specificasoto have it reviewed by
domain experts. The size of the semantics for Clight makissaghproach tedious but not
downright impossible: about 800 lines of Coq for the coreaetias, plus 1000 lines of Coq
for dependencies such as the formalizations of machingensge floating-point numbers,
and the memory model. The fact that the semantics is writtes formal language such
as Coq instead of ordinary mathematics is a mixed blessingth® one hand, the type-
checking performed by Cog guarantees the absence of types emd undefined predicates
in the specification, while such trivial errors are commohamd-written semantics. On the
other hand, domain experts might not be familiar with therfarlanguage used and could
prefer more conventional presentations as e.g. inferarnes.(\We have not yet found any C
language expert who is comfortable with Coq, while sevefriem are fluent with inference
rules.) Manual transliteration of Coq specifications iffigX inference rules (as we did in
this paper) is always possible but can introduce or (worssknerrors. Better approaches
include automatic generation éfiExX from formal specifications, like Isabelle/HOL and Ott
do [35[43].

5.2 Proving properties of the semantics
The primary use of formal semantics is to prove propertiggragrams and meta-properties

of the semantics. Such proofs, especially when conductedamhine, are effective at re-
vealing errors in the semantics. For example, in the casgaigy-typed languages, type

19

soundness proofs (showing that well-typed programs do aatrgng) are often used for
this purpose. In the case of Clight, a type soundness prawftigsery informative, since the
type system of C is coarse and unsound to begin with: the keesbwld hope for is a subject
reduction property, but the progress property does not. ha@ds ambitious sanity checks
include “common sense” properties such as those of thed_offset function mentioned
at end of section 211, as well as determinism of evaluatidmighwve obtained as a corollary
of the verification of the CompCert compilér |28, sections&ad 13.3].

5.3 Verified translations

Extending the previous approach to proving propertieshiing two formal semantics in-
stead of one, we found that proving semantics preservation franslation from one lan-
guage to another is effective at exposing errors not onhhénttanslation algorithm, but
also in the semantics of the two languages involved. If thestiation “looks right” to com-
piler experts and the semantics of the target language hesdsl been debugged, such a
proof of semantic preservation therefore generates cordidie the semantics of the source
language. In the case of CompCert, the semantics of the Crmtesmediate language is
smaller (300 lines) and much simpler than that of Clightsaduent intermediate languages
in the back-end such as RTL are even simpler, culminatindvénsemantics of the PPC
assembly language, which is a large but conceptually trivéasition function [[28]. The
existence of semantic-preserving translations betwessettanguages therefore constitutes
an indirect validation of their semantics.

Semantic preservation proofs and type soundness proadstagfferent kinds of errors
in semantics. For a trivial example, assume that the Cligittamtics erroneously interprets
the + operator at typeint as integer subtraction. This error would not invalidate gn h
pothetical type soundness proof, but would show up immelyiah the proof of semantic
preservation for the CompCert front-end, assuming of @tiiat we did not commit the
same error in the translations nor in the semantics of Cmidarthe other hand, a type
soundness proof can reveal that an evaluation rule is ngig#is shows up as failures of
the progress property). A semantic preservation proof @antut a missing rule in the
semantics of the target language but not in the semantidseo$durce language, since it
takes as hypothesis that the source program does not go wrong

5.4 Testing executable semantics

Just like programs, formal specifications can be testechap#ést suites that exemplifies
expected behaviors. An impressive example of this apprisatie HOL specification of the
TCP/IP protocol by Sewett al.[5], which was extensively validated against network teace
generated by actual implementations of the protocol.

In the case of formal semantics, testing requires that theetcs isexecutablethere
must exist an effective way to determine the result of a gpr@gram in a given initial envi-
ronment. The Coq proof assistant does not provide efficiaysvto execute a specification
written using inductive predicates such as our semantic€light. (But seel[11] for ongo-
ing work in this direction.) As discussed inl [3], tkauto tactic of Coq, which performs
Prolog-style resolution, can sometimes be used as the paoisriwogic interpreter to exe-
cute inductive predicates. However, the Clight semangi¢sad large and not syntax-directed
enough to render this approach effective.

