
Proof Pearl: a Formal Proof of Higman’s Lemma in
ACL2

Francisco Jesús Martín-Mateos · José Luis Ruiz-Reina ·
José Antonio Alonso · María José Hidalgo

Abstract Higman’s lemma is an important result in infinitary combinatorics, which
has been formalized in several theorem provers. In this paper we present a formaliza-
tion and proof of Higman’s Lemma in the ACL2 theorem prover. Our formalization
is based on a proof by Murthy and Russell, where the key termination argument
is justified by the multiset relation induced by a well-founded relation. To our
knowledge, this is the first mechanization of this proof.

Keywords Higman’s lemma · Formal proofs · ACL2

1 Introduction

Higman’s lemma [7] is a result in the field of combinatorics, stating well-quasi-
orderness of a certain embedding relation on finite strings over a well-quasi-ordered
alphabet. It provides a criterion for proving termination of string rewrite systems
and it is a particular case of Kruskal’s tree theorem, which plays a fundamental role
in the proof of well-foundedness of certain orderings used to show termination of
term rewriting systems [1].

F. J. Martín-Mateos · J. L. Ruiz-Reina (B) · J. A. Alonso · M. J. Hidalgo
Computational Logic Group, Department of Computer Science and Artificial Intelligence,
University of Seville, E.T.S.I. Informática, Avda. Reina Mercedes, s/n. 41012 Sevilla, Spain

The best known classical proof of Higman’s lemma is due to Nash-Williams [15],
using a so-called minimal bad sequence argument. After that, efforts were devoted
to obtain constructive proofs of the lemma and to interpret their computational
contents, also formalizing some of the proofs using theorem provers. Murthy [13] ob-
tained the first formal proof of the result, using the Nuprl system to apply Friedman’s
A-translation to Nash-Williams’ classical proof; nevertheless, the proof obtained was
so huge that its computational content was very difficult to analyze. This raised
interest in obtaining direct constructive proofs of the result [3, 14, 16, 19, 20], with
a clearer computational content. Some of these proofs have been formalized using
proof assistants and theorem provers: ALF [5], MINLOG [18], COQ [6] or Isabelle [2].

One of these direct constructive proofs, discovered by Murthy and Russell [14], is
based on defining a well-founded ordering on sets of finite descriptions of strings, and
this ordering is obtained using multiset extensions of well-founded orderings. This
proof had not yet been formalized in any theorem prover, but the techniques used
were similar to the ones we used in a previous formalization of Dickson’s lemma [11],
using the ACL2 theorem prover. This addressed our attention to get a formalization
of Murthy and Russell’s proof of Higman’s lemma in ACL2.

To our knowledge, the work we present here is the first formalization of Murthy
and Russell’s proof of Higman’s lemma. This proof has an obvious computational
content and this is reflected in our ACL2 proof because we verify a naive search
algorithm (written in Common Lisp) providing the elements whose existence is
stated by Higman’s lemma; this algorithm has very simple properties but a non-trivial
termination proof. It is also worth mentioning that a first-order logic like the ACL2
logic is expressive enough to state and prove Higman’s lemma.

The rest of this paper is structured as follows. Section 2 presents a short description
of the ACL2 logic and its theorem prover. In Section 3, we precisely state Higman’s
lemma and its formulation in the ACL2 logic. In Section 4, we introduce the
formalism of patterns, a tool for defining the well-founded measure that will be
essential in the proof. Section 5 presents the proof itself. Finally, in Section 6 some
conclusions are given. This paper is a substantially revised version of a preliminary
paper presented in [12].

2 A Brief Introduction to ACL2

ACL2 [8, 9] is a programming language, a logic, and a theorem prover supporting
reasoning in the logic. The ACL2 programming language is an extension of an
applicative subset of Common Lisp. The ACL2 logic is a first-order logic with
equality, used for specifying properties and reasoning about the functions defined in
the programming language. The formulas allowed by the ACL2 system do not have
quantifiers and all the variables in them are implicitly universally quantified. The
syntax of its terms and formulas is that of Common Lisp and it includes axioms for
propositional logic, equality and for a number of predefined Common Lisp functions
and data types. Rules of inference of the logic include those for propositional
calculus, equality and instantiation.

One important rule of inference is the principle of induction, that permits proofs
by well-founded induction on the ordinal ε0. The logic has a constructive definition

of the ordinals up to ε0, in terms of lists and natural numbers. The predicate o-p
recognizes those ACL2 objects that represent ordinals and the relation o< defines the
usual order between them. Although this is the only built-in well-founded relation,
the user may define new well-founded relations on domains of ACL2 objects other
than the one characterized by o-p, provided that an ordinal mapping is explicitly
given and proved to be monotone.

By the principle of def inition, new function definitions are admitted as axioms
only if there exists a measure and a well-founded relation with respect to which the
arguments of each recursive call decrease, thus ensuring that the function terminates.
In this way, no inconsistencies are introduced by new function definitions. Usually,
the system can prove automatically this termination property using a predefined
ordinal measure and the relation o<. Nevertheless, if the termination proof is not
trivial, the user often has to explicitly provide a measure on the arguments and a
well-founded relation with respect to which the measure decreases.

An additional way to introduce new function symbols in the logic is by means
of the encapsulate mechanism [10]. Instead of giving their definitional body,
only certain properties are assumed about them; to ensure consistency, witness local
functions having the same properties have to be exhibited. Inside an encapsulate,
the properties stated need to be proved for the local witnesses, and outside, they
work as assumed axioms.

A derived rule of inference, called functional instantiation, provides a limited
higher-order-like reasoning mechanism allowing to instantiate the function symbols
of a previously proved theorem, replacing them with other function symbols, pro-
vided it can be proved that the new functions satisfy the constraints or the definitional
axioms of the replaced functions (depending on whether they were introduced
by an encapsulate or by the principle of definition, respectively). See [8] for
details.

The ACL2 logic is usually referred to as “quantifier-free” due to the absence of
quantifiers in its formulas. Nevertheless, ACL2 provides limited support for first-
order quantification, via the macro defun-sk, which allows (by means of a choice
axiom) to define functions whose body has an outermost quantifier.

The ACL2 theorem prover mechanizes the ACL2 logic, being particularly well
suited for obtaining mechanical proofs mainly based on simplification and induction.
The role of the user in this mechanization is important: usually a non-trivial result is
not proved in a first attempt, and the user has to lead the prover to a successful proof
by means of a set of lemmas that the prover uses mainly as rewrite rules.

