
ar
X

iv
:0

90
1.

36
19

v1
 [

cs
.P

L]
 2

3
Ja

n
20

09

Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Mechanized semantics for the Clight subset of the C language

Sandrine Blazy · Xavier Leroy

the date of receipt and acceptance should be inserted later

Abstract This article presents the formal semantics of a large subsetof the C language
called Clight. Clight includes pointer arithmetic,struct andunion types, C loops and struc-
turedswitch statements. Clight is the source language of the CompCert verified compiler.
The formal semantics of Clight is a big-step operational semantics that observes both ter-
minating and diverging executions and produces traces of input/output events. The formal
semantics of Clight is mechanized using the Coq proof assistant. In addition to the semantics
of Clight, this article describes its integration in the CompCert verified compiler and several
ways by which the semantics was validated.

Keywords The C programming language· Operational semantics· Mechanized semantics·
Formal proof· The Coq proof assistant

1 Introduction

Formal semantics of programming languages—that is, the mathematical specification of
legal programs and their behaviors—play an important role in several areas of computer
science. For advanced programmers and compiler writers, formal semantics provide a more
precise alternative to the informal English descriptions that usually pass as language stan-
dards. In the context of formal methods such as static analysis, model checking and program
proof, formal semantics are required to validate the abstract interpretations and program log-
ics (e.g. axiomatic semantics) used to analyze and reason about programs. The verification of
programming tools such as compilers, type-checkers, static analyzers and program verifiers
is another area where formal semantics for the languages involved is a prerequisite. While

This work was supported by Agence Nationale de la Recherche,grant number ANR-05-SSIA-0019.

S. Blazy
ENSIIE, 1 square de la Résistance, 91025 Evry cedex, France
E-mail: Sandrine.Blazy@ensiie.fr

X. Leroy
INRIA Paris-Rocquencourt, B.P. 105, 78153 Le Chesnay, France
E-mail: Xavier.Leroy@inria.fr

http://arxiv.org/abs/0901.3619v1

2

formal semantics for realistic languages can be defined on paper using ordinary mathemat-
ics [31,16,7], machine assistance such as the use of proof assistants greatly facilitates their
definition and uses.

For high-level programming languages such as Java and functional languages, there ex-
ists a sizeable body of mechanized formalizations and verifications of operational semantics,
axiomatic semantics, and programming tools such as compilers and bytecode verifiers. De-
spite being more popular for writing systems software and embedded software, lower-level
languages such as C have attracted less interest: several formal semantics for various subsets
of C have been published, but only a few have been mechanized.

The present article reports on the definition of the formal semantics of a large subset
of the C language called Clight. Clight features most of the types and operators of C, in-
cluding pointer arithmetic, pointers to functions, andstruct andunion types, as well as
all C control structures exceptgoto. The semantics of Clight is mechanized using the Coq
proof assistant [10,4]. It is presented as a big-step operational semantics that observes both
terminating and diverging executions and produces traces of input/output events. The Clight
subset of C and its semantics are presented in sections 2 and 3, respectively.

The work presented in this paper is part of an ongoing projectcalled CompCert that
develops a realistic compiler for the C language and formally verifies that it preserves the
semantics of the programs being compiled. A previous paper [6] reports on the development
and proof of semantic preservation in Coq of the front-end ofthis compiler: a translator from
Clight to Cminor, a low-level, imperative intermediate language. The formal verification of
the back-end of this compiler, which generates moderately optimized PowerPC assembly
code from Cminor is described in [28]. Section 4 describes the integration of the Clight
language and its semantics within the CompCert compiler andits verification.

Formal semantics for realistic programming languages are large and complicated. This
raises the question of validating these semantics: how can we make sure that they correctly
capture the expected behaviors? In section 5, we argue that the correctness proof of the
CompCert compiler provides an indirect but original way to validate the semantics of Clight,
and discuss other approaches to the validation problem thatwe considered.

We finish this article by a discussion of related work in section 6, followed by future
work and conclusions in section 7.

Availability The Coq development underlying this article can be consulted on-line at
http://compcert.inria.fr.

Notations [x,y[denotes the semi-open interval of integers{n∈Z | x≤ n< y}. For functions
returning “option” types,⌊x⌋ (read: “somex”) corresponds to success with return valuex,
and /0 (read: “none”) corresponds to failure. In grammars,a∗ denotes 0, 1 or several occur-
rences of syntactic categorya, anda? denotes an optional occurrence of syntactic categorya.

2 Abstract syntax of Clight

Clight is structured into expressions, statements and functions. In the Coq formalization, the
abstract syntax is presented as inductive data types, therefore achieving a deep embedding
of Clight into Coq.

http://compcert.inria.fr

3

Signedness: signedness::= Signed | Unsigned

Integer sizes: intsize::= I8 | I16 | I32

Float sizes: floatsize::= F32 | F64

Types: τ ::= int(intsize,signedness)
| float(floatsize)
| void
| array(τ ,n)
| pointer(τ)
| function(τ∗,τ)
| struct(id,ϕ)
| union(id,ϕ)
| comp pointer(id)

Field lists: ϕ ::= (id,τ)∗

Fig. 1 Abstract syntax of Clight types.

2.1 Types

The abstract syntax of Clight types is given in figure 1. Supported types include arithmetic
types (integers and floats in various sizes and signedness),array types, pointer types (includ-
ing pointers to functions), function types, as well asstruct andunion types. Named types
are omitted: we assume thattypedef definitions have been expanded away during parsing
and type-checking.

The integral types fully specify the bit size of integers andfloats, unlike the C typesint,
long, etc, whose sizes are left largely unspecified in the C standard. Typically, the parser
mapsint andlong to sizeI32, float to sizeF32, anddouble to sizeF64. Currently, 64-bit
integers and extended-precision floats are not supported.

Array types carry the numbern of elements of the array, as a compile-time constant. Ar-
rays with unknown sizes (τ[] in C) are replaced by pointer types in function parameter lists.
Their only other use in C is withinextern declarations of arrays, which are not supported
in Clight.

Functions types specify the number and types of the functionarguments and the type of
the function result. Variadic functions and unprototyped functions (in the style of Ritchie’s
pre-standard C) are not supported.

In C, struct and union types are named and compared by name. This enables the
definition of recursivestruct types such asstruct s1 { int n; struct * s1 next;}.
Recursion within such types must go through a pointer type. For instance, the following is
not allowed in C:struct s2 { int n; struct s2 next;}. To obviate the need to carry
around a typing environment mappingstruct andunion names to their definitions, Clight
struct andunion types are structural: they carry a local identifierid and the listϕ of their
fields (names and types). Bit-fields are not supported. Thesetypes are compared by struc-
ture, like all other Clight types. In structural type systems, recursive types are traditionally
represented with a fixpoint operatorµα .τ , whereα names the typeµα .τ within τ . We
adapt this idea to Clight: within astruct or union type, the typecomp pointer(id) stands
for a pointer type to the nearest enclosingstruct or union type namedid. For example, the
structures1 defined previously in C is expressed by

struct(s1,(n,int(I32,signed))(next,comp pointer(s1)))

4

Expressions: a ::= id variable identifier
| n integer constant
| f float constant
| sizeof(τ) size of a type
| op1 a unary arithmetic operation
| a1 op2 a2 binary arithmetic operation
| *a pointer dereferencing
| a. id field access
| &a taking the address of
| (τ)a type cast
| a1 ? a2 : a3 conditional expressions

Unary operators: op1 ::= - | ~ | !

Binary operators: op2 ::= + | - | * | / | % arithmetic operators
| << | >> | & | | | ^ bitwise operators
| < | <= | > | >= | == | != relational operators

Fig. 2 Abstract syntax of Clight expressions

Incorrect structures such ass2 above cannot be expressed at all, sincecomp_pointer let us
refer to a pointer to an enclosingstruct or union, but not to thestruct or union directly.

Clight does not support any of the type qualifiers of C (const, volatile, restrict).
These qualifiers are simply erased during parsing.

The following operations over types are defined:sizeof(τ) returns the storage size, in
bytes, of typeτ , andfield offset(id,ϕ) returns the byte offset of the field namedid in a
struct whose field list isϕ , or /0 if id does not appear inϕ . The Coq development gives
concrete definitions for these functions, compatible with the PowerPC ABI [48, chap. 3].
Typically, struct fields are laid out consecutively and padding is inserted so that each field
is naturally aligned. Here are the only properties that a Clight producer or user needs to rely
on:

– Sizes are positive:sizeof(τ)> 0 for all typesτ .
– Field offsets are within the range of allowed byte offsets for their enclosingstruct: if
field offset(id,ϕ) = ⌊δ⌋ andτ is the type associated withid in ϕ , then

[δ ,δ +sizeof(τ)[⊆ [0,sizeof(struct id′ ϕ)[.

– Different fields correspond to disjoint byte ranges: iffield offset(idi ,ϕ) = ⌊δi⌋ and
τi is the type associated withidi in ϕ andid1 6= id2, then

[δ1,δ1+sizeof(τ1)[∩ [δ2,δ2+sizeof(τ2)[= /0.