20

On the other hand, Coq provides excellent facilities forceieg specifications written
as recursive functions: an interpreter is built in the Cqaptghecker to perform conversion
tests; Cog 8.0 introduced a bytecode compiler to a virtuathime, speeding up the eval-
uation of Coq terms by one order of magnitudel [15]; finallg #xtraction facility of Coq
can also be used to generate executable Caml code. The recmtadhapproach to execute
a Coq specification by inductive predicates, thereforepidefine a reference interpreter
as a Coq function, prove its equivalence with the inductjectfication, and evaluate ap-
plications of the function. Since Coq demands that all reigarfunctions terminate, these
interpretation functions are often parameterized by a egative integer counter bound-
ing the depth of the evaluation. Taking the execution of ltlgfjatements as an example, the
corresponding interpretation function is of the shape

exec_stmt(W,Nn,G,E,M,s) = Bottom(t) | Result(t,out M) | Error

wheren is the maximal recursion deptkg, E,M are the initial state, and the statement
to execute. The result of execution is eitlEegor, meaning that execution goes wrong, or
Result(t,out M’), meaning that execution terminates with traceutcomeout and final
memory stateM’, or Bottom(t), meaning that the maximal recursion depth was exceeded
after producing the partial trateTo handle the non-determinism introduced by input/output
operationsexec_stmt iS parameterized overworld W: a partial function that determines
the result of an input/output operation as a function of fguenents and the input/output
operation previously performed [28, section 13.1].

The following two properties characterize the correctrefsthe exec_stmt function
with respect to the inductive specification of the semantics

G,EFsM=outM AW =t < 3n, exec_stmt(W,n,G,E,M,s) = Result(t,out, M)

GEFSM=0 AWET < ¥n,3t, exec_stnt(W,n,G,E,M,s) = Botton(t)
At is a prefix of T

Here W |=t means that the tradés consistent with the worl@/, in the sense of[28, section
13.1]. Seel[30] for detailed proofs of these properties éndimpler case of call-by-value-
calculus without traces. The proof of the second propertuires classical reasoning with
the axiom of excluded middle.

We are currently implementing the approach outlined abalikepugh it is not finished
at the time of this writing. Given the availability of the Cp@ert verified compiler, one
may wonder what is gained by using a reference Clight ingeprto run tests, instead of
just compiling them with CompCert and executing the gemrer&owerPC assembly code.
We believe that nothing is gained for test programs with sdefined semantics. However,
the reference interpreter enables us to check that prognatinsindefined semantics do go
wrong, while the CompCert compiler can (and often does) tiwem into correct PowerPC
code.

5.5 Equivalence with alternate semantics

Yet another way to validate a formal semantics is to writeesghalternate semantics for the
same language, using different styles of semantics, anagpogical implications between
them. In the case of the Cminor intermediate language ardttdt help of Andrew Appel,
we developed three semantics: (1) a big-step operationarstics in the style of the Clight
semantics described in the present paper [27]; (2) a srigd|-sontinuation-based semantics

21

[228]; (3) an axiomatic semantics based on separation [@i Semantics (1) and (3) were
proved correct against semantics (2). Likewise, for Clagid with the help of Keiko Nakata,
we prototyped (but did not complete yet) three alternatesseics to the big-step operational
semantics presented in this paper: (1) a small-step, e@iton-based semantics; (2) the
reference interpreter outlined above; (3) an axiomaticasdits.

Proving the correctness of a semantics with respect to anwtlan effective way to find
mistakes in both. For instance, the correctness of an atiosemantics against a big-step
operational semantics without traces can be stated asvilib {P}s{Q} is a valid Hoare
triple, then for all initial state$s, E, M satisfying the preconditioR, either the statemerst
diverges G, E - s,M = o) or it terminatesG, E - s;M = out,M’) and the outcomeut and
the final state5, E, M’ satisfy postconditioi®. The proof of this property exercises all cases
of the big-step operational semantics and is effective itipg out mistakes and omissions
in the latter. Extending this approach to traces raisesalelissues that we have not solved
yet. First, the axiomatic semantics must be extended witysvilar the postcondition§
to assert properties of the traces generated by the exeaftithe statemerd. A possible
source of inspiration is the recent work by Hoare and O’H¢20}). Second, in the case of
a loop such agP} while(a) s {Q}, we must not only show that the loop either terminates
or diverges without going wrong, as in the earlier proof, &igb prove the existence of the
corresponding traces of events. In the diverging caseruhsinto technical problems with
Coq’s guardedness restrictions on coinductive definitaorgproofs.