For the sake of readability, in this paper the ACL2 expressions will be presented
using a notation closer to the usual mathematical notation than its original Common
Lisp syntax, and some of the functions will also be used in infix notation. When
needed, we will show the correspondence between the ACL2 functions in the source
code and the mathematical notation used instead. We will use well-known Lisp
functions (such as cons, car and cdr) to denote operations on lists. In particular,
the function endp checks if its argument is the empty list (which is denoted as nil),
while consp is its negation. The function list returns the list of its arguments and
caar is an standard abbreviation for the composition of two car’s.

We will necessarily skip many details and some of the function definitions will be
omitted. We urge the interested reader to consult the original and complete source
code at http://www.glc.us.es/fmartin/acl2/higman

http://www.glc.us.es/fmartin/acl2/higman

3 Higman’s Lemma and Its ACL2 Formulation

In the following, let � be a set (also called an alphabet), and let �∗ denote the set of
finite strings over �.

Definition 1 Let � be a binary relation on �. Given two strings v = v1 · · · vm and
w = w1 · · · wn in �∗, we say that v is embedded into w (or that w embeds v), denoted
as v �∗ w, if there exist indices 0 < j1 < j2 < . . . < jm ≤ n such that vi � w ji ,∀i. We
also say that �∗ is the embedding relation induced by � on �∗.

If s � t we usually say that s is less than t or that t is greater than s. The same
terminology may be applied to the ordering �∗ (the relation with respect to which an
element is less or greater than other will be clear from the context).

An infinite sequence of elements of � is a function s : N → �. As usual, we write
sk instead of s(k) and by abuse of notation, we often identify the sequence with its
range {sk : k ∈ N}. An infinite sequence {sk : k ∈ N} of elements of � is called good
(with respect to a relation �) if there exist indices i < j such that si � s j; otherwise it
is called bad.

Definition 2 We say that a relation on � is a quasi-order if it is reflexive and
transitive. Given a quasi-order � defined on �, we say that � is a well-quasi-order if
every infinite sequence of elements of � is good.

Example 1 Let � be the set of natural numbers, N, and � the least reflexive and
transitive relation on N such that n � n + 2 for all n. In this relation the even numbers
are ordered as usual, as well as the odd numbers, but there is no relation between
even and odd numbers. It is easy to check that this relation is a well-quasi-order.

Higman’s Lemma establishes a sufficient condition for well-quasi-orders on
strings:

Theorem 1 (Higman’s Lemma) If � is a well-quasi-order on � then �∗ is also a well-
quasi-order on �∗.

We now describe how Higman’s lemma can be formulated in the ACL2 logic.
Since it is very easy to prove that �∗ is a quasi-order on �∗ when � is a quasi-order
on �, we will focus our attention on the well-quasi-order property: every infinite
sequence of strings is good, with respect to �∗.

First of all, we represent � with a unary predicate sigma-p (s ∈ � ≡
sigma-p(s))1 and � with a binary predicate sigma-<= (s � t ≡ sigma-<=(s,t)).
These functions are introduced in the logic by means of the encapsulate

1We will use the symbol ≡ to indicate the correspondence between an ACL2 function and the
notation used instead, in the formulas of this paper.

mechanism, only assuming about them the properties stating that � is a well-quasi-
order on �.2 The first two assumptions state that � is a quasi-order on �:

Assumption: sigma-<=-reflexive
s ∈ � → s � s

Assumption: sigma-<=-transitive
s1, s2, s3 ∈ � ∧ s1 � s2 ∧ s2 � s3 → s1 � s3

Let us now deal with the formalization of the assumption of � being a well-
quasi-order on �. In principle, it should be stated by a formula expressing that
every infinite sequence of elements of � is good, with respect to �. But this
cannot be directly stated in a first-order logic like ACL2, because it would require
a second-order universal quantifier over the infinite sequences of elements of �.
Following [14], we overcome this drawback considering an alternative definition for
well-quasi-orders.

In the following, we will use � to denote the set of finite sequences of elements of
� and the overline notation to identify the elements of �. We characterize the well-
quasi-order property of � in the following way: there exists a well-founded measure
on � such that the measure of any sequence in � is greater than the measure of any
extension of this sequence with an element s such that there is no element already in
the sequence that is less than s. As pointed out in [14]: “Classically, this is easily
gotten from the well-quasi-orderness of �, but constructively we must have this as
an assumption (. . .) After a moment’s ref lection, it should be obvious to the reader
that this is the constructive equivalent to the classical notion of well-quasi-order.”
In some way, this characterization resembles the principle of bar induction used
in [3], since extensions of finite sequences play the role of “induction steps”; but
unlike bar induction, this characterization can be naturally formalized in the ACL2
logic.

Example 2 For the relation defined in Example 1, a mapping from N to ordinals,
characterizing the well-quasi-orderness of �, could be the following: given a finite
sequence of natural numbers s, the ordinal associated is ω · 2 if s is empty; ω + n if
n is the last even (odd) number in s and there is no odd (even) numbers in s; and
n + m if n and m are respectively the last even number and the last odd number in s.
It is easy to show that whenever we extend a finite sequence with a natural number
not greater (w.r.t. �) than any of the elements already in the sequence, this measure
strictly decreases.

In our ACL2 formalization, the measure characterizing well-quasi-orderness of
� is abstractly introduced in the previous encapsulate by means of a function
sigma-seq-measure. To state the properties assumed about the measure
we also need two functions whose definitions are based on sigma-p and
sigma-<=: the membership to �, defined by the function sigma-seq-p (s ∈ � ≡
sigma-seq-p(s)) and the existence of an element in a finite sequence s less than an

2The local witnesses are irrelevant to our description of the proof.

element t, defined by the function exists-sigma-<=. Then the assumed properties
about sigma-seq-measure are the following:3

Assumption: sigma-seq-measure-o-p
s ∈ � → sigma-seq-measure(s) ∈ Ord

Assumption: sigma-<=-well-quasi-order-characterization
s ∈ � ∧ t ∈ � ∧ ¬exists-sigma-<=(s,t)

→ sigma-seq-measure(cons(t,s)) <ε0 sigma-seq-measure(s)

The first property ensures that the function sigma-seq-measure returns an
ACL2 ordinal when its argument is a finite sequence of strings, and the second
property is the constructive characterization of the well-quasi-orderness of �.4

Notice that we represent finite sequences by lists of elements in reverse order: that is,
the ACL2 representation of the finite sequence 〈s1, . . . , sn〉 is the list (sn ... s1).
The reason for this is that an element is more easily added to a finite sequence using
cons than using append (at least from the point of view of reasoning).

The four previous assumptions state that � is a well-quasi-order on � and they
are the only assumed properties about � and �.