– When astruct is a prefix of anotherstruct, fields shared between the twostruct have
the same offsets: iffield offset(id,ϕ)= ⌊δ⌋, thenfield offset(id,ϕ .ϕ ′) = ⌊δ⌋ for
all additional fieldsϕ ′.

2.2 Expressions

The syntax of expressions is given in figure 2. All expressions and their sub-expressions
are annotated by their static types. In the Coq formalization, expressionsa are therefore
pairs (b,τ) of a typeτ and a termb of an inductive datatype determining the kind and

5

Statements: s ::= skip empty statement
| a1 = a2 assignment
| a1 = a2(a∗) function call
| a(a∗) procedure call
| s1;s2 sequence
| if(a) s1 else s2 conditional
| switch(a) sw multi-way branch
| while(a) s “while” loop
| do swhile(a) “do” loop
| for(s1,a2,s3) s “for” loop
| break exit from the current loop
| continue next iteration of the current loop
| return a? return from current function

Switch cases: sw::= default : s default case
| case n : s;sw labeled case

Fig. 3 Abstract syntax of Clight statements.

arguments of the expression. In this paper, we omit the type annotations over expressions,
but writetype(a) for the type annotating the expressiona. The types carried by expressions
are necessary to determine the semantics of type-dependentoperators such as overloaded
arithmetic operators. The following expressions can occurin left-value position:id, *a, and
a. id.

Within expressions, only side-effect free operators of C are supported, but not assign-
ment operators (=, +=, ++, etc) nor function calls. In Clight, assignments and function calls
are presented as statements and cannot occur within expressions. As a consequence, all
Clight expressions always terminate and are pure: their evaluation performs no side effects.
The first motivation for this design decision is to ensure determinism of evaluation. The
C standard leaves evaluation order within expressions partially unspecified. If expressions
can contain side-effects, different evaluation orders canlead to different results. As demon-
strated by Norrish [36], capturing exactly the amount of nondeterminism permitted by the
C standard complicates a formal semantics.

It is of course possible to commit on a particular evaluationorder in a formal seman-
tics for C. (Most C compiler choose a fixed evaluation order, typically right-to-left.) This is
the approach we followed in an earlier version of this work [6]. Deterministic side-effects
within expressions can be accommodated relatively easily with some styles of semantics
(such as the big-step operational semantics of [6]), but complicate or even prevent other
forms of semantics. In particular, it is much easier to defineaxiomatic semantics such as
Hoare logic and separation logic if expressions are terminating and pure: in this case, syn-
tactic expressions can safely be used as part of the logical assertions of the logic. Likewise,
abstract interpretations and other forms of static analysis are much simplified if expressions
are pure. Most static analysis and program verification tools for C actually start by pulling
assignments and function calls out of expressions, and onlythen perform analyses over pure
expressions [9,13,42,8,1,17].

6

Variable declarations: dcl ::= (τ id)∗ name and type

Internal function definitions: F ::= τ id(dcl1){dcl2; s} (dcl1 = parameters,dcl2 = local variables)

External function declarations:Fe ::= extern τ id(dcl)

Functions: Fd ::= F | Fe internal or external

Programs: P ::= dcl;Fd∗;main = id global variables, functions, entry point

Fig. 4 Abstract syntax of Clight functions and programs.

Some forms of C expressions are omitted in the abstract syntax but can be expressed as
syntactic sugar:

array access: a1[a2] ≡ *(a1+a2)
indirect field access: a->id ≡ *(a.id)
sequential “and”: a1 && a2 ≡ a1 ? (a2 ? 1 : 0) : 0
sequential “or”: a1 || a2 ≡ a1 ? 1 : (a2 ? 1 : 0)

2.3 Statements

Figure 3 defines the syntax of Clight statements. All structured control statements of C
(conditional, loops, Java-styleswitch, break, continue and return) are supported, but
not unstructured statements such asgoto and unstructuredswitch like the infamous “Duff’s
device” [12]. As previously mentioned, assignmenta1 = a2 of an r-valuea2 to an l-valuea1,
as well as function calls, are treated as statements. For function calls, the result can either
be assigned to an l-value or discarded.

Blocks are omitted because block-scoped variables are not supported in Clight: variables
are declared either with global scope at the level of programs, or with function scope at the
beginning of functions.

Thefor loop is writtenfor(s1,a2,s3) s, wheres1 is executed once at the beginning of
the loop,a2 is the loop condition,s3 is executed at the end of each iteration, ands is the loop
body. In C,s1 ands3 are expressions, which are evaluated for their side effects. In Clight,
since expressions are pure, we use statements instead. (However, the semantics requires that
these statements terminate normally, but not by e.g.break.)

A switch statement consists in an expression and a list of cases. A case is a statement
labeled by an integer constant (case n) or by the keyworddefault. Contrary to C, the
default case is mandatory in a Clightswitch statement and must occur last.

2.4 Functions and programs

A Clight program is composed of a list of declarations for global variables (name and type),
a list of functions (see figure 4) and an identifier naming the entry point of the program (the
main function in C). The Coq formalization supports a rudimentary form of initialization for
global variables, where an initializer is a sequence of integer or floating-point constants; we
omit this feature in this article.

Functions come in two flavors: internal or external. An internal function, written
τ id(dcl1){dcl2; s}, is defined within the language.τ is the return type,id the name of

7

the function,dcl1 its parameters (names and types),dcl2 its local variables, ands its body.
External functionsextern τ id(dcl) are merely declared, but not implemented. They are
intended to model “system calls”, whose result is provided by the operating system instead
of being computed by a piece of Clight code.

3 Formal semantics for Clight

We now formalize the dynamic semantics of Clight, using natural semantics, also known as
big-step operational semantics. The natural semantics observe the final result of program ex-
ecution (divergence or termination), as well as a trace of the invocations of external functions
performed by the program. The latter represents the input/output behavior of the program.
Owing to the restriction that expressions are pure (section2.2), the dynamic semantics is
deterministic.

The static semantics of Clight (that is, its typing rules) has not been formally specified
yet. The dynamic semantics is defined without assuming that the program is well-typed, and
in particular without assuming that the type annotations over expressions are consistent. If
they are inconsistent, the dynamic semantics can be undefined (the program goes wrong), or
be defined but differ from what the C standard prescribes.

3.1 Evaluation judgements

The semantics is defined by the 10 judgements (predicates) listed below. They use semantic
quantities such as values, environments, etc, that are summarized in figure 5 and explained
later.

G,E ⊢ a,M ⇐ ℓ (evaluation of expressions in l-value position)
G,E ⊢ a,M ⇒ v (evaluation of expressions in r-value position)
G,E ⊢ a∗,M ⇒ v∗ (evaluation of lists of expressions)

G,E ⊢ s,M
t
⇒ out,M′ (execution of statements, terminating case)

G,E ⊢ sw,M
t
⇒ out,M′ (execution of the cases of aswitch, terminating case)

G ⊢ Fd(v∗),M
t
⇒ v,M′ (evaluation of function invocations, terminating case)

G,E ⊢ s,M
T
⇒ ∞ (execution of statements, diverging case)

G,E ⊢ sw,M
T
⇒ ∞ (execution of the cases of aswitch, diverging case)

G ⊢ Fd(v∗),M
T
⇒ ∞ (evaluation of function invocations, diverging case)

⊢ P⇒ B (execution of whole programs)

Each judgement relates a syntactic element to the result of executing this syntactic el-
ement. For an expression in l-value position, the result is alocation ℓ: a pair of a block
identifierb and a byte offsetδ within this block. For an expression in r-value position and
for a function application, the result is a valuev: the discriminated union of 32-bit integers,
64-bit floating-point numbers, locations (representing the value of pointers), and the special
valueundef representing the contents of uninitialized memory. Clightdoes not support as-
signment betweenstruct or union, nor passing astruct or union by value to a function;
therefore,struct andunion values need not be represented.

Following Norrish [36] and Huisman and Jacobs [21], the result associated with the
execution of a statements is anoutcome outindicating how the execution terminated: ei-
ther normally by running to completion or prematurely via abreak, continue or return
statement.

8

Block references: b ∈ Z

Memory locations: ℓ ::= (b,δ) byte offsetδ (a 32-bit integer) within blockb

Values: v ::= int(n) integer value (n is a 32-bit integer)
| float(f) floating-point value (f is a 64-bit float)
| ptr(ℓ) pointer value
| undef undefined value

Statement outcomes:out ::= Normal continue with next statement
| Continue go to the next iteration of the current loop
| Break exit from the current loop
| Return function exit
| Return(v) function exit, returning the valuev

Global environments: G ::= (id 7→ b) map from global variables to block references
×(b 7→ Fd) and map from function references to function definitions

Local environments: E ::= id 7→ b map from local variables to block references

Memory states: M ::= b 7→ (lo,hi,δ 7→ v) map from block references to bounds and contents

Memory quantities: κ ::= int8signed | int8unsigned
| int16signed | int16unsigned
| int32 | float32 | float64

I/O values: vν ::= int(n) | float(f)

I/O events: ν ::= id(vν
∗ 7→ vν) name of external function, argument values, result value

Traces: t ::= ε | ν .t finite traces (inductive)
T ::= ε | ν .T finite or infinite traces (coinductive)

Program behaviors: B ::= terminates(t,n) termination with tracet and exit coden
| diverges(T) divergence with traceT

Operations over memory states:
alloc(M, lo,hi) = (M′,b) Allocate a fresh block of bounds[lo,hi[.
free(M,b) = M′ Free (invalidate) the blockb.
load(κ ,M,b,n) = ⌊v⌋ Read one or several consecutive bytes (as determined byκ) at blockb,

offset n in memory stateM. If successful return the contents of these
bytes as valuev.

store(κ ,M,b,n,v) = ⌊M′⌋ Store the valuev into one or several consecutive bytes (as determined
by κ) at offsetn in block b of memory stateM. If successful, return an
updated memory stateM′.

