Skip to main content
Log in

Partial and Nested Recursive Function Definitions in Higher-order Logic

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

Based on inductive definitions, we develop a tool that automates the definition of partial recursive functions in higher-order logic (HOL) and provides appropriate proof rules for reasoning about them. Termination is modeled by an inductive domain predicate which follows the structure of the recursion. Since a partial induction rule is available immediately, partial correctness properties can be proved before termination is established. It turns out that this modularity also facilitates termination arguments for total functions, in particular for nested recursions. Our tool is implemented as a definitional package extending Isabelle/HOL. Various extensions provide convenience to the user: pattern matching, default values, tail recursion, mutual recursion and currying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: to Truth through Proof. Academic Press, London (1986)

    MATH  Google Scholar 

  2. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comp. Sci. 236(1–2), 133–178 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ballarin, C.: Locales and locale expressions in Isabelle/Isar. In: Berardi, S., Coppo, M., Damiani, F. (eds.) Types for Proofs and Programs (TYPES 2003). Lecture Notes in Computer Science, vol. 3085, pp. 34–50. Springer, New York (2004)

    Google Scholar 

  4. Barthe, G., Forest, J., Pichardie, D., Rusu, V.: Defining and reasoning about recursive functions: a practical tool for the Coq proof assistant. In: Hagiya, M., Wadler, P. (eds.) Functional and Logic Programming (FLOPS 2006). Lecture Notes in Computer Science, vol. 3945, pp. 114–129. Springer, New York (2006)

    Chapter  Google Scholar 

  5. Berghofer, S., Nipkow, T.: Executing higher order logic. In: Callaghan, P., Luo, Z., McKinna, J., Pollack, R. (eds.) Types for Proofs and Programs (TYPES 2000). Lecture Notes in Computer Science, vol. 2277, pp. 24–40. Springer, New York (2000)

    Chapter  Google Scholar 

  6. Berghofer, S., Reiter, M.: Formalizing the logic-automaton connection. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Theorem Proving in Higher Order Logics (TPHOLs 2009). Lecture Notes in Computer Science, vol. 5674, pp. 147–163. Springer, New York (2009)

    Chapter  Google Scholar 

  7. Berghofer, S., Wenzel, M.: Inductive datatypes in HOL—lessons learned in formal-logic engineering. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) Theorem Proving in Higher Order Logics (TPHOLs ’99). Lecture Notes in Computer Science, vol. 1690, pp. 19–36. Springer, New York (1999)

    Chapter  Google Scholar 

  8. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development: Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer, New York (2004)

    MATH  Google Scholar 

  9. Bove, A.: Programming in Martin-Löf type theory: unification - a non-trivial example. Licentiate thesis, Department of Computer Science, Chalmers University of Technology (1999)

  10. Bove, A.: General recursion in type theory. In: Geuvers, H., Wiedijk, F. (eds.) Types for Proofs and Programs (TYPES 2002). Lecture Notes in Computer Science, vol. 2646, pp. 39–58. Springer, New York (2002)

    Chapter  Google Scholar 

  11. Bove, A., Capretta, V.: Nested general recursion and partiality in type theory. In: Boulton, R.J., Jackson, P.B. (eds.) Theorem Proving in Higher Order Logics (TPHOLs 2001). Lecture Notes in Computer Science, vol. 2152, pp. 121–135. Springer, New York (2001)

    Chapter  Google Scholar 

  12. Bove, A., Capretta, V.: Modelling general recursion in type theory. Math. Struct. Comput. Sci. 15(4), 671–708 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bove, A., Capretta, V.: Recursive functions with higher-order domains. In: Urzyczyn, P. (ed.) Typed Lambda Calculi and Applications (TLCA 2007). Lecture Notes in Computer Science, vol. 3461, pp. 116–130. Springer, New York (2005)

    Google Scholar 

  14. Bove, A., Capretta, V.: Computation by prophecy. In: Rocca, S.R.D. (ed.) Typed Lambda Calculi and Applications (TLCA 2007). Lecture Notes in Computer Science, vol. 4583, pp. 70–83. Springer, New York (2007)

    Chapter  Google Scholar 

  15. Boyer, R.S., Moore, J.S.: A Computational Logic. Academic Press, New York (1979)

    MATH  Google Scholar 

  16. Boyer, R.S., Moore, J.S.: A Computational Logic Handbook. Academic Press, New York (1988)

    MATH  Google Scholar 

  17. Bulwahn, L., Krauss, A., Nipkow, T.: Finding lexicographic orders for termination proofs in Isabelle/HOL. In: Schneider, K., Brandt, J. (eds.) Theorem Proving in Higher Order Logics (TPHOLs 2007). Lecture Notes in Computer Science, vol. 4732, pp. 38–53. Springer, New York (2007)

    Chapter  Google Scholar 

  18. Cowles, J., Greve, D., Young, W.: The while-language challenge: first progress. In: ACL2 Workshop Proceedings (2007)

  19. Dubois, C., Donzeau-Gouge, V.: A step towards the mechanization of partial functions: domains as inductive predicates. In: CADE-15 Workshop on Mechanization of Partial Functions (1998)