The next step is to define �∗ and the �∗ relation. We represent the elements of
�∗ by lists, but in this case in the usual order. Thus, the representation of a string
s1s2 . . . sm is the list (s1 s2 ... sm). Membership to �∗ is checked by the function
sigma-*-p (w ∈ �∗ ≡ sigma-*-p(w)). For the definition of �∗, we need the
following auxiliary function sigma-*-<=-indices, such that given two strings w1

and w2 and a list of indices l, checks that w1 is pointwise less than the corresponding
sequence of elements of w2 indicated by the indices of l:

Definition:
sigma-*-<=-indices(w1,w2,l) ⇔

if endp(l) then t
else car(w1)�nth(car(l),w2)∧sigma-*-<=-indices(cdr(w1),w2,cdr(l))

Now the relation �∗ in �∗ is easily defined by the following function
sigma-*-<=, stating that there exists a strictly increasing list of indices witnessing
the embedding of w1 into w2:

Definition:
sigma-*-<=(w1,w2) ⇔

∃ l (nat-listp(l) ∧
bounded-indicesp(l,length(w2)) ∧
length(l) =length(w1) ∧
orderedp(l) ∧
sigma-*-<=-indices(w1,w2,l))

Here the predicate nat-listp checks that its argument is a list of natural num-
bers, bounded-indicesp is defined such that bounded-indicesp(l,x) if and

3For ACL2 ordinals we use the notation: o ∈ Ord ≡ o-p(o) and o1 <ε0 o2 ≡ o<(o1,o2).
4Note that we are only considering well-quasi-orderings of order type at most ε0, since that is the
maximal ordinal type for a well-founded relation in ACL2. Nevertheless, no explicit use of this
restriction is done in the proof.

only if all the elements of l are less than x, and orderedp checks that its argument
is a strictly increasing list. In the actual ACL2 code, the existential quantification is
introduced via defun-sk.

Having defined �∗, let us state that every infinite sequence of elements in �∗
is good, with respect to �∗. For that, we use again the encapsulate mechanism,
introducing an arbitrary infinite sequence of strings, named f. The only assumed
property about f is the following:

Assumption: f-returns-strings
i ∈ N → f(i) ∈ �∗

Note that since the infinite sequence of strings is abstractly introduced via
encapsulate, the property that we will prove about it (that is, that the sequence
is good) will be valid for any infinite sequence of strings. To state that f is good, we
have to show the existence of two indices i < j such that f(i) �∗ f(j). For that, we
simply define them as the result of a naive search algorithm. The auxiliary function
get-sigma-*-<=-f has two arguments, a natural number j and a string w, and it
returns the largest index i such that i < j and f(i) �∗ w whenever such an index exists
(nil otherwise):

Definition:
get-sigma-*-<=-f(j,w) =

if j ∈ N then if j = 0 then nil
elseif f(j − 1) �∗ w then j − 1
else get-sigma-*-<=-f(j − 1,w)

else nil

Finally, the following function higman-indices receives as input an index k and
uses get-sigma-*-<=-f to recursively search a pair of indices i < j such that j ≥ k
and f(i) �∗ f(j):

Definition:
higman-indices(k) =

if k ∈ N then let i be get-sigma-*-<=-f(k,f(k))
in if i �= nil then 〈i, k〉

else higman-indices(k + 1)
else nil

Let us assume for the moment that we have proved that the function
higman-indices terminates and that this definition has been admitted by the
system. Then the following property is easily proved as a direct consequence of the
definitions of the functions get-sigma-*-<=-f and higman-indices:

Theorem: higman-lemma
k ∈ N → let i be first(higman-indices(k))

j be second(higman-indices(k))
in [i, j ∈ N ∧ i < j ∧ f(i) �∗ f(j)]

This theorem ensures that for any infinite sequence of strings {f(k) : k ∈ N}, there
exist i < j such that f(i) �∗ f(j) (and the function higman-indices explicitly
provides these indices). Thus, it is a formal statement of Higman’s Lemma in
ACL2.

The hard part is the termination proof of the function higman-indices. For
that purpose, we have to explicitly provide to the system a measure on the input
argument and prove that it decreases with respect to a given well-founded relation in
every recursive call. We describe this measure and the corresponding well-founded
relation in the next sections.

Similarly to what is pointed out in [14], there exists an asymmetry in our ACL2
formulation of Higman’s Lemma. Namely, the assumption of � being a well-quasi-
order on � is formalized assuming the existence of a well-founded measure on finite
sequences; nevertheless, we do not explicitly use this constructive characterization to
state that �∗ is a well-quasi-order on �∗. Instead, we establish that every infinite se-
quence of strings is good, the classical formulation of well-quasi-orderness. Actually,
this asymmetry is only apparent: in our proof, we will show a well-founded measure
on finite sequences of elements of �∗ that constructively characterizes the well-quasi-
orderness of �∗. This measure will be an essential component of the measure used
for the termination proof of higman-indices.

4 Patterns

Given a finite sequence of strings, we will call a string not embedding any of
the strings in the sequence a legal extension of that sequence. The idea behind
the termination proof of higman-indices is the following: as we consider the
successive strings of an infinite sequence, the “size” of the set of legal extensions
strictly decreases, and this successive decrease cannot be infinite. To formalize this
intuitive idea, we will define a well-founded measure on finite sequences of strings,
measuring the set of its legal extensions. Although these sets of legal extensions may
be infinite, we will see how it is possible to have finite descriptions of them, using
expressions that we call patterns.5 In the next section, we will use these patterns as a
basis for the definition of the measure.

Given a set � and a relation � on �, a simple pattern is an expression of one of
the following two types:

• 〈−, s1, . . . , sn〉 (with si ∈ �), representing the set of strings of the form t1 . . . tm,
where t j ∈ � and si �� t j, ∀i, j. For example, in the well-quasi-order of Example 1,
〈−, 5, 3〉 is a simple pattern and 8 · 1 · 6 is one of the strings that it represents.

• 〈s, s1, . . . , sn〉 (with s, si ∈ �), representing the set of one-length strings t, where
t ∈ �, s � t and si �� t, ∀i. Again considering Example 1, 〈2, 8〉 is a simple pattern
and the one-length string 6 is one of the strings that it represents.

A sequential pattern (or just a pattern) is an expression of the form π1 . . . πn, where
each πi is a simple pattern; it represents the set of strings of the form w1 . . . wn, where
each wi is in the set of strings represented by πi. In the following, we will use the
capital Greek letter � (possibly with subscripts) to represent patterns, and the small
Greek letter π (possibly with subscripts) to represent simple patterns. The set of
strings represented by a pattern � or a simple pattern π will be denoted S(�) or
S(π) respectively.