Operations over global environments:
funct(G,b) = ⌊b⌋ Return the function definitionFd corresponding to the block b, if any.
symbol(G, id) = ⌊b⌋ Return the blockb corresponding to the global variable or function nameid.
globalenv(P) = G Construct the global environmentG associated with the programP.
initmem(P) = M Construct the initial memory stateM for executing the programP.

Fig. 5 Semantic elements: values, environments, memory states, statement outcomes, etc

Most judgements are parameterized by a global environmentG, a local environmentE,
and an initial memory stateM. Local environments map function-scoped variables to refer-
ences of memory blocks containing the values of these variables. (This indirection through
memory is needed to allow the& operator to take the address of a variable.) These blocks
are allocated at function entry and freed at function return(see rule 32 in figure 10). Like-
wise, the global environmentG associates block references to program-global variables and
functions. It also records the definitions of functions.

The memory model used in our semantics is detailed in [29]. Memory statesM are
modeled as a collection of blocks separated by constructionand identified by integersb.
Each block has lower and upper boundslo,hi, fixed at allocation time, and associates values

9

Expressions in l-value position:

E(id) = b or (id /∈ Dom(E) andsymbol(G, id) = ⌊b⌋)
(1)

G,E ⊢ id,M ⇐ (b,0)

G,E ⊢ a,M ⇒ ptr(ℓ)
(2)

G,E ⊢ *a,M ⇐ ℓ

G,E ⊢ a,M ⇐ (b,δ) type(a) = struct(id′,ϕ) field offset(id,ϕ) = ⌊δ ′⌋
(3)

G,E ⊢ a. id,M ⇐ (b,δ +δ ′)

G,E ⊢ a,M ⇐ ℓ type(a) = union(id′,ϕ)
(4)

G,E ⊢ a. id,M ⇐ ℓ

Expressions in r-value position:

G,E ⊢ n,M ⇒ int(n) (5) G,E ⊢ f ,M ⇒ float(f) (6)

G,E ⊢ sizeof(τ),M ⇒ int(sizeof(τ)) (7)
G,E ⊢ a,M ⇐ ℓ loadval(type(a),M′,ℓ) = ⌊v⌋

(8)
G,E ⊢ a,M ⇒ v

G,E ⊢ a,M ⇐ ℓ
(9)

G,E ⊢ &a,M ⇒ ptr(ℓ)

G,E ⊢ a1,M ⇒ v1 eval unop(op1,v1,type(a1)) = ⌊v⌋
(10)

G,E ⊢ op1 a1,M ⇒ v

G,E ⊢ a1,M ⇒ v1 G,E ⊢ a2,M1 ⇒ v2 eval binop(op2,v1,type(a1),v2,type(a2)) = ⌊v⌋
(11)

G,E ⊢ a1 op2 a2,M ⇒ v

G,E ⊢ a1,M ⇒ v1 is true(v1,type(a1)) G,E ⊢ a2,M ⇒ v2 (12)
G,E ⊢ a1 ? a2 : a3,M ⇒ v2

G,E ⊢ a1,M ⇒ v1 is false(v1,type(a1)) G,E ⊢ a3,M ⇒ v3 (13)
G,E ⊢ a1 ? a2 : a3,M ⇒ v3

G,E ⊢ a,M ⇒ v1 cast(v1,type(a),τ) = ⌊v⌋
(14)

G,E ⊢ (τ)a,M ⇒ v

Fig. 6 Natural semantics for Clight expressions

to byte offsetsδ ∈ [lo,hi[. The basic operations over memory states arealloc, free, load
andstore, as summarized in figure 5.

Since Clight expressions are pure, the memory state is not modified during expression
evaluation. It is modified, however, during the execution ofstatements and function calls.
The corresponding judgements therefore return an updated memory stateM′. They also
produce a tracet of the external functions (system calls) invoked during execution. Each
such invocation is described by an input/output eventν recording the name of the external
function invoked, the arguments provided by the program, and the result value provided by
the operating system.

In addition to terminating behaviors, the semantics also characterizes divergence during
the execution of a statement or of a function call. The treatment of divergence follows the
coinductive natural approach of Leroy and Grall [30]. The result of a diverging execution is
the traceT (possibly infinite) of input/output events performed.

In the Coq specification, the judgements of the dynamic semantics are encoded as mu-
tually inductive predicates (for terminating executions)and mutually coinductive predicates
(for diverging executions). Each defining case of each predicate corresponds exactly to an in-
ference rule in the conventional, on-paper presentation ofnatural semantics. We show most
of the inference rules in figures 6 to 12, and explain them in the remainder of this section.

10

Access modes: µ ::= By value(κ) access by value
| By reference access by reference
| By nothing no access

Associating access modes to Clight types:

A (int(I8,Signed)) = By value(int8signed) A (array(,)) = By reference

A (int(I8,Unsigned)) = By value(int8unsigned) A (function(,)) = By reference

A (int(I16,Signed)) = By value(int16signed) A (struct)(,)) = By nothing
A (int(I16,Unsigned)) = By value(int16unsigned) A (union)(,)) = By nothing

A (int(I32,)) = By value(int32) A (void) = By nothing

A (pointer()) = By value(int32)

Accessing or updating a value of typeτ at location(b,δ) in memory stateM:

loadval(τ ,M,(b,δ)) = load(κ ,M,b,δ) if A (τ) = By value(κ)
loadval(τ ,M,(b,δ)) = ⌊(b,δ)⌋ if A (τ) = By reference

loadval(τ ,M,(b,δ)) = /0 if A (τ) = By nothing
storeval(τ ,M,(b,δ),v) = store(κ ,M,b,δ ,v) if A (τ) = By value(κ)
storeval(τ ,M,(b,δ),v) = /0 otherwise

Fig. 7 Memory accesses.

3.2 Evaluation of expressions

Expressions in l-value positionThe first four rules of figure 6 illustrate the evaluation of an
expression in l-value position. A variableid evaluates to the location(b,0), whereb is the
block associated withid in the local environmentE or the global environmentG (rule 1). If
an expressiona evaluates (as an r-value) to a pointer valueptr(ℓ), then the location of the
dereferencing expression*a is ℓ (rule 2).

For field accessesa. id, the locationℓ = (b,δ) of a is computed. Ifa hasunion type,
this location is returned unchanged. (All fields of aunion share the same position.) Ifa has
struct type, the offset of fieldid is computed using thefield_offset function, then added
to δ .

From memory locations to valuesThe evaluation of an l-value expressiona in r-value posi-
tion depends on the type ofa (rule 8). If a has scalar type, its value is loaded from memory
at the location ofa. If a has array type, its value is equal to its location. Finally, some types
cannot be used in r-value position: this includesvoid in C andstruct andunion types
in Clight (because of the restriction that structs and unions cannot be passed by value). To
capture these three cases, figure 7 defines the functionA that maps Clight types toaccess
modes, which can be one of: “by value”, with a memory quantityκ (an access loads a quan-
tity κ from the address of the l-value); “by reference” (an access simply returns the address
of the l-value); or “by nothing” (no access is allowed). Theloadval andstoreval func-
tions, also defined in figure 7, exploit address modes to implement the correct semantics for
conversion of l-value to r-value (loadval) and assignment to an l-value (storeval).

Expressions in r-value positionRules 5 to 14 of figure 6 illustrate the evaluation of an
expression in r-value position. Rule 8 evaluates an l-valueexpression in an r-value context.
The expression is evaluated to its locationℓ. From this location, a value is deduced using

11

G,E ⊢ skip,M
ε
⇒ Normal,M (15) G,E ⊢ break,M

ε
⇒ Break,M (16)

G,E ⊢ continue,M
ε
⇒ Continue,M (17) G,E ⊢ (return /0),M

ε
⇒ Return,M (18)

G,E ⊢ a,M ⇒ v
(19)

G,E ⊢ (return ⌊a⌋),M
ε
⇒ Return(v),M

G,E ⊢ a1,M ⇐ ℓ G,E ⊢ a2,M ⇒ v storeval(type(a1),M,ℓ,v) = ⌊M′⌋
(20)

G,E ⊢ (a1 = a2),M
ε
⇒ Normal,M′

G,E ⊢ s1,M
t1⇒ Normal,M1 G,E ⊢ s2,M1

t2⇒ out,M2 (21)

G,E ⊢ (s1;s2),M
t1.t2⇒ out,M2

G,E ⊢ s1,M
t
⇒ out,M′ out 6= Normal

(22)

G,E ⊢ (s1;s2),M
t
⇒ out,M′

Fig. 8 Natural semantics for Clight statements (other than loops andswitch statements)

theloadval function described above. By rule 9,&a evaluates to the pointer valueptr(ℓ) as
soon as the l-valuea evaluates to the locationℓ.