In the examples given above, the various semantics wertewiity the same team and
share some elements, such as the memory model and the sen@dr@ilight expressions.
Mistakes in the shared parts will obviously not show up dyrihe equivalence proofs.
Relating two independently-written semantics would pileva more convincing validation.
In our case, an obvious candidate for comparison with Cligthe Cholera semantics of
Norrish [36]. There are notable differences between ouraseics and Cholera, discussed
in section[®, but we believe that our semantics is a refineroktite Cholera model. A
practical issue with formalizing this intuition is that Qbm is formalized in HOL while our
semantics is formalized in Coqg.

6 Related work

Mechanized semantics for Che work closest to ours is Norrish’s Cholera projectl [36],
which formalizes the static and dynamic semantics of a largeset of C using the HOL
proof assistant. Unlike Clight, Cholera supports sidect&avithin expressions and accounts
for the partially specified evaluation order of C. For thisgmse, the semantics of expres-
sions is given in small-step style as a non-deterministitticgon relation, while the se-
mantics of statements is given in big-step style. Norrigkdubis semantics to characterize
precisely the amount of non-determinism allowed by the @daed [37]. Also, the memory
model underlying Cholera is more abstract than that of Gliglaving unspecified a number
of behaviors that Clight specifies.

Tewset al[46//47] developed a denotational semantics for a subsbedbt+ language.
The semantics is presented as a shallow embedding in the RW8rpExpressions and
statements are modeled as state transformers: functimmsifitial states to final states plus
value (for expressions) or outcome (for statements). Theetwof G+ handled is close to
our Clight, with a few differences: side effects within egpsions are allowed (and treated
using a fixed evaluation order); the behavior of arithmefierations in case of overflow is

22

not specified; thgoto statement is not handled, but the state transformer appiczadd be
extended to do s [45].

Using the Coq proof assistant, Giménez and Ledinot [14hdedi denotational seman-
tics for a subset of C appropriate as target language forahwitation of the Lustre syn-
chronous dataflow language. Owing to the particular shapeaustre programs, the subset
of C does not contain general loops nor recursive functibos,only countedtor loops.
Pointer arithmetic is not supported.

As part of the Verisoft project [40], the semantics of a stile$eC called CO has been
formalized using Isabelle/HOL, as well as the correctnésscompiler from CO to DLX as-
sembly language [26,44,41]. CO is a type-safe subset ofo8ec¢b Pascal, and significantly
smaller than Clight: for instance, there is no pointer anigtic, norbreak and continue
statements. A big-step semantics and a small-step sem#atie been defined for CO, the
latter enabling reasoning about non-terminating exenatio

Paper and pencil semantics for @apaspyrou [39] develops a monadic denotational seman-
tics for most of ISO C. Non-determinism in expression evidueis modeled precisely. The
semantics was validated by testing with the help of a refarémterpreter written in Haskell.
Nepomniaschet al. [34] define a big-step semantics for a subset of C similar sz&la
it supports limited uses @foto statements, but not pointer arithmetic.
Abstract state machines have been used to give semanti€ [f8] and for Gt [[7].
The latter formalization is arguably the most complete éimts of the number of language
features handled) formal semantics for an imperative laggu

Other examples of mechanized semanfesof assistants were used to mechanize seman-
tics for languages that are higher-level than C. Repregeatxamples include [23, 25] for
Standard ML,[[38] for a subset of OCaml, andl[24] for a sub$diwa. Other Java-related
mechanized verifications are surveyed(in|[18]. Many of ttesmantics were validated by
conducting type soundness proofs.

Subsets of CMany uses of C in embedded or critical applications mandaiet soding
guidelines restricting programmers to a “safer” subset {t49}. A well-known example is
MISRA C [32]. MISRA C and Clight share some restrictions (s@s structuredwitch
statements witldefault cases at the end), but otherwise differ significantly. Fetance,
MISRA C prohibits recursive functions, but permits all uségoto. More generally, the
restrictions of MISRA C and related guidelines are driversbftware engineering consid-
erations and the desire for tool-assisted checking, whéeestrictions of Clight stem from
the desire to keep its formal semantics manageable.