5Patterns are analogue to sequential regular expressions in [14].

A set of patterns represents the union of the sets of strings represented by each of
its patterns. In the following, we will use the letter P to denote a set of patterns and
S(P) to denote the set of strings represented by P .

In our ACL2 formalization, we represent simple patterns of the form
〈−, s1, . . . , sn〉 by the list (nil sn ... s1), and simple patterns of the form
〈s, s1, . . . , sn〉 by the list ((s) sn ... s1). In both cases we say that s1, . . . , sn is the
sequence with respect to which the simple pattern is defined. Note that this sequence
is represented in ACL2 in reverse order. Note also that in order to know the type of
a simple pattern π we simply check (consp (car π)). Patterns are represented
by the list of their simple patterns, and finite sets of patterns by the list of their
patterns. The predicates simple-pattern-p, pattern-p and pattern-list-p
are defined to recognize, respectively, simple patterns, patterns and finite sets of
patterns.

The following function checks the membership of a one-length string s in the set
of strings described by a simple pattern π :

Definition:
member-simple-pattern(s,π) =

if consp(car(π)) then caar(π) � s ∧ ¬exists-sigma-<=(cdr(π),s)
else ¬exists-sigma-<=(cdr(π),s)

Given a pattern � = π1 . . . πn, we have just defined that a string w ∈ S(�)

if there exist strings w1, . . . , wn, such that w = w1 . . . wn and wi ∈ S(πi), ∀i. We
call such w1 . . . wn a decomposition of w with respect to �. The function
member-pattern(w,�) below returns a pair 〈res,val〉 where res is a boolean
indicating if w ∈ S(�) and, if that is the case, val is a decomposition (w1 ... wn)
witnessing it:

Definition:
member-pattern(w,�) =

if endp(w) then if endp(�) then 〈t, nil〉
elseif consp(caar(�)) then 〈nil, nil〉
else let 〈res,val〉 be member-pattern(w,cdr(�))

in if res then 〈t,cons(nil,val)〉
else 〈nil, nil〉

elseif endp(�) then 〈nil, nil〉
elseif consp(caar(�))

then let res1 be member-simple-pattern(car(w),car(�))
〈res2,val2〉 be member-pattern(cdr(w),cdr(�))

in if res1 ∧ res2 then 〈t,cons(list(car(w)),val2)〉
else 〈nil, nil〉

else let 〈res1,val1〉 be member-pattern(w,cdr(�))
in if res1 then 〈t,cons(nil,val1)〉

else let res2 be member-simple-pattern(car(w),car(�))
〈res3,val3〉 be member-pattern(cdr(w),�)

in if res2 ∧ res3
then 〈t,cons(cons(car(w),car(val3)),cdr(val3))〉

else 〈nil, nil〉

This function needs some explanation. To check if a string w is in S(�), we
consider several cases. If w is empty, then � has to be also empty or a concatenation
of simple patterns of the form 〈−, s1, . . . , sn〉 (the only ones that can represent the
empty string). If w is not empty, we consider two cases depending on the first simple
pattern in �: if it has the form π = 〈s, s1, . . . , sn〉, then the first element of w has to be
in S(π) and the rest of w in the set of strings represented by the rest of �. Otherwise,
if the first element of � has the form π = 〈−, s1, . . . , sn〉, then we also have two cases:
either w is in the set of strings represented by the rest of �, or the first element of w

is in S(π) and the rest of w is in S(�).
As we will see, finite set of patterns are expressive enough to represent the set

of legal extensions of any finite sequence of strings. But before illustrating this fact
with an example, it will be helpful, for a better understanding, to show an equivalent
definition of the embedding relation:

Definition:
sigma-*-<=-alt(w1,w2) ⇔

if endp(w1) then t
elseif endp(w2) then nil
elseif car(w1) � car(w2)

then sigma-*-<=-alt(cdr(w1),cdr(w2))
else sigma-*-<=-alt(w1,cdr(w2))

This function sigma-*-<=-alt implements an algorithm for deciding if one
string w1 is embedded in another string w2. Note that the idea is to search an element
in w2 greater (with respect to �) than the first element of w1. If such an element is not
found, we return nil; otherwise, we proceed recursively with the rest of w1 and with
the remaining elements of w2. We proved in ACL2 the following non-trivial result,
stating that this algorithmic definition is equivalent to the declarative definition of
sigma-*-<=:

Theorem: sigma-*-<=-alt-sigma-*-<=-equivalence
sigma-*-<=(w1,w2) ↔ sigma-*-<=-alt(w1,w2)

Due to its algorithmic nature, it turns out that sigma-*-<=-alt is more con-
venient than sigma-*-<= for reasoning in ACL2 about the embedding relation.
Indeed, our proof of Higman’s lemma is done using sigma-*-<=-alt, although it
is finally stated using sigma-*-<=, thanks to the above equivalence theorem. The
algorithmic definition will also give us a more intuitive idea on how we can obtain
patterns representing the set of legal extensions of a finite sequence of strings.

Let us see this with an example. Considering again the well-quasi-order of Exam-
ple 1, let { fk : k ∈ N} be an infinite sequence of strings over N such that f0 = 3 · 2,
f1 = 1 · 2 and f2 = 1 · 5 · 3. We are going to incrementally compute sets of patterns
representing the legal extensions of the finite sequences 〈 f0〉, 〈 f0, f1〉 and 〈 f0, f1, f2〉,
respectively. Note that initially we have the empty sequence of strings, whose set of
legal extensions is �∗, that can be represented by the pattern 〈−〉.

Starting with f0 = 3 · 2, and taking into account the definition of
sigma-*-<=-alt, it is not difficult to see that there are two possible reasons
for a given string w not to embed f0:

– There are no elements in w greater than 3. This case is described by the pattern
�1 = 〈−, 3〉.

– There is an element in w greater than 3, but after it, there are no elements
greater than 2. That is, w is a string composed of three parts: an initial substring
with no elements greater than 3, described by the simple pattern π1 = 〈−, 3〉; a
one-length string greater than 3, described by π2 = 〈3〉; and a final substring with
no elements greater than 2, described by the simple pattern π3 = 〈−, 2〉. Thus,
the representation of this case is the pattern �2 = π1π2π3 = 〈−, 3〉〈3〉〈−, 2〉.