Rules 10 and 11 describe the evaluation of unary and binary operations. Taking binary
operations as an example, the two argument expressions are evaluated and their valuesv1,v2

are combined using the theeval_binop function, which takes as additional arguments the
typesτ1 andτ2 of the arguments, in order to resolve overloaded and type-dependent oper-
ators. To give the general flavor ofeval_binop, here are the cases corresponding to binary
addition:

τ1 τ2 v1 v2 eval binop(+,v1,τ1,v2,τ2)
int() int() int(n1) int(n2) ⌊int(n1+n2)⌋
float() float() float(f1) float(f2) ⌊float(f1+ f2)⌋
ptr(τ) int() ptr(b,δ) int(n) ⌊ptr(b,δ +n×sizeof(τ))⌋
int() ptr(τ) int(n) ptr(b,δ) ⌊ptr(b,δ +n×sizeof(τ))⌋

otherwise /0

The definition above rejects mixed arithmetic such as “int+ float” because the parser that
generates Clight abstract syntax (described in section 4.1) never produces this: it inserts
explicit casts from integers to floats in this case. However,it would be easy to add cases
dealing with mixed arithmetic. Likewise, the definition above adds two single precision
floats using double-precision addition, in violation of theISO C standard. Again, it would
be easy to recognize this case and perform a single-precision addition.

Rules 12 and 13 define the evaluation of conditional expressions a1 ? a2 : a3. The
predicatesis_true andis_false determine the truth value of the value ofa1, depending
on its type. At afloat type,float(0.0) is false and any otherfloat value is true. At anint
or ptr type,int(0) is false andint(n) (n 6= 0) andptr(ℓ) values are true. (The null pointer
is represented asint(0).) All other combinations of values and types are neither true nor
false, causing the semantics to go wrong.

Rule 14 evaluates a cast expression(τ)a. The expressiona is evaluated, and its value
is converted from its natural typetype(a) to the expected typeτ using the partial function
cast. This function performs appropriate conversions, truncations and sign-extensions be-
tween integers and floats. We take a lax interpretation of casts involving pointer types: if the

12

Outcome updates (at the end of a loop execution):

Break
loop
❀ Normal Return

loop
❀ Return Return(v)

loop
❀ Return(v)

while loops:

G,E ⊢ a,M ⇒ v is false(v,type(a))
(23)

G,E ⊢ (while(a) s),M
ε
⇒ Normal,M

G,E ⊢ a,M ⇒ v is true(v,type(a))

G,E ⊢ s,M
t
⇒ out,M′ out

loop
❀ out′

(24)

G,E ⊢ (while(a) s),M
t
⇒ out′,M′

G,E ⊢ a,M ⇒ v is true(v,type(a))

G,E ⊢ s,M
t1⇒ (Normal | Continue),M1 G,E ⊢ (while(a) s),M1

t2⇒ out′,M2 (25)

G,E ⊢ (while(a) s),M
t1.t2⇒ out′,M2

for loops:

s1 6= skip G,E ⊢ s1,M
t1⇒ Normal,M1 G,E ⊢ (for(skip,a2,s3) s),M1

t2⇒ out,M2 (26)

G,E ⊢ (for(s1,a2,s3) s),M
t1.t2⇒ out,M2

G,E ⊢ a2,M ⇒ v is false(v,type(a2)) (27)

G,E ⊢ (for(skip,a2,s3) s),M
ε
⇒ Normal,M

G,E ⊢ a2,M ⇒ v is true(v,type(a2))

G,E ⊢ s,M
t1⇒ out1,M1 out1

loop
❀ out

(28)

G,E ⊢ (for(skip,a2,s3) s),M
t
⇒ out,M1

G,E ⊢ a2,M ⇒ v is true(v,type(a2))

G,E ⊢ s,M
t1⇒ (Normal | Continue),M1 G,E ⊢ s3,M1

t2⇒ Normal,M2

G,E ⊢ (for(skip,a2,s3) s),M2
t3⇒ out,M3 (29)

G,E ⊢ (for(skip,a2,s3)),M
t1.t2.t3⇒ out,M3

Fig. 9 Natural semantics for Clight loops

source and destination types are both either pointer types or 32-bit int types, any pointer
or integer value can be converted between these types without change of representation.
However, thecast function fails when converting between pointer types andfloat or small
integer types, for example.

3.3 Statements and function invocations, terminating case

The rules in figure 8 define the execution of a statement that isneither a loop nor aswitch
statement. The execution of askip statement yields theNormal outcome and the empty trace
(rule 15). Similarly, the execution of abreak (resp.continue) statement yields theBreak
(resp.Continue) outcome and the empty trace (rules 16 and 17). Rules 18–19 describe
the execution of areturn statement. The execution of areturn statement evaluates the
argument of thereturn, if any, and yields aReturn outcome and the empty trace.

Rule 20 executes an assignment statement. An assignment statementa1 = a2 evaluates
the l-valuea1 to a locationℓ and the r-valuea2 to a valuev, then storesv at ℓ using the
storeval function of figure 7, producing the final memory stateM′. We assume that the
types ofa1 anda2 are identical, therefore no implicit cast is performed during assignment,
unlike in C. (The Clight parser described in section 4.1 inserts an explicit cast on the r-value

13

Function calls:

G,E ⊢ af un,M ⇒ ptr(b,0) G,E ⊢ aargs,M ⇒ vargs

funct(G,b) = ⌊Fd⌋ type of fundef(Fd) = type(af un) G⊢ Fd(vargs),M
t
⇒ vres,M′

(30)

G,E ⊢ af un(aargs),M
t
⇒ vres,M′

G,E ⊢ a,M ⇐ ℓ G,E ⊢ af un,M ⇒ ptr(b,0) G,E ⊢ aargs,M ⇒ vargs

funct(G,b) = ⌊Fd⌋ type of fundef(Fd) = type(af un) G⊢ Fd(vargs),M
t
⇒ vres,M1

storeval(type(a),M1,ptr(ℓ),vres) = ⌊M2⌋ (31)

G,E ⊢ a= af un(aargs),M
t
⇒ vres,M2

Compatibility between values, outcomes and return types:

Normal,void # undef Return, void # undef Return(v), τ # v whenτ 6= void

Function invocations:

F = τ id(dcl1){dcl2; s}
alloc vars(M,dcl1+dcl2,E) = (M1,b∗) bind params(E,M1,dcl1,vargs) = M2

G,E ⊢ s,M2
t
⇒ out,M3 out, τ #vres (32)

G⊢ F(vargs),M
t
⇒ vres,free(M3,b∗)

Fe= extern τ id(dcl) ν = id(vargs,vres) (33)

G⊢ Fe(vargs),M
ν
⇒ vres,M

Fig. 10 Natural semantics for function calls

a2 when necessary.) Note thatstoreval fails if a1 has astruct or union type: assignments
between composite data types are not supported in Clight.

The execution of a sequence of two statements starts with theexecution of the first
statement, thus yielding an outcome that determines whether the second statement must be
executed or not (rules 21 and 22). The resulting trace is the concatenation of both traces
originating from both statement executions.

The rules in figure 9 define the execution ofwhile andfor loops. (The rules describing
the execution ofdowhile loops resemble the rules forwhile loops and are omitted in this
paper.) Once the condition of awhile loop is evaluated to a valuev, if v is false, the execution
of the loop terminates normally, with an empty trace (rules 23 and 27). Ifv is true, the loop
bodys is executed, thus yielding an outcomeout (rules 24, 25, 28 and 29). Ifout isNormal or
Continue, the whole loop is re-executed in the memory state modified bythe first execution
of the body. Ins, the execution of acontinue statement interrupts the current execution
of the loop body and triggers the next iteration ofs. If out is Break, the loop terminates
normally; if out is Return, the loop terminates prematurely with the same outcome (rules 24

and 28). The
loop
❀ relation models this evolution of outcomes after the premature end of the

execution of a loop body.

Rules 26–29 describe the execution of afor(s1,a2,s3) s loop. Rule 26 executes the
initial statements1 of a for loop, which must terminate normally. Then, the loop with an
empty initial statement is executed in a way similar to that of a while loop (rules 27–29). If
the bodys terminates normally or by performing acontinue, the statements3 is executed
before re-executing thefor loop. As in the case ofs1, it must be the case thats3 terminates
normally.