Several tools for static analysis and deductive verificatibC programs use simplified
subsets of C as intermediate representations. We alreadysgied the CIL intermediate
representatior_[33]. Other examples include the Framat€rirediate representatianl [8],
which extends CIL's with logical assertions, and the Nevaspepresentation [22]. CIL is
richer than Clight and accurately represents all of ISO G plame extensions. Newspeak is
lower-level than Clight and targeted more towards statadyesis than towards compilation.

7 Conclusions and future work

In this article, we have formally defined the Clight subsethaf C programming language
and its dynamic semantics. While there is no general agneeomethe formal semantics of

23

the C language, we believe that Clight is a reasonable pabpiueat works well in the context
of the formal verification of a compiler. We hope that, in théufe, Clight might be useful
in other contexts such as static analyzers and program gravel their formal verification.

Several extensions of Clight can be considered. One dirgctiscussed ir [29], is to
relax the memory model so as to model byte- and bit-level ssEeto in-memory data
representations, as is commonly done in systems progragnmin

Another direction is to add support for some of the C conssraarrently missing, in
particular thegoto statement. The main issue here is to formalize the dynamiastcs of
goto in away that lends itself well to proofs. Natural semantiasdil on statement outcomes
can be extended with support fgsto by following the approach proposed by Tews|[45],
but at the cost of nearly doubling the size of the semantigpp8rt forgoto statements is
much easier to add to transition semantics based on cotitingaas the Cminor semantics
exemplifies|[28, section 4]. However, such transition seroado not lend themselves easily
to proving transformations of loops such as those perforbyetthe front-end of CompCert
(transformation 2 in sectidn 4.2).

Finally, the restriction that Clight expressions are pwéadth a blessing and a curse:
on the one hand, it greatly simplifies all further processihgClight, be it compilation,
static analysis or program verification; on the other hamdg@mmers cannot be expected
to directly write programs where all expressions are pweguiring nontrivial, untrusted
program transformations in the Clight parser. One way taesidthis issue would be to
define an extension of Clight, tentatively called Cmediumat supports side effects within
expressions, and develop and prove correct a translatiom @medium to Clight.

References

1. Aiken, A., Bugrara, S., Dillig, I., Dillig, T., Hackett, BHawkins, P.: An overview of the Saturn project.
In: PASTE '07: Proceedings of the 7th ACM SIGPLAN-SIGSOFTrkshop on Program analysis for
software tools and engineering, pp. 43-48. ACM Press (2007)

2. Appel, A.W., Blazy, S.: Separation logic for small-stemi@or. In: Theorem Proving in Higher Order
Logics, 20th Int. Conf. TPHOLSs 200Zecture Notes in Computer Sciengel. 4732, pp. 5-21. Springer
(2007)

3. Appel, AW, Leroy, X.: A list-machine benchmark for meciized metatheory (extended abstract). In:
Proc. Int. Workshop on Logical Frameworks and Meta-Langsaf-FMTP’06), Electronic Notes in
Computer Sciengevol. 174/5, pp. 95-108 (2007)

4. Bertot, Y., Castéran, P.: Interactive Theorem ProvimfjRrogram Development — Coq’Art: The Calculus
of Inductive Constructions. EATCS Texts in Theoretical Quiter Science. Springer (2004)

5. Bishop, S., Fairbairn, M., Norrish, M., Sewell, P., Smith, Wansbrough, K.: Engineering with logic:
HOL specification and symbolic-evaluation testing for T@liementations. In: 33rd Symposium on
Principles of Programming Languages, pp. 55-66. ACM Pi2386)

6. Blazy, S., Dargaye, Z., Leroy, X.: Formal verification o€aompiler front-end. In: FM 2006: 14th Int.
Symp. on Formal Methodg,ecture Notes in Computer Scienwel. 4085, pp. 460—475. Springer (2006)

7. Borger, E., Fruja, N., Gervasi, V., Stark, R.F.: A higlrel modular definition of the semantics of C#.
Theoretical Computer Scien836(2-3), 235-284 (2005)

8. CEA LIST: FRAMA-C: Framework for modular analysis of C. fSeare and documentation available
on the Web (2008). URhttp://frama-c.cea.fr/

9. Condit, J., Harren, M., McPeak, S., Necula, G.C., WeiMér,CCured in the real world. In: PLDI '03:
Proceedings of the ACM SIGPLAN 2003 conference on Progrargr@nguage design and implemen-
tation, pp. 232-244. ACM Press (2003)