Let us consider now f1 = 1 · 2. Note that f1 ∈ S(�1), since every element of f1

is not greater than 3. Let us see now how we can obtain from �1 a set of patterns
describing the set of strings w ∈ S(�1) such that f1 ��∗ w. We will call this operation
the reduction of a pattern with respect to a string, and any of the patterns obtained
by reducing a pattern will also be called a reduction. In this case, we modify �1 in
such way that any string greater than f1 is excluded. Again, there are two possible
reasons why a string w ∈ S(�1) may fail to embed f1:

– There are no elements in w greater than 1. Since the string is in S(�1) we also
know that there are no elements in w greater than 3. That is, we can describe this
case by the pattern 〈−, 3, 1〉.

– There is an element in w greater than 1, but after it, there are no elements
greater than 2; and since the string is in S(�1), no element in w is greater than
3. This means that w is a string composed of three parts: an initial substring with
no elements greater than 3 and no elements greater than 1, described by the
simple pattern 〈−, 3, 1〉; a one-length string greater than 1, but not greater than
3, described by 〈1, 3〉; and a final substring with no elements greater than 3 and
no elements greater than 2, described by the simple pattern 〈−, 3, 2〉. Thus, the
representation of this case is the pattern 〈−, 3, 1〉〈1, 3〉〈−, 3, 2〉.

Now, let us consider f2 = 1 · 5 · 3, which is a more complicated case. First, note
that since �2 = π1π2π3 = 〈−, 3〉〈3〉〈−, 2〉, then f2 ∈ S(�2). In fact, 1 ∈ S(π1), 5 ∈
S(π2) and 3 ∈ S(π3) is a decomposition of f2 with respect to �2. In this case, for
every πi, (i = 1, 2, 3), and for every reduction of πi with respect to its corresponding
substring of the decomposition, we obtain a reduction of �2, just replacing πi by
that reduction, and leaving the rest unchanged. That is, we obtain the following
reductions:

– Pattern 〈−, 3, 1〉〈3〉〈−, 2〉, obtained by replacing in �2 the simple pattern π1 =
〈−, 3〉 by its reduction with respect to 1.

– Pattern 〈−, 3〉〈3, 5〉〈−, 2〉, obtained by replacing in �2 the simple pattern π2 = 〈3〉
by its reduction with respect to 5.

– Pattern 〈−, 3〉〈3〉〈−, 2, 3〉, obtained by replacing in �2 the simple pattern π3 =
〈−, 2〉 by its reduction with respect to 3.

In this example, there is only one reduction for each simple pattern, because
each πi has only one reduction by its corresponding substring. But in general each
simple pattern produces as many reductions as patterns obtained reducing the simple
pattern by its corresponding substring in the decomposition. In particular, if the
corresponding substring is the empty string, no reduction is produced by that simple
pattern.

Let w ∈ S(�2) and let wi ∈ S(πi), (i = 1, 2, 3), be a decomposition of w with
respect to �2. If in addition, f2 ��∗ w, then 1 ��∗ w1, or 5 ��∗ w2 or 3 ��∗ w3 (since

otherwise f2 = 1 · 5 · 3 �∗ w1w2w3 = w). Therefore, it is clear that w is described by
some of the three reductions above.

After all the reductions carried out, we have obtained the set of patterns P =
{〈−, 3,1〉, 〈−, 3,1〉〈1, 3〉〈−, 3,2〉, 〈−, 3,1〉〈3〉〈−,2〉, 〈−, 3〉〈3,5〉〈−, 2〉, 〈−, 3〉〈3〉〈−,2,3〉}.
As we have informally justified, every legal extension w of the sequence 〈 f0, f1, f2〉
is in the set of strings represented by at least one of the patterns in P .

It is worth pointing out that in general the sets of patterns obtained by these
reductions may contain non-disjoint patterns or even patterns that also describe
strings that are not legal extensions.6 As we will see, this is not a problem: the only
properties that we need about these sets of patterns obtained in every reduction step
are that they describe every legal extension and that they strictly decrease in some
well-founded sense.

Having illustrated with examples the different types of reductions of a pattern
with respect to a string, let us now define the reduction operation in a precise and
general way. First, we define the reduction of a simple pattern π with respect to a
string w ∈ S(π):

– If π = 〈s, s1, . . . , sn〉 then its reduction with respect to w is 〈s, s1, . . . , sn, w〉. Note
that in this case, necessarily w ∈ � (it is a one-length string).

– If π = 〈−, s1, . . . , sn〉 and w = t1 . . . tm (with ti ∈ �), the reduction of π with
respect to w results in the following patterns:

◦ 〈−, s1, . . . , sn, t1〉
◦ 〈−, s1, . . . , sn, t1〉〈t1, s1, . . . , sn〉〈−, s1, . . . , sn, t2〉◦ . . .
◦ 〈−, s1, . . . , sn, t1〉〈t1, s1, . . . , sn〉〈−, s1, . . . , sn, t2〉 . . .

. . . 〈tm−1, s1, . . . , sn〉〈−, s1, . . . , sn, tm〉
From the definition of sigma-*-<=-alt, we can see that these patterns
represent the different reasons why sigma-*-<=-alt(w,v) may return nil,
for a string v ∈ S(π). Therefore, any strings v such that w �� v is described by
one of these patterns. It is worth pointing out that the reductions we define in
this case are a little bit simpler than the ones defined in [14].

In our ACL2 formalization, the function reduce-simple-pattern(w,π) com-
putes the reductions of the simple pattern π with respect to the string w (assuming
that w ∈ S(π)). Let us recall that the sequence with respect to which a simple pattern
is defined is represented in ACL2 in reverse order to easily add new elements to it:

Definition:
reduce-simple-pattern(w,π) =

if endp(w) then nil
elseif consp(car(π))

then list(list(cons(car(π),cons(car(w),cdr(π)))))
else cons(list(cons(nil,cons(car(w),cdr(π)))),

cons2-list-cdr(cons(nil,cons(car(w),cdr(π))),
cons(list(car(w)),cdr(π)),
reduce-simple-pattern(cdr(w),π)))

6For instance, in the example, the string 1 · 3 is in S(〈−, 3〉〈3, 5〉〈−, 2〉) and in S(〈−, 3〉〈3〉〈−, 2, 3〉);
and the string 3 · 5 · 7, which is greater than f2, is described by S(〈−, 3, 1〉〈3〉〈−, 2〉).

where the function cons2-list-cdr behaves, schematically, in the following
way:

(cons2-list-cdr ’x ’y ’(l1...ln))= ’((x y . l1)...(x y . ln))

As we have discussed in the example, the reduction of a sequential pattern
depends on its components. Given a pattern � = π1 . . . πn and a string w ∈ S(�),
let w1 . . . wn be a decomposition of w with respect to � such that wi ∈ S(πi), ∀i. The
reduction of a pattern � with respect to w (more precisely, with respect to a given
decomposition w1 . . . wn of w) is the set of patterns π1 . . . πi−1π