14

G,E ⊢ s1,M
T
⇒ ∞

(34)

G,E ⊢ s1;s2,M
T
⇒ ∞

G,E ⊢ s1,M
t
⇒ Normal,M1 G,E ⊢ s2,M1

T
⇒ ∞

(35)

G,E ⊢ s1;s2,M
t.T
⇒ ∞

G,E ⊢ a,M ⇒ v is true(v,type(a)) G,E ⊢ s,M
T
⇒ ∞

(36)

G,E ⊢ (while(a) s),M
T
⇒ ∞

G,E ⊢ a,M ⇒ v is true(v,type(a))

G,E ⊢ s,M
t
⇒ (Normal | Continue),M1 G,E ⊢ (while(a) s),M1

T
⇒ ∞

(37)

G,E ⊢ (while(a) s),M
t.T
⇒ ∞

G,E ⊢ af un,M ⇒ ptr(b,0) G,E ⊢ aargs,M ⇒ vargs

funct(G,b) = ⌊Fd⌋ type of fundef(Fd) = type(af un) G⊢ Fd(vargs),M
T
⇒ ∞

(38)

G,E ⊢ af un(aargs),M
T
⇒ ∞

F = τ id(dcl1){dcl2; s}
alloc vars(M,dcl1+dcl2,E) = (M1,b∗) bind params(E,M1,dcl1,vargs) = M2

G,E ⊢ s,M2
T
⇒ ∞

(39)

G⊢ F(vargs),M
T
⇒ ∞

Fig. 11 Natural semantics for divergence (selected rules)

We omit the rules forswitch(a) swstatements, which are standard. Based on the integer
value of a, the appropriate case ofsw is selected, and the corresponding suffix ofsw is
executed like a sequence, therefore implementing the “fall-through” behavior ofswitch
cases. ABreak outcome for one of the cases terminates theswitch normally.

The rules of figure 10 define the execution of a call statementaf un(aargs) or
a = af un(aargs). The expressionaf un is evaluated to a function pointerptr(b,0), and
the referenceb is resolved to the corresponding function definitionFd using the global
environmentG. This function definition is then invoked on the values of theargumentsaargs

as per the judgmentG ⊢ Fd(vargs),M
vres⇒ t,M′. If needed, the returned valuevres is then

stored in the location of the l-valuea (rules 30 and 31).

The invocation of an internal Clight functionF (rule 32) allocates the memory required
for storing the formal parameters and the local variables ofF , using thealloc_vars func-
tion. This function allocates one block for each variableid : τ , with lower bound 0 and upper
boundsizeof(τ), using thealloc primitive of the memory model. These blocks initially
containundef values. Then, thebind_params function iterates thestoreval function in
order to initialize formal parameters to the values of the corresponding arguments.

The body ofF is then executed, thus yielding an outcome (fourth premise). The return
value ofF is computed from this outcome and from the return type ofF (fifth premise):
for a function returningvoid, the body must terminate byNormal or Return and the return
value isundef; for other functions, the body must terminate byReturn(v) and the return
value isv. Finally, the memory blocksb∗ that were allocated for the parameters and local
variables are freed before returning to the caller.

A call to an external functionFe simply generates an input/output event recorded in the
trace resulting from that call (rule 33).

15

G= globalenv(P) M = initmem(P)

symbol(G,main(P)) = ⌊b⌋ funct(G,b) = ⌊ f ⌋ G⊢ f (nil),M
t
⇒ int(n),M′

(40)
⊢ P⇒ terminates(t,n)

G= globalenv(P) M = initmem(P)

symbol(G,main(P)) = ⌊b⌋ funct(G,b) = ⌊ f ⌋ G⊢ f (nil),M
T
⇒ ∞

(41)
⊢ P⇒ diverges(T)

Fig. 12 Observable behaviors of programs

3.4 Statements and function invocations, diverging case

Figure 11 shows some of the rules that model divergence of statements and function invo-
cations. As denoted by the double horizontal bars, these rules are to be interpretedcoin-
ductively, as greatest fixpoints, instead of the standard inductive interpretation (smallest fix-
points) used for the other rules in this paper. In other words, just like terminating executions
correspond to finite derivation trees, diverging executions correspond to infinite derivation
trees [30].

A sequences1;s2 diverges either ifs1 diverges, or ifs1 terminates normally ands2 di-
verges (rules 34 and 35). Likewise, a loop diverges either ifits body diverges, or if it termi-
nates normally or bycontinue and the next iteration of the loop diverges (rules 36 and 37).
A third case of divergence corresponds to an invocation of a function whose body diverges
(rules 38 and 39).

3.5 Program executions

Figure 12 defines the execution of a programP and the determination of its observable
behavior. A global environment and a memory state are computed forP, where each global
variable is mapped to a fresh memory block. Then, the main function of P is resolved and
applied to the empty list of arguments. If this function invocation terminates with tracet and
result valueint(n), the observed behavior ofP is terminates(t,n) (rule 40). If the function
invocation diverges with a possibly infinite traceT, the observed behavior isdiverges(T)
(rule 41).

4 Using Clight in the CompCert compiler

In this section, we informally discuss how Clight is used in the CompCert verified compiler
[27,6,28].

4.1 Producing Clight abstract syntax

Going from C concrete syntax to Clight abstract syntax is notas obvious as it may sound. Af-
ter an unsuccessful attempt at developing a parser, type-checker and simplifier from scratch,
we elected to reuse the CIL library of Neculaet al. [33]. CIL is written in OCaml and
provides the following facilities:

16

1. A parser for ISO C99 (plus GCC and Microsoft extensions), producing a parse tree that
is still partially ambiguous.

2. A type-checker and elaborator, producing a precise, type-annotated abstract syntax tree.
3. A simplifier that replaces many delicate constructs of C bysimpler constructs. For in-

stance, function calls and assignments are pulled out of expressions and lifted to the
statement level. Also, block-scoped variables are lifted to function scope or global scope.

4. A toolkit for static analyses and transformations performed over the simplified abstract
syntax tree.

While conceptually distinct, (2) and (3) are actually performed in a single pass, avoiding the
creation of the non-simplified abstract syntax tree.

Thomas Moniot and the authors developed (in OCaml) a simple translator that produces
Clight abstract syntax from the output of CIL. Much information produced by CIL is simply
erased, such as type attributes and qualifiers.struct andunion types are converted from
the original named representation to the structural representation used by Clight. String
literals are turned into global, initialized arrays of characters. Finally, constructs of C that
are unsupported in Clight are detected and meaningful diagnostics are produced.

The simplification pass of CIL sometimes goes too far for our needs. In particular, the
original CIL transforms all C loops intowhile(1) { ... } loops, sometimes inserting
goto statements to implement the semantics ofcontinue. Such CIL-insertedgoto state-
ments are problematic in Clight. We therefore patched CIL toremove this simplification of
C loops and natively supportwhile, do andfor loops

CIL is an impressive but rather complex piece of code, and it has not been formally
verified. One can legitimately wonder whether we can trust CIL and our hand-written trans-
lator to preserve the semantics of C programs. Indeed, two bugs in this part of CompCert
were found during testing: one that we introduced when adding native support forfor loops;
another that is present in the unmodified CIL version 1.3.6, but was corrected since then.

We see two ways to address this concern. First, we developed apretty-printer that dis-
plays Clight abstract syntax tree in readable, C concrete syntax. This printer makes it possi-
ble to conduct manual reviews of the transformations performed by CIL. Moreover, exper-
iment shows that re-parsing and re-transforming the simplified C syntax printed from the
Clight abstract syntax tree reaches a fixed point in one iteration most of the time. This does
not prove anything but nonetheless instills some confidencein the approach.

A more radical way to establish trust in the CIL-based Clightproducer would be to
formally verify some of the simplifications performed. A prime candidate is the simplifi-
cation of expressions, which transforms C expressions intoequivalent pairs of a statement
(performing all side effects of the expression) and a pure expression (computing the final
value). Based on initial experiments on a simple “while” language, the Coq verification of
this simplification appears difficult but feasible. We leavethis line of work for future work.

4.2 Compiling Clight

The CompCert C compiler is structured in two parts: a front-end compiler translates Clight
to an intermediate language called Cminor, without performing any optimizations; a back-
end compiler generates PowerPC assembly code from the Cminor intermediate representa-
tion, performing good register allocation and a few optimizations. Both parts are composed
of multiple passes. Each pass is proved to preserve semantics: if the input programP has
observable behaviorB, and the pass translatesP to P′ without reporting a compile-time er-
ror, then the output programP′ has the same observable behaviorB. The proofs of semantic

17

preservation are conducted with the Coq proof assistant. Tofacilitate the proof, the compiler
passes are written directly in the specification language ofCoq, as pure, recursive functions.
Executable Caml code for the compiler is then generated automatically from the functional
specifications by Coq’s extraction facility.

The back-end part of CompCert is described in great detail in[28]. We now give an
overview of the front-end, starting with a high-level overview of Cminor, its target interme-
diate language. (Refer to [28, section 4] for detailed specifications of Cminor.)

Cminor is a low-level imperative language, structured likeClight into expressions, state-
ments, and functions. A first difference with Clight is that arithmetic operators are not over-
loaded and their behavior is independent of the static typesof their operands: distinct oper-
ators are provided for integer arithmetic and floating-point arithmetic. Conversions between
integers and floats are explicit. Likewise, address computations are explicit in Cminor, as
well as individual load and store operations. For instance,the C expressiona[x] wherea is
a pointer toint is expressed asload(int32, a +i x *i 4), making explicit the memory
quantity being addressed (int32) as well as the address computation.

At the level of statements, Cminor has only 5 control structures: if-then-else condition-
als, infinite loops,block-exit, early return, andgoto with labeled statements. Theexit n
statement terminates the(n+1) enclosingblock statements.