  20. Dybjer, P.: A general formulation of simultaneous inductive-recursive definitions in type theory. J. Symb. Log. 65(2), 525–549 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Finn, S., Fourman, M., Longley, J.: Partial functions in a total setting. J. Autom. Reason. 18(1), 85–104 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Giesl, J.: Termination of nested and mutually recursive algorithms. J. Autom. Reason. 19(1), 1–29 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Giesl, J.: Induction proofs with partial functions. J. Autom. Reason. 26(1), 1–49 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gordon, M., Melham, T. (eds.): Introduction to HOL: a Theorem Proving Environment for Higher Order Logic. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  25. Greve, D.: Assuming termination. In: ACL2 Workshop Proceedings (2009)

  26. Greve, D.A., Kaufmann, M., Manolios, P., Moore, J.S., Ray, S., Ruiz-Reina, J.-L., Sumners, R., Vroon, D., Wilding, M.: Efficient execution in an automated reasoning environment. J. Funct. Program. 18(1), 15–46 (2008)

    Article  MATH  Google Scholar 

  27. Haftmann, F., Nipkow, T.: A code generator framework for Isabelle/HOL. Technical report 364/07, Department of Computer Science, University of Kaiserslautern (2007)

  28. Harrison, J.: The HOL Light theorem prover. http://www.cl.cam.ac.uk/users/~jrh13/hol-light

  29. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Approach. Kluwer, Dordrecht (2000)

    Google Scholar 

  30. Krauss, A.: Partial recursive functions in higher-order logic. In: Furbach, U., Shankar, N. (eds.) Automated Reasoning (IJCAR 2006). Lecture Notes in Artificial Intelligence, vol. 4130, pp. 589–603. Springer, New York (2006)

    Chapter  Google Scholar 

  31. Krauss, A.: Certified size-change termination. In: Pfenning, F. (ed.) Automated Deduction (CADE-21). Lecture Notes in Computer Science, vol. 4603, pp. 460–476. Springer, New York (2007)

    Chapter  Google Scholar 

  32. Krstić, S., Matthews, J.: Inductive invariants for nested recursion. In: Basin, D.A., Wolff, B. (eds.) Theorem Proving in Higher Order Logics (TPHOLs 2003). Lecture Notes in Computer Science, vol. 2758, pp. 253–269. Springer, New York (2003)

    Chapter  Google Scholar 

  33. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program termination. In: Principles of Programming Languages (PoPL 2001), pp. 81–92 (2001)

  34. Manna, Z., Waldinger, R.: Deductive synthesis of the unification algorithm. Sci. Comput. Program. 1, 5–48 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  35. Manolios, P., Moore, J.S.: Partial functions in ACL2. J. Autom. Reason. 31(2), 107–127 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  36. McBride, C.: Dependently typed functional programs and their proofs. PhD thesis, University of Edinburgh (1999)

  37. Müller, O., Slind, K.: Treating partiality in a logic of total functions. Comput. J. 40(10), 640–652 (1997)

    Article  Google Scholar 

  38. Naraschewski, W., Wenzel, M.: Object-oriented verification based on record subtyping in higher-order logic. In: Grundy, J., Newey, M.C. (eds.) Theorem Proving in Higher Order Logics (TPHOLs ’98). Lecture Notes in Computer Science, vol. 1479, pp. 349–366. Springer, New York (1998)

    Chapter  Google Scholar 

  39. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — a Proof Assistant for Higher-order Logic. Lecture Notes in Computer Science, vol. 2283. Springer, New York (2002)

    MATH  Google Scholar 

  40. Nishihara, T., Minamide, Y.: Depth first search. In: Klein, G., Nipkow, T., Paulson, L. (eds.) The Archive of Formal Proofs. http://afp.sf.net/entries/Depth-First-Search.shtml. Formal proof development (2004)

  41. Owens, S., Slind, K.: Adapting functional programs to higher-order logic. Higher-order and Symbolic Computation 21(4), 377–409 (2008)

    Article  MATH  Google Scholar 

  42. Paulson, L.C.: Verifying the unification algorithm in LCF. Sci. Comput. Program. 5, 143–170 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  43. Paulson, L.C.: A fixedpoint approach to implementing (co)inductive definitions. In: Bundy, A. (ed.) Automated Deduction (CADE-12). Lecture Notes in Computer Science, vol. 814, pp. 148–161. Springer, New York (1994)

    Google Scholar 

  44. Slind, K.: Function definition in higher-order logic. In: von Wright, J., Grundy, J., Harrison, J. (eds.) Theorem Proving in Higher Order Logics (TPHOLs ’96). Lecture Notes in Computer Science, vol. 1125, pp. 381–397. Springer, New York (1996)

    Google Scholar 

  45. Slind, K.: Reasoning about terminating functional programs. PhD thesis, Institut für Informatik, Technische Universität München (1999)

  46. Slind, K.: Another look at nested recursion. In: Aagaard, M., Harrison, J. (eds.) Theorem Proving in Higher Order Logics (TPHOLS 2000). Lecture Notes in Computer Science, vol. 1869, pp. 498–518. Springer, New York (2000)

    Chapter  Google Scholar 

  47. Urban, C.: Nominal techniques in Isabelle/HOL. J. Autom. Reason. 40(4), 327–356 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  48. Walther, C.: On proving the termination of algorithms by machine. J. Artif. Intell. 71(1), 101–157 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  49. Wenzel, M.: Isabelle/Isar—a versatile environment for human-readable formal proof documents. PhD thesis, Institut für Informatik, Technische Universität München (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Krauss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krauss, A. Partial and Nested Recursive Function Definitions in Higher-order Logic. J Autom Reasoning 44, 303–336 (2010). https://doi.org/10.1007/s10817-009-9157-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-009-9157-2

Keywords

Navigation