10. Cog development team: The Coq proof assistant. Softaadedocumentation available on the Web
(1989-2008). URIhttp://coq.inria.fr/

11. Delahaye, D., Dubois, CEtienne, J.F.: Extracting purely functional contents frimgical inductive
types. In: Theorem Proving in Higher Order Logics, 20th in&tional Conference, TPHOLs 2007,
Lecture Notes in Computer Scieneel. 4732, pp. 70-85. Springer (2007)

http://frama-c.cea.fr/
http://coq.inria.fr/

24

12.
13.
14.
15.
16.
17.
18.
19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.
30.
31.
32.
. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: Qitermediate language and tools for analysis
34.

35.
36.

37.

38.

Duff, T.: On Duff's device (1988). URhttp://www.lysator.liu.se/c/duffs-device.htmll
Message to the comp.lang.c Usenet group

Filliatre, J.C., Marche, C.: Multi-prover verificati of C programs. In: 6th Int. Conference on Formal
Engineering Methods, ICFEM 2004ecture Notes in Computer Scieneel. 3308, pp. 15-29 (2004)
Gimenez, E., Ledinot, E.: Semantics of a subset of the @gulage (2004). URL
http://coq.inria.fr/contribs/minic.html| Coq contributed library

Grégoire, B., Leroy, X.: A compiled implementation ¢fasig reduction. In: International Conference
on Functional Programming (ICFP 2002), pp. 235-246. ACMs&(2002)

Gurevich, Y., Huggins, J.: The semantics of the C prognarg language. In: Computer Science Logic,
6th Workshop, CSL '92l_ecture Notes in Computer Scieneel. 702, pp. 274-308. Springer (1993)
Hardekopf, B., Lin, C.: The ant and the grasshopper:gadtaccurate pointer analysis for millions of
lines of code. SIGPLAN Notice42(6), 290-299 (2007)

Hartel, P.H., Moreau, L.: Formalizing the safety of Jaka Java virtual machine, and Java card. ACM
Computing Survey83(4), 517-558 (2001)

Hatton, L.: Safer language subsets: an overview andeatistory, MISRA C. Information & Software
Technology46(7), 465-472 (2004)

Hoare, T., O’Hearn, P.W.: Separation logic semanticedonmunicating processes. In: Proceedings of
the First International Conference on Foundations of imfatics, Computing and Software (FICS 2008),
Electronic Notes in Computer Sciene®|. 212, pp. 3-25 (2008)

Huisman, M., Jacobs, B.: Java program verification viaarkl logic with abrupt termination. In: Fun-
damental Approaches to Software Engineering, 3rd Int. CBASE 2000Lecture Notes in Computer
Sciencevol. 1783, pp. 284-303. Springer (2000)

Hymans, C., Levillain, O.: Newspeak, doubleplussimplailang for goodthinkful static analysis of C.
Technical note 2008-IW-SE-00010-1, EADS (2008)

van Inwegen, M., Gunter, E.L.: HOL-ML. In: Higher Ordesdic Theorem Proving and its Applications,
6th International Workshop, HUG '98gcture Notes in Computer Scienwel. 780, pp. 61-74. Springer
(1993)

Klein, G., Nipkow, T.: Amachine-checked model for a Jike language, virtual machine, and compiler.
ACM Trans. Program. Lang. Sys28(4), 619-695 (2006)

Lee, D.K., Crary, K., Harper, R.: Towards a mechanizetatheory of Standard ML. In: 34th Sympo-
sium on Principles of Programming Languages, pp. 173-18M Rress (2007)

Leinenbach, D., Paul, W., Petrova, E.: Towards the fomerdication of a CO compiler: Code generation
and implementation correctness. In: IEEE Conference otw@cé Engineering and Formal Methods
(SEFM’05), pp. 2-11. IEEE Computer Society Press (2005)

Leroy, X.: Formal certification of a compiler back-end, programming a compiler with a proof as-
sistant. In: 33rd ACM symposium on Principles of Prograngnliranguages, pp. 42-54. ACM Press
(2006)

Leroy, X.: A formally verified compiler backend (2008). RU
http://gallium.inria.fr/~xleroy/publi/compcert-backend.pdf! Submitted for pub-
lication