Within Cminor functions, local variables can only hold scalar values (integers, pointers,
floats) and they do not reside in memory. This makes it easy to allocate them to registers
later in the back-end, but also prohibits taking a pointer toa local variable like the C op-
erator& does. Instead, each Cminor function declares the size of a stack-allocated block,
allocated in memory at function entry and automatically freed at function return. The ex-
pressionaddrstack(n) returns a pointer within that block at constant offsetn. The Cminor
producer can use this block to store local arrays as well as local scalar variables whose
addresses need to be taken.

To translate from Clight to Cminor, the front-end of CompCert C therefore performs the
following transformations:

1. Resolution of operator overloading and materializationof all type-dependent behaviors.
Based on the types that annotate Clight expressions, the appropriate flavors (integer or
float) of arithmetic operators are chosen; conversions between ints and floats, truncations
and sign-extensions are introduced to reflect casts; address computations are generated
based on the types of array elements and pointer targets; andappropriate memory chunks
are selected for every memory access.

2. Translation ofwhile, do andfor loops into infinite loops with blocks and early exits.
Thebreak andcontinue statements are translated as appropriateexit constructs.

3. Placement of Clight variables, either as Cminor local variables (for local scalar variables
whose address is never taken), sub-areas of the Cminor stackblock for the current func-
tion (for local non-scalar variables or local scalar variables whose address is taken), or
globally allocated memory areas (for global variables).

In the first version of the front-end, developed by Zaynah Dargaye and the authors and
published in [6], the three transformations above were performed in a single pass, resulting
in a large and rather complex proof of semantic preservation. To make the proofs more
manageable, we split the front-end in two passes: the first performs transformations (1)
and (2) above, and the second performs transformation (3). Anew intermediate language
called C#minor was introduced to connect the two passes. C#minor is similar to Cminor,
except that it supports a& operator to take the address of a local variable. Accordingly,

18

the semantics of C#minor, like that of Clight, allocates onememory block for each local
variable at function entrance, while the semantics of Cminor allocates only one block.

To account for this difference in allocation patterns, the proof of semantic preservation
for transformation (3) exploits the technique ofmemory injectionsformalized in [29, section
5.4]. It also involves nontrivial reasoning about separation between memory blocks and
between sub-areas of a block. The proof requires about 2200 lines of Coq, plus 800 lines for
the formalization of memory injections.

The proof of transformations (1) and (2) is more routine: since the memory states match
exactly between the original Clight and the generated C#minor, no clever reasoning over
memory states, blocks and pointers is required. The Coq proof remains relatively large (2300
lines), but mostly because many cases need to be considered,especially when resolving
overloaded operators.

5 Validating the Clight semantics

Developing a formal semantics for a real-world programminglanguage is no small task; but
making sure that the semantics captures the intended behaviors of programs (as described,
for example, by ISO standards) is even more difficult. The smallest mistake or omission in
the rules of the semantics can render it incomplete or downright incorrect. Below, we list
a number of approaches that we considered to validate a formal semantics such as that of
Clight. Many of these approaches were prototyped but not carried to completion, and should
be considered as work in progress.

5.1 Manual reviews

The standard way to build confidence in a formal specificationis to have it reviewed by
domain experts. The size of the semantics for Clight makes this approach tedious but not
downright impossible: about 800 lines of Coq for the core semantics, plus 1000 lines of Coq
for dependencies such as the formalizations of machine integers, floating-point numbers,
and the memory model. The fact that the semantics is written in a formal language such
as Coq instead of ordinary mathematics is a mixed blessing. On the one hand, the type-
checking performed by Coq guarantees the absence of type errors and undefined predicates
in the specification, while such trivial errors are common inhand-written semantics. On the
other hand, domain experts might not be familiar with the formal language used and could
prefer more conventional presentations as e.g. inference rules. (We have not yet found any C
language expert who is comfortable with Coq, while several of them are fluent with inference
rules.) Manual transliteration of Coq specifications into LATEX inference rules (as we did in
this paper) is always possible but can introduce or (worse) mask errors. Better approaches
include automatic generation of LATEX from formal specifications, like Isabelle/HOL and Ott
do [35,43].

5.2 Proving properties of the semantics

The primary use of formal semantics is to prove properties ofprograms and meta-properties
of the semantics. Such proofs, especially when conducted onmachine, are effective at re-
vealing errors in the semantics. For example, in the case of strongly-typed languages, type

19

soundness proofs (showing that well-typed programs do not go wrong) are often used for
this purpose. In the case of Clight, a type soundness proof isnot very informative, since the
type system of C is coarse and unsound to begin with: the best we could hope for is a subject
reduction property, but the progress property does not hold. Less ambitious sanity checks
include “common sense” properties such as those of thefield_offset function mentioned
at end of section 2.1, as well as determinism of evaluation, which we obtained as a corollary
of the verification of the CompCert compiler [28, sections 2.1 and 13.3].

5.3 Verified translations

Extending the previous approach to proving properties involving two formal semantics in-
stead of one, we found that proving semantics preservation for a translation from one lan-
guage to another is effective at exposing errors not only in the translation algorithm, but
also in the semantics of the two languages involved. If the translation “looks right” to com-
piler experts and the semantics of the target language has already been debugged, such a
proof of semantic preservation therefore generates confidence in the semantics of the source
language. In the case of CompCert, the semantics of the Cminor intermediate language is
smaller (300 lines) and much simpler than that of Clight; subsequent intermediate languages
in the back-end such as RTL are even simpler, culminating in the semantics of the PPC
assembly language, which is a large but conceptually trivial transition function [28]. The
existence of semantic-preserving translations between these languages therefore constitutes
an indirect validation of their semantics.

Semantic preservation proofs and type soundness proofs detect different kinds of errors
in semantics. For a trivial example, assume that the Clight semantics erroneously interprets
the + operator at typeint as integer subtraction. This error would not invalidate an hy-
pothetical type soundness proof, but would show up immediately in the proof of semantic
preservation for the CompCert front-end, assuming of course that we did not commit the
same error in the translations nor in the semantics of Cminor. On the other hand, a type
soundness proof can reveal that an evaluation rule is missing (this shows up as failures of
the progress property). A semantic preservation proof can point out a missing rule in the
semantics of the target language but not in the semantics of the source language, since it
takes as hypothesis that the source program does not go wrong.

5.4 Testing executable semantics

Just like programs, formal specifications can be tested against test suites that exemplifies
expected behaviors. An impressive example of this approachis the HOL specification of the
TCP/IP protocol by Sewellet al.[5], which was extensively validated against network traces
generated by actual implementations of the protocol.

In the case of formal semantics, testing requires that the semantics isexecutable: there
must exist an effective way to determine the result of a givenprogram in a given initial envi-
ronment. The Coq proof assistant does not provide efficient ways to execute a specification
written using inductive predicates such as our semantics for Clight. (But see [11] for ongo-
ing work in this direction.) As discussed in [3], theeauto tactic of Coq, which performs
Prolog-style resolution, can sometimes be used as the poor man’s logic interpreter to exe-
cute inductive predicates. However, the Clight semantics is too large and not syntax-directed
enough to render this approach effective.

20

On the other hand, Coq provides excellent facilities for executing specifications written
as recursive functions: an interpreter is built in the Coq type-checker to perform conversion
tests; Coq 8.0 introduced a bytecode compiler to a virtual machine, speeding up the eval-
uation of Coq terms by one order of magnitude [15]; finally, the extraction facility of Coq
can also be used to generate executable Caml code. The recommended approach to execute
a Coq specification by inductive predicates, therefore, is to define a reference interpreter
as a Coq function, prove its equivalence with the inductive specification, and evaluate ap-
plications of the function. Since Coq demands that all recursive functions terminate, these
interpretation functions are often parameterized by a nonnegative integer countern bound-
ing the depth of the evaluation. Taking the execution of Clight statements as an example, the
corresponding interpretation function is of the shape

exec stmt(W,n,G,E,M,s) = Bottom(t) | Result(t,out,M′) | Error

wheren is the maximal recursion depth,G,E,M are the initial state, ands the statement
to execute. The result of execution is eitherError, meaning that execution goes wrong, or
Result(t,out,M′), meaning that execution terminates with tracet, outcomeout and final
memory stateM′, or Bottom(t), meaning that the maximal recursion depth was exceeded
after producing the partial tracet. To handle the non-determinism introduced by input/output
operations,exec_stmt is parameterized over aworld W: a partial function that determines
the result of an input/output operation as a function of its arguments and the input/output
operation previously performed [28, section 13.1].

The following two properties characterize the correctnessof the exec_stmt function
with respect to the inductive specification of the semantics:

G,E ⊢ s,M
t
⇒ out,M′ ∧ W |= t ⇔ ∃n, exec stmt(W,n,G,E,M,s) = Result(t,out,M)

G,E ⊢ s,M
T
⇒ ∞ ∧ W |= T ⇔ ∀n,∃t, exec stmt(W,n,G,E,M,s) = Bottom(t)

∧ t is a prefix ofT

Here,W |= t means that the tracet is consistent with the worldW, in the sense of [28, section
13.1]. See [30] for detailed proofs of these properties in the simpler case of call-by-valueλ -
calculus without traces. The proof of the second property requires classical reasoning with
the axiom of excluded middle.