′
1 . . . π ′

mπi+1 . . . πn, ob-
tained for every 1 ≤ i ≤ n and every pattern π ′

1 . . . π ′
m reduction of the simple pattern

πi with respect to wi. The function reduce-simple-pattern-list computes the
reduction of a list of simple patterns (the components of �) with respect to a list of
strings (a decomposition of w):

Definition:
reduce-simple-pattern-list(ws,�) =

if endp(�) then nil
else append-list-car(reduce-simple-pattern(car(ws),car(�)),

cdr(�)) @
cons-list-cdr(car(�),

reduce-simple-pattern-list(cdr(ws),cdr(�)))

where the symbol @ is the “append” operation between lists, and the functions
append-list-car and cons-list-cdr behaves, schematically, as follows:

(append-list-car ’(l1 ... ln) ’l) = ’(l1 @ l ... ln @ l)
(cons-list-cdr ’x ’(l1 ... ln)) = ’((x . l1) ... (x . ln))

The function reduce-pattern(w,�) computes the reduction of the pattern �

with respect to the string w, whenever w ∈ S(�). If that is not the case, the function
returns the list with � as the only element.

Definition:
reduce-pattern(w,�) =

let 〈res,val〉 be member-pattern(w,�)
in if res then reduce-simple-pattern-list(val,�)

else list(�)

Note that since we are defining this reduction operation as an ACL2 function, we
reduce with respect to one specific decomposition of w (the one given by member-
-pattern). But any other decomposition would be valid.

Finally, to reduce a set of patterns P with respect to a string w ∈ S(P), we simply
replace one pattern � ∈ P such that w ∈ S(�), by its reductions with respect to w.
The function reduce-pattern-set implements this operation:

Definition:
reduce-pattern-set(w,P) =

if endp(P) then P
else let 〈res,val〉 be member-pattern(w,car(P))

in if res then reduce-pattern(w,car(P)) @ cdr(P)
else cons(car(P), reduce-pattern-set(w,cdr(P)))

Note that we reduce with respect to only one pattern, although in principle the
string w may match with several patterns in the set. And again we use a specific
pattern: the first pattern matched by member-pattern. As shown in [14], it is
sufficient to reduce with respect to one of these patterns, and any of them would
be valid for that purpose.

Once defined how we reduce a set of patterns, we can compute a set of patterns
for every finite sequence of strings: we simply iterate the reduction over the succes-
sive strings of the sequence. The auxiliary function reduce-pattern-sequence
implements this iteration receiving as input a finite sequence of strings w (in reverse
order) and an initial set of patterns P .

Definition:
reduce-pattern-sequence(w,P) =

if endp(w) then P
else reduce-pattern-set(car(w),

reduce-pattern-sequence(cdr(w),P))

Using the above function, the function pattern-sequence computes a set of
patterns for the finite sequence of strings that it receives as input. Note that it
starts with the set {〈−〉} (representing �∗), where 〈−〉 is built by the 0-ary function
initial-pattern:

Definition:
pattern-sequence(w) =

reduce-pattern-sequence(w,list(initial-pattern()))

As we will prove in the next section, the set of patterns computed by this function
is guaranteed to represent, at least, the legal extensions of the sequence that it
receives as input.

5 A Well-founded Measure and the Termination Proof

In the previous section, we have assigned a set of patterns to every finite sequence
of strings. In this section, that set of patterns will be the basis to define a measure on
finite sequences of strings. Once defined, we will show that there is a well-founded
relation on this measure and then we will establish that this well-founded measure
characterizes the well-quasi-orderness of �∗. Finally, as a corollary, we will show
termination of the function higman-indices presented in Section 3.

5.1 A Well-founded Measure on Finite Sequences of Strings

The main idea underlying the definition of the measure is that simple patterns can
be measured by an ordinal, and that when we reduce a pattern, although the number
of patterns and simple patterns may increase, nevertheless every new simple pattern
that appears in a reduction has a strictly smaller measure. This is a typical situation
that can be modeled using multiset relations.

A multiset M over a set A is a function from A to the set of natural numbers. If
M(x) > 0 for only finitely many x ∈ A, then we say that the multiset is finite. The
set of all finite multisets over A is denoted as M(A). Multisets are a formalization

of the intuitive idea of “sets with repeated elements”, M(x) being the number of
occurrences of x in the multiset M. In ACL2, finite multisets will be represented
simply by lists.

The measure assigned to a finite sequence will be a multiset of multisets of
ordinals. First, we assign an ordinal measure to simple patterns, taking into account
that � is a well-quasi-order on � and that our constructive characterization assumes
the existence of an ordinal measure sigma-seq-measure on finite sequences
of elements of �: if o is the measure of the sequence s, then the measure of a
simple pattern of the form 〈−, s〉 is defined as o + 1, and the measure of a simple
pattern of the form 〈t, s〉 is o. Second, the measure of a pattern is the multiset (a
list in ACL2) of the measures of the simple patterns in it. Finally, the measure
of a set of patterns is the multiset (a list in ACL2) of the measures of the pat-
terns in it. The ACL2 functions simple-pattern-measure, pattern-measure
and pattern-list-measure (whose straightforward definitions we omit) com-
pute respectively the measure of simple patterns, patterns and sets of patterns.
The function sigma-*-seq-measure uses this last function and the function
pattern-sequence presented at the end of the previous section, to define the
measure of a finite sequence of strings:

Definition:
sigma-*-seq-measure(w) =

pattern-list-measure(pattern-sequence(w))

For example, the following table summarizes the measures of the initial subse-
quences in the example discussed in the previous section. We denote multisets using
double brace notation.