Leroy, X., Blazy, S.: Formal verification of a C-like memanodel and its uses for verifying program
transformations. Journal on Automated Reasodif{d), 1-31 (2008)

Leroy, X., Grall, H.: Coinductive big-step operatiosaimantics. Information and Computation (2007).
URL http://dx.doi.org/10.1016/j.ic.2007.12.004, To appear

Milner, R., Tofte, M., Harper, R., MacQueen, D.: The défin of Standard ML (revised). The MIT
Press (1997)

Motor Industry Software Reliability Association: MIBRC. http://www.misra-c.com/|(2004)

and transformation of C programs. In: Compiler Construrtiblth International Conference, CC 2002,
Lecture Notes in Computer Scieneel. 2304, pp. 213-228. Springer (2002)

Nepomniaschy, V.A., Anureey, |.S., Promsky, A.V.: Tossverification of C programs: Axiomatic se-
mantics of the C-kernel language. Programming and Com@dfware296), 338—-350 (2003)

Nipkow, T., Paulson, L.C.: Isabelle/Hol: A Proof Asaist for Higher-Order Logic. Springer (2004)
Norrish, M.: C formalised in HOL. Ph.D. thesis, Univéysof Cambridge (1998). Technical report
UCAM-CL-TR-453

Norrish, M.: Deterministic expressions in C. In: Pragnaing Languages and Systems, 8th European
Symposium on Programming, ESOP’3%cture Notes in Computer Sciene®l. 1576, pp. 147-161.
Springer (1999)

Owens, S.: A sound semantics for OCamllight. In: Prognamg Languages and Systems, 17th European
Symposium on Programming, ESOP 200Q@cture Notes in Computer Sciena®l. 4960, pp. 1-15.
Springer (2008)

http://www.lysator.liu.se/c/duffs-device.html
http://coq.inria.fr/contribs/minic.html
http://gallium.inria.fr/~xleroy/publi/compcert-backend.pdf
http://dx.doi.org/10.1016/j.ic.2007.12.004
http://www.misra-c.com/

25

39.

40.
41.

42.

43.

44.

45.

46.

47.

48.

Papaspyrou, N.: A formal semantics for the C programrtanguage. Ph.D. thesis, National Technical
University of Athens (1998)

Paul, W., et al.: The Verisoft project (2003—2008). URitp://www.verisoft.de/

Schirmer, N.: Verification of sequential imperative gnams in Isabelle/HOL. Ph.D. thesis, Technische
Universitat Miinchen (2006)

Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit legtengine for C. In: ESEC/FSE-13: Proceed-
ings of the 10th European software engineering conferqme263—272. ACM Press (2005)

Sewell, P., Zappa Nardelli, F., Owens, S., Peskine, @geR T., Sarkar, S., Strnisa, R.: Ott: effective tool
support for the working semanticist. In: Proceedings oflif#h International Conference on Functional
Programming, pp. 1-12. ACM Press (2007)

Strecker, M.: Compiler verification for C0O. Tech. repnikérsité Paul Sabatier, Toulouse (2005)

Tews, H.: Verifying Duff's device: A simple compositi@ndenotational semantics for goto and computed
jumps (2004). URlhttp://www.cs.ru.nl/~tews/Goto/goto.pdf | Draft paper

Tews, H., Weber, T., Volp, M.: A formal model of memorycpearities for the verification of low-level
operating-system code. In: Proceedings of the Internaltidforkshop on Systems Software Verification
(SSV'08),Electronic Notes in Computer Sciene®l. 217, pp. 79-96 (2008)

Tews, H., Weber, T., Volp, M., Pall, E., van Eekelen, Man Rossum, P.: Nova micro-hypervisor
verification. Robin project deliverable D13, Radboud Ursieit Nijmegen (2008). URL
http://robin.tudos.org/D.13%20Formal%20Verification.pdf

Zucker, S., Karhi, K.: System V application binary iféee, PowerPC processor supplement. Tech. Rep.
802-3334-10, SunSoft (1995)

http://www.verisoft.de/
http://www.cs.ru.nl/~tews/Goto/goto.pdf
http://robin.tudos.org/D.13%20Formal%20Verification.pdf

	Introduction
	Abstract syntax of Clight
	Formal semantics for Clight
	Using Clight in the CompCert compiler
	Validating the Clight semantics
	Related work
	Conclusions and future work