We are currently implementing the approach outlined above,although it is not finished
at the time of this writing. Given the availability of the CompCert verified compiler, one
may wonder what is gained by using a reference Clight interpreter to run tests, instead of
just compiling them with CompCert and executing the generated PowerPC assembly code.
We believe that nothing is gained for test programs with well-defined semantics. However,
the reference interpreter enables us to check that programswith undefined semantics do go
wrong, while the CompCert compiler can (and often does) turnthem into correct PowerPC
code.

5.5 Equivalence with alternate semantics

Yet another way to validate a formal semantics is to write several alternate semantics for the
same language, using different styles of semantics, and prove logical implications between
them. In the case of the Cminor intermediate language and with the help of Andrew Appel,
we developed three semantics: (1) a big-step operational semantics in the style of the Clight
semantics described in the present paper [27]; (2) a small-step, continuation-based semantics

21

[2,28]; (3) an axiomatic semantics based on separation logic [2]. Semantics (1) and (3) were
proved correct against semantics (2). Likewise, for Clightand with the help of Keiko Nakata,
we prototyped (but did not complete yet) three alternate semantics to the big-step operational
semantics presented in this paper: (1) a small-step, continuation-based semantics; (2) the
reference interpreter outlined above; (3) an axiomatic semantics.

Proving the correctness of a semantics with respect to another is an effective way to find
mistakes in both. For instance, the correctness of an axiomatic semantics against a big-step
operational semantics without traces can be stated as follows: if {P}s{Q} is a valid Hoare
triple, then for all initial statesG,E,M satisfying the preconditionP, either the statements
diverges (G,E ⊢ s,M ⇒ ∞) or it terminates (G,E ⊢ s,M ⇒ out,M′) and the outcomeout and
the final stateG,E,M′ satisfy postconditionQ. The proof of this property exercises all cases
of the big-step operational semantics and is effective at pointing out mistakes and omissions
in the latter. Extending this approach to traces raises delicate issues that we have not solved
yet. First, the axiomatic semantics must be extended with ways for the postconditionsQ
to assert properties of the traces generated by the execution of the statements. A possible
source of inspiration is the recent work by Hoare and O’Hearn[20]. Second, in the case of
a loop such as{P} while(a) s {Q}, we must not only show that the loop either terminates
or diverges without going wrong, as in the earlier proof, butalso prove the existence of the
corresponding traces of events. In the diverging case, thisruns into technical problems with
Coq’s guardedness restrictions on coinductive definitionsand proofs.

In the examples given above, the various semantics were written by the same team and
share some elements, such as the memory model and the semantics of Clight expressions.
Mistakes in the shared parts will obviously not show up during the equivalence proofs.
Relating two independently-written semantics would provide a more convincing validation.
In our case, an obvious candidate for comparison with Clightis the Cholera semantics of
Norrish [36]. There are notable differences between our semantics and Cholera, discussed
in section 6, but we believe that our semantics is a refinementof the Cholera model. A
practical issue with formalizing this intuition is that Cholera is formalized in HOL while our
semantics is formalized in Coq.

6 Related work

Mechanized semantics for CThe work closest to ours is Norrish’s Cholera project [36],
which formalizes the static and dynamic semantics of a largesubset of C using the HOL
proof assistant. Unlike Clight, Cholera supports side effects within expressions and accounts
for the partially specified evaluation order of C. For this purpose, the semantics of expres-
sions is given in small-step style as a non-deterministic reduction relation, while the se-
mantics of statements is given in big-step style. Norrish used this semantics to characterize
precisely the amount of non-determinism allowed by the C standard [37]. Also, the memory
model underlying Cholera is more abstract than that of Clight, leaving unspecified a number
of behaviors that Clight specifies.

Tewset al [46,47] developed a denotational semantics for a subset of the C++ language.
The semantics is presented as a shallow embedding in the PVS prover. Expressions and
statements are modeled as state transformers: functions from initial states to final states plus
value (for expressions) or outcome (for statements). The subset of C++ handled is close to
our Clight, with a few differences: side effects within expressions are allowed (and treated
using a fixed evaluation order); the behavior of arithmetic operations in case of overflow is

22

not specified; thegoto statement is not handled, but the state transformer approach could be
extended to do so [45].

Using the Coq proof assistant, Giménez and Ledinot [14] define a denotational seman-
tics for a subset of C appropriate as target language for the compilation of the Lustre syn-
chronous dataflow language. Owing to the particular shape ofLustre programs, the subset
of C does not contain general loops nor recursive functions,but only countedfor loops.
Pointer arithmetic is not supported.

As part of the Verisoft project [40], the semantics of a subset of C called C0 has been
formalized using Isabelle/HOL, as well as the correctness of a compiler from C0 to DLX as-
sembly language [26,44,41]. C0 is a type-safe subset of C, close to Pascal, and significantly
smaller than Clight: for instance, there is no pointer arithmetic, norbreak andcontinue
statements. A big-step semantics and a small-step semantics have been defined for C0, the
latter enabling reasoning about non-terminating executions.

Paper and pencil semantics for CPapaspyrou [39] develops a monadic denotational seman-
tics for most of ISO C. Non-determinism in expression evaluation is modeled precisely. The
semantics was validated by testing with the help of a reference interpreter written in Haskell.

Nepomniaschyet al. [34] define a big-step semantics for a subset of C similar to Pascal:
it supports limited uses ofgoto statements, but not pointer arithmetic.

Abstract state machines have been used to give semantics forC [16] and for C# [7].
The latter formalization is arguably the most complete (in terms of the number of language
features handled) formal semantics for an imperative language.

Other examples of mechanized semanticsProof assistants were used to mechanize seman-
tics for languages that are higher-level than C. Representative examples include [23,25] for
Standard ML, [38] for a subset of OCaml, and [24] for a subset of Java. Other Java-related
mechanized verifications are surveyed in [18]. Many of thesesemantics were validated by
conducting type soundness proofs.

Subsets of CMany uses of C in embedded or critical applications mandate strict coding
guidelines restricting programmers to a “safer” subset of C[19]. A well-known example is
MISRA C [32]. MISRA C and Clight share some restrictions (such as structuredswitch
statements withdefault cases at the end), but otherwise differ significantly. For instance,
MISRA C prohibits recursive functions, but permits all usesof goto. More generally, the
restrictions of MISRA C and related guidelines are driven bysoftware engineering consid-
erations and the desire for tool-assisted checking, while the restrictions of Clight stem from
the desire to keep its formal semantics manageable.

Several tools for static analysis and deductive verification of C programs use simplified
subsets of C as intermediate representations. We already discussed the CIL intermediate
representation [33]. Other examples include the Frama-C intermediate representation [8],
which extends CIL’s with logical assertions, and the Newspeak representation [22]. CIL is
richer than Clight and accurately represents all of ISO C plus some extensions. Newspeak is
lower-level than Clight and targeted more towards static analysis than towards compilation.

7 Conclusions and future work

In this article, we have formally defined the Clight subset ofthe C programming language
and its dynamic semantics. While there is no general agreement on the formal semantics of

23

the C language, we believe that Clight is a reasonable proposal that works well in the context
of the formal verification of a compiler. We hope that, in the future, Clight might be useful
in other contexts such as static analyzers and program provers and their formal verification.

Several extensions of Clight can be considered. One direction, discussed in [29], is to
relax the memory model so as to model byte- and bit-level accesses to in-memory data
representations, as is commonly done in systems programming.

Another direction is to add support for some of the C constructs currently missing, in
particular thegoto statement. The main issue here is to formalize the dynamic semantics of
goto in a way that lends itself well to proofs. Natural semantics based on statement outcomes
can be extended with support forgoto by following the approach proposed by Tews [45],
but at the cost of nearly doubling the size of the semantics. Support forgoto statements is
much easier to add to transition semantics based on continuations, as the Cminor semantics
exemplifies [28, section 4]. However, such transition semantics do not lend themselves easily
to proving transformations of loops such as those performedby the front-end of CompCert
(transformation 2 in section 4.2).

Finally, the restriction that Clight expressions are pure is both a blessing and a curse:
on the one hand, it greatly simplifies all further processingof Clight, be it compilation,
static analysis or program verification; on the other hand, programmers cannot be expected
to directly write programs where all expressions are pure, requiring nontrivial, untrusted
program transformations in the Clight parser. One way to address this issue would be to
define an extension of Clight, tentatively called Cmedium, that supports side effects within
expressions, and develop and prove correct a translation from Cmedium to Clight.