Initial subsequence Set of patterns Measure

{} {〈−〉} {{{{ω · 2 + 1}}}}
{3 · 2} {〈−, 3〉, {{{{ω + 4}}}},

〈−, 3〉〈3〉〈−, 2〉} {{{{ω + 4, ω · 2, ω + 3}}}}
{3 · 2, {〈−, 3, 1〉, {{{{ω + 2}}}},
1 · 2} 〈−, 3, 1〉〈1, 3〉〈−, 3, 2〉, {{{{ω + 2, ω + 3, 6}}}},

〈−, 3〉〈3〉〈−, 2〉} {{{{ω + 4, ω · 2, ω + 3}}}}
{3 · 2, {〈−, 3, 1〉, {{{{ω + 2}}}},
1 · 2, 〈−, 3, 1〉〈1, 3〉〈−, 3, 2〉, {{{{ω + 2, ω + 3, 6}}}},
1 · 5 · 3} 〈−, 3, 1〉〈3〉〈−, 2〉, {{{{ω + 2, ω · 2, ω + 3}}}},

〈−, 3〉〈3, 5〉〈−, 2〉, {{{{ω + 4, ω + 5, ω + 3}}}},
〈−, 3〉〈3〉〈−, 2, 3〉} {{{{ω + 4, ω · 2, 6}}}}

Let us show a well-founded relation on the measures just defined. For that,
multiset relations will be essential:

Definition 3 Given a relation < on a set A, the multiset relation induced by < on
M(A), denoted as <M, is defined as: N <M M if there exist X, Y ∈ M(A) such
that ∅ �= X ⊆ M, N = (M \ X) ∪ Y and for all y ∈ Y there exists x ∈ X such that
y < x.

In this definition, the subset relation and the union and difference operations have
to be understood in the multiset sense, taking into account different occurrences of
the same element. Intuitively, N <M M if we can obtain N from M removing some

elements and replacing them with finitely many elements, whenever they are smaller,
with respect to <, than some of the elements removed. The main property of multiset
relations on finite multisets is that they preserve well-foundedness:

Theorem 2 (Dershowitz & Manna, [4]) Let < be a well-founded relation on a set A,
and <M the multiset relation induced by < on M(A). Then <M is well-founded.

It is then clear that the multiset relation induced by the multiset relation induced
by the usual order between ordinals, will be enough for our purposes. Let us see how
we formalize this in ACL2.

As we said in Section 2, the only predefined well-founded relation in ACL2
is o<, implementing the usual order between ordinals less than ε0. If we want to
define a new well-founded relation, we have to explicitly provide a monotone ordinal
function, and prove the corresponding order-preserving theorem. In our case, we
should prove that the multiset relation induced by o< is a well-founded relation
and then prove that the multiset relation induced by that relation is also well-
founded. And in both cases we would have to define ordinal mappings and prove
the corresponding theorems about their monotonicity.

Fortunately, we do not have to do this: we use the defmul tool. This macro,
previously implemented and used by the authors for other formalizations (see [17]),
automatically generates the definitions and the proofs of the theorems needed to
introduce as a well-founded relation in ACL2 the multiset relation induced by a given
well-founded relation.

In our case, we need two defmul calls. The first automatically generates the
definition of a function mul-o<, implementing the multiset relation on finite multi-
sets of ordinals (the measure of a pattern) induced by the relation o<; and the second
automatically generates the definition of mul-mul-o<, implementing the multiset
relation on finite multisets of finite multisets of ordinals (the measure of a set of
patterns) induced by the relation mul-o<. These calls also automatically prove the
theorems needed to introduce these relations as well-founded relations in ACL2. See
details about the defmul syntax in [17]. For simplicity, in the following we denote
mul-o< as <ε0,M and mul-mul-o< as <ε0,MM .

5.2 Well-Quasi-orderness of �∗

We now show that sigma-*-seq-measure decreases with respect to <ε0,MM

when we extend a finite sequence of strings with a legal extension. This will
characterize the well-quasi-orderness of �∗.

The first step is to show that the simple patterns that appear when reducing a
simple pattern π with respect to w ∈ S(π), have a strictly smaller ordinal measure.
We have two cases:

– If π is of the form 〈s, s1, . . . , sn〉, then w ∈ �, s � w and si �� w,∀i. In this case, the
reduction of π with respect to w is the simple pattern π ′ = 〈s, s1, . . . , sn, w〉. Note
that ¬exists-sigma-<=(s,w) where s = 〈s1, . . . , sn〉, and thus the well-quasi-
order characterization of � ensures that sigma-seq-measure(cons(w,s)) is
less than sigma-seq-measure(s). Therefore, the measure of π ′ is less than the
measure of π .

– If π is of the form 〈−, s1, . . . , sn〉, then w = t1 . . . tm, with t j ∈ � and such that
si �� t j, ∀i, j. In this case the reduction of π with respect to w is a set of patterns
whose components are of one of these two types:

– Simple patterns of the form π ′ = 〈−, s1, . . . , sn, t j〉. In this case, again the
measure of π ′ is less than the measure of π , for reasons analogue to the
previous case.

– Simple patterns of the form π ′ = 〈t j, s1, . . . , sn〉. Then, if s = 〈s1, . . . , sn〉 and
o =sigma-seq-measure(s), the measure of π ′ is o, less than the measure
of π , which is o + 1.

The following ACL2 lemma establishes this property about reductions of simple
patterns (here π ′ ∈ � indicates that the simple pattern π ′ is a component of the
pattern �):

Lemma: reduce-simple-pattern-property
simple-pattern-p(π) ∧ w ∈ �∗ ∧ w ∈ S(π) ∧
� ∈ reduce-simple-pattern(w,π) ∧ π ′ ∈ �

→ measure-simple-pattern(π ′) <ε0 measure-simple-pattern(π)

To prove this lemma, we explicitly provide the following induction scheme to
ACL2 by means of an induction hint (here � represents a generic property about
its arguments):

endp(w) → �(�,π, π ′, w)

¬endp(w)∧consp(car(π)) → �(�,π, π ′, w)

¬endp(w)∧¬consp(car(π))∧�(cdr(cdr(�)), π, π ′,cdr(w))→�(�,π, π ′, w)

�(�, π, π ′, w)

As for (sequential) patterns, every reduction is obtained by removing one simple
pattern and replacing it with its reductions. Therefore, from the property above
and the definition of the multiset relation, it is easy to prove that the reduc-
tions of a pattern have a strictly smaller measure, as established by the following
lemma:

Lemma: reduce-pattern-property

pattern-p(�2) ∧ w ∈ �∗ ∧ w ∈ S(�2) ∧ �1 ∈ reduce-pattern(w,�2)

→ measure-pattern(�1) <ε0,M measure-pattern(�2)

Since the reduction of a set of patterns consists of removing one of the patterns of
the set and replacing it by its reductions, then again by the definition of the multiset
relation and as a consequence of the previous lemma we have that the measure of a
set of patterns strictly decreases after reducing it:

Lemma: reduce-pattern-set-property
pattern-list-p(P) ∧ w ∈ �∗ ∧ w ∈ S(P)

→ pattern-list-measure(reduce-pattern-set(w,P))
<ε0,MM pattern-list-measure(P)

To prove this lemma, the system automatically figures out the following suitable
induction scheme:

endp(P) → �(P, w)

¬endp(P) ∧ w ∈ S(car(P)) → �(P, w)

¬endp(P) ∧ w �∈ S(car(P)) ∧ �(cdr(P), w) → �(P, w)

�(P, w)

The heuristics of ACL2 for automatically guessing the right induction scheme for
a conjecture are based on the definitions of the recursive functions in the formula. In
this case, the above induction scheme is exactly the one suggested by the recursive
definition of the function reduce-pattern-set introduced in Section 4: two base
cases corresponding to the base cases of the recursion and one inductive case (with
one induction hypothesis) corresponding to the only recursive call. See [8] for a more
detailed explanation of the duality between recursion and the suggested induction.