References

1. Aiken, A., Bugrara, S., Dillig, I., Dillig, T., Hackett, B., Hawkins, P.: An overview of the Saturn project.
In: PASTE ’07: Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering, pp. 43–48. ACM Press (2007)

2. Appel, A.W., Blazy, S.: Separation logic for small-step Cminor. In: Theorem Proving in Higher Order
Logics, 20th Int. Conf. TPHOLs 2007,Lecture Notes in Computer Science, vol. 4732, pp. 5–21. Springer
(2007)

3. Appel, A.W., Leroy, X.: A list-machine benchmark for mechanized metatheory (extended abstract). In:
Proc. Int. Workshop on Logical Frameworks and Meta-Languages (LFMTP’06),Electronic Notes in
Computer Science, vol. 174/5, pp. 95–108 (2007)

4. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development – Coq’Art: The Calculus
of Inductive Constructions. EATCS Texts in Theoretical Computer Science. Springer (2004)

5. Bishop, S., Fairbairn, M., Norrish, M., Sewell, P., Smith, M., Wansbrough, K.: Engineering with logic:
HOL specification and symbolic-evaluation testing for TCP implementations. In: 33rd Symposium on
Principles of Programming Languages, pp. 55–66. ACM Press (2006)

6. Blazy, S., Dargaye, Z., Leroy, X.: Formal verification of aC compiler front-end. In: FM 2006: 14th Int.
Symp. on Formal Methods,Lecture Notes in Computer Science, vol. 4085, pp. 460–475. Springer (2006)

7. Börger, E., Fruja, N., Gervasi, V., Stärk, R.F.: A high-level modular definition of the semantics of C#.
Theoretical Computer Science336(2-3), 235–284 (2005)

8. CEA LIST: FRAMA-C: Framework for modular analysis of C. Software and documentation available
on the Web (2008). URLhttp://frama-c.cea.fr/

9. Condit, J., Harren, M., McPeak, S., Necula, G.C., Weimer,W.: CCured in the real world. In: PLDI ’03:
Proceedings of the ACM SIGPLAN 2003 conference on Programming language design and implemen-
tation, pp. 232–244. ACM Press (2003)

10. Coq development team: The Coq proof assistant. Softwareand documentation available on the Web
(1989-2008). URLhttp://coq.inria.fr/

11. Delahaye, D., Dubois, C.,́Etienne, J.F.: Extracting purely functional contents fromlogical inductive
types. In: Theorem Proving in Higher Order Logics, 20th International Conference, TPHOLs 2007,
Lecture Notes in Computer Science, vol. 4732, pp. 70–85. Springer (2007)

http://frama-c.cea.fr/
http://coq.inria.fr/

24

12. Duff, T.: On Duff’s device (1988). URLhttp://www.lysator.liu.se/c/duffs-device.html .
Message to the comp.lang.c Usenet group

13. Filliâtre, J.C., Marché, C.: Multi-prover verification of C programs. In: 6th Int. Conference on Formal
Engineering Methods, ICFEM 2004,Lecture Notes in Computer Science, vol. 3308, pp. 15–29 (2004)

14. Gimenez, E., Ledinot, E.: Semantics of a subset of the C language (2004). URL
http://coq.inria.fr/contribs/minic.html . Coq contributed library

15. Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: International Conference
on Functional Programming (ICFP 2002), pp. 235–246. ACM Press (2002)

16. Gurevich, Y., Huggins, J.: The semantics of the C programming language. In: Computer Science Logic,
6th Workshop, CSL ’92,Lecture Notes in Computer Science, vol. 702, pp. 274–308. Springer (1993)

17. Hardekopf, B., Lin, C.: The ant and the grasshopper: fastand accurate pointer analysis for millions of
lines of code. SIGPLAN Notices42(6), 290–299 (2007)

18. Hartel, P.H., Moreau, L.: Formalizing the safety of Java, the Java virtual machine, and Java card. ACM
Computing Surveys33(4), 517–558 (2001)

19. Hatton, L.: Safer language subsets: an overview and a case history, MISRA C. Information & Software
Technology46(7), 465–472 (2004)

20. Hoare, T., O’Hearn, P.W.: Separation logic semantics for communicating processes. In: Proceedings of
the First International Conference on Foundations of Informatics, Computing and Software (FICS 2008),
Electronic Notes in Computer Science, vol. 212, pp. 3–25 (2008)

21. Huisman, M., Jacobs, B.: Java program verification via a Hoare logic with abrupt termination. In: Fun-
damental Approaches to Software Engineering, 3rd Int. Conf. FASE 2000,Lecture Notes in Computer
Science, vol. 1783, pp. 284–303. Springer (2000)

22. Hymans, C., Levillain, O.: Newspeak, doubleplussimpleminilang for goodthinkful static analysis of C.
Technical note 2008-IW-SE-00010-1, EADS (2008)

23. van Inwegen, M., Gunter, E.L.: HOL-ML. In: Higher Order Logic Theorem Proving and its Applications,
6th International Workshop, HUG ’93,Lecture Notes in Computer Science, vol. 780, pp. 61–74. Springer
(1993)

24. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual machine, and compiler.
ACM Trans. Program. Lang. Syst.28(4), 619–695 (2006)

25. Lee, D.K., Crary, K., Harper, R.: Towards a mechanized metatheory of Standard ML. In: 34th Sympo-
sium on Principles of Programming Languages, pp. 173–184. ACM Press (2007)

26. Leinenbach, D., Paul, W., Petrova, E.: Towards the formal verification of a C0 compiler: Code generation
and implementation correctness. In: IEEE Conference on Software Engineering and Formal Methods
(SEFM’05), pp. 2–11. IEEE Computer Society Press (2005)

27. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler with a proof as-
sistant. In: 33rd ACM symposium on Principles of Programming Languages, pp. 42–54. ACM Press
(2006)

28. Leroy, X.: A formally verified compiler backend (2008). URL
http://gallium.inria.fr/~xleroy/publi/compcert-backend.pdf . Submitted for pub-
lication

29. Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses for verifying program
transformations. Journal on Automated Reasoning41(1), 1–31 (2008)

30. Leroy, X., Grall, H.: Coinductive big-step operationalsemantics. Information and Computation (2007).
URL http://dx.doi.org/10.1016/j.ic.2007.12.004 . To appear

31. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The definition of Standard ML (revised). The MIT
Press (1997)

32. Motor Industry Software Reliability Association: MISRA-C. http://www.misra-c.com/ (2004)
33. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language and tools for analysis

and transformation of C programs. In: Compiler Construction, 11th International Conference, CC 2002,
Lecture Notes in Computer Science, vol. 2304, pp. 213–228. Springer (2002)

34. Nepomniaschy, V.A., Anureev, I.S., Promsky, A.V.: Towards verification of C programs: Axiomatic se-
mantics of the C-kernel language. Programming and ComputerSoftware29(6), 338–350 (2003)

35. Nipkow, T., Paulson, L.C.: Isabelle/Hol: A Proof Assistant for Higher-Order Logic. Springer (2004)
36. Norrish, M.: C formalised in HOL. Ph.D. thesis, University of Cambridge (1998). Technical report

UCAM-CL-TR-453
37. Norrish, M.: Deterministic expressions in C. In: Programming Languages and Systems, 8th European

Symposium on Programming, ESOP’99,Lecture Notes in Computer Science, vol. 1576, pp. 147–161.
Springer (1999)

38. Owens, S.: A sound semantics for OCamllight. In: Programming Languages and Systems, 17th European
Symposium on Programming, ESOP 2008,Lecture Notes in Computer Science, vol. 4960, pp. 1–15.
Springer (2008)

http://www.lysator.liu.se/c/duffs-device.html
http://coq.inria.fr/contribs/minic.html
http://gallium.inria.fr/~xleroy/publi/compcert-backend.pdf
http://dx.doi.org/10.1016/j.ic.2007.12.004
http://www.misra-c.com/

25

39. Papaspyrou, N.: A formal semantics for the C programminglanguage. Ph.D. thesis, National Technical
University of Athens (1998)

40. Paul, W., et al.: The Verisoft project (2003–2008). URLhttp://www.verisoft.de/

41. Schirmer, N.: Verification of sequential imperative programs in Isabelle/HOL. Ph.D. thesis, Technische
Universität München (2006)

42. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In: ESEC/FSE-13: Proceed-
ings of the 10th European software engineering conference,pp. 263–272. ACM Press (2005)

43. Sewell, P., Zappa Nardelli, F., Owens, S., Peskine, G., Ridge, T., Sarkar, S., Strnisa, R.: Ott: effective tool
support for the working semanticist. In: Proceedings of the12th International Conference on Functional
Programming, pp. 1–12. ACM Press (2007)

44. Strecker, M.: Compiler verification for C0. Tech. rep., Université Paul Sabatier, Toulouse (2005)
45. Tews, H.: Verifying Duff’s device: A simple compositional denotational semantics for goto and computed

jumps (2004). URLhttp://www.cs.ru.nl/~tews/Goto/goto.pdf . Draft paper
46. Tews, H., Weber, T., Völp, M.: A formal model of memory peculiarities for the verification of low-level

operating-system code. In: Proceedings of the International Workshop on Systems Software Verification
(SSV’08),Electronic Notes in Computer Science, vol. 217, pp. 79–96 (2008)

47. Tews, H., Weber, T., Völp, M., Poll, E., van Eekelen, M.,van Rossum, P.: Nova micro-hypervisor
verification. Robin project deliverable D13, Radboud Universiteit Nijmegen (2008). URL
http://robin.tudos.org/D.13%20Formal%20Verification.pdf

48. Zucker, S., Karhi, K.: System V application binary interface, PowerPC processor supplement. Tech. Rep.
802-3334-10, SunSoft (1995)

http://www.verisoft.de/
http://www.cs.ru.nl/~tews/Goto/goto.pdf
http://robin.tudos.org/D.13%20Formal%20Verification.pdf

	Introduction
	Abstract syntax of Clight
	Formal semantics for Clight
	Using Clight in the CompCert compiler
	Validating the Clight semantics
	Related work
	Conclusions and future work