Note that in all the three lemmas above, we have a condition requiring that the
string with respect to which we reduce has to be in the set of strings that the pattern
(or the set of patterns) describes. Thus, in our case we have to guarantee that the
successive patterns we obtain from a finite sequence describe every legal extension.
This is a consequence of the following lemmas. First, every string is in the initial set
of patterns:

Lemma: initial-pattern-exists-pattern
w ∈ �∗ → w ∈ S(list(initial-pattern()))

Second, the reduction process only “removes” strings that are not legal
extensions. To stablish this property we start proving it for the function
reduce-simple-pattern:

Lemma: member-pattern-list-reduce-simple-pattern
w ∈ �∗ ∧ u ∈ �∗ ∧ simple-pattern-p(π) ∧ w ∈ S(π) ∧ u ∈ S(π) ∧ w ��∗ u

→ u ∈ S(reduce-simple-pattern(w,π))

To prove this lemma, the system automatically uses the induction scheme based
on the recursive definition of sigma-*-<=-alt (introduced in Section 4).

Next, we state a similar property about reduce-pattern, automatically proved
by simplification:

Lemma: member-pattern-list-reduce-pattern
w ∈ �∗ ∧ u ∈ �∗ ∧ pattern-p(�) ∧ u ∈ S(�) ∧ w ��∗ u

→ u ∈ S(reduce-pattern(w,�))

Then, we stablish and prove the property about reduce-pattern-set (again,
its recursive definition suggests a suitable induction scheme for this conjecture):

Lemma: member-pattern-list-reduce-pattern-set
w ∈ �∗ ∧ u ∈ �∗ ∧ pattern-list-p(P) ∧ u ∈ S(P) ∧ w ��∗ u

→ u ∈ S(reduce-pattern-set(w,P))

Now we prove the property about the whole reduction process. More precisely,
if u ∈ S(P) then u is still described by the set of patterns obtained after itera-
tively reducing P with respect to a given finite sequence of strings w (w ∈ �∗ ≡

sigma-*-seq-p(w)), provided that u is a legal extension of w (checked by the
function exists-sigma-*-<=).

Lemma: member-pattern-list-reduce-pattern-sequence
u ∈ �∗ ∧ w ∈ �∗ ∧ pattern-list-p(P) ∧ u ∈ S(P)∧
¬exists-sigma-*-<=(w,u)

→ u ∈ S(reduce-pattern-sequence(w,P))

This property is proved by the system using the induction scheme based on the
recursive definition of reduce-pattern-sequence.

Finally, as an easy consequence of all the above lemmas, we can establish that
the measure assigned to a finite sequence of strings, strictly decreases whenever we
extend the sequence with a legal extension, a property that characterizes the well-
quasi-orderness of �∗:

Theorem: sigma-*-<=-well-quasi-order-characterization
u ∈ �∗ ∧ w ∈ �∗ ∧ ¬exists-sigma-*-<=(w,u)

→ sigma-*-seq-measure(cons(u,w))
<ε0,MM sigma-*-seq-measure(w)

5.3 Termination of Higman-Indices

From the well-quasi-orderness characterization of �∗, we can prove the termination
of the function higman-indices, our final goal in our ACL2 formalization of
Higman’s lemma.

The idea is simple: just assign to its input argument k the measure of the initial
sequence of the first k strings, 〈 f0, . . . , fk−1〉. The following function computes the
measure, where initial-segment-f(k) builds that initial subsequence:

Definition:
higman-indices-measure(k) =

sigma-*-seq-measure(initial-segment-f(k))

As a consequence of sigma-*-<=-well-quasi-order-characterization,
if fk is not greater than any of f0 . . . fk−1 (that is, the recursive case in the definition
of higman-indices), then the measure of the argument in the recursive call of
higman-indices strictly decreases with respect to the well-founded relation
<ε0,MM . That is, we have the following theorem, proved automatically by
simplification:

Theorem: higman-indices-termination-property
k ∈ N ∧ ¬get-sigma-*-<=-f(k,f(k))

→ higman-indices-measure(k + 1)
<ε0,MM higman-indices-measure(k)

This is exactly the proof obligation generated to show the termination of the
function higman-indices. Thus, its definition is admitted in ACL2 and then the
theorem higman-lemma presented in Section 3 is easily proved.

6 Concluding Remarks

We have presented a formalization in ACL2 of Murthy and Russell’s constructive
proof of Higman’s lemma. That is, we show that for every infinite sequence of
strings in a well-quasi-ordered alphabet we can find two strings in the sequence
such that the first one is embedded in the second one. For that, we introduce the
infinite sequence using the encapsulation principle and prove that a naive recursive
algorithm searching for such two strings always terminates. Termination is proved by
showing that there exists a well-founded measure that decreases in every recursive
step of that search. This well-founded measure is mainly based on a well-founded
relation on finite sequences of strings from the alphabet, defined using patterns that
finitely describe the set of legal extensions. We also needed to formalize the well-
founded multiset relation induced by a given well-founded relation, but that was
done in a completely automated way using the defmul tool.

As for the proof development, we followed a standard interaction with the ACL2
theorem prover. That is, we had in mind the main lemmas and definitions needed, as
suggested by the paper proof. But to obtain successful proof attempts, we needed
to prove a number of additional lemmas that the prover mainly used as rewrite
rules (although sometimes they are used because of an explicit user hint). Usually
these additional lemmas are suggested by inspecting failed proofs. The complete
development can be consulted at http://www.glc.us.es/fmartin/acl2/higman.

To quantify the proof effort, the complete formalization contains 58 definitions
and 120 lemmas (with 28 non trivial proof hints explicitly given), which also gives
an idea of the degree of automation of the proof. The development benefits from
the previously developed multiset book, which provides a proof of the well-
foundedness of the multiset relation induced by a well-founded relation. It is worth
emphasizing the reuse of the defmul tool for generating multiset well-founded
relations in ACL2: although it was originally developed to prove Newman’s Lemma
about abstract reductions [17], it was designed in a very general way such that it has
turned out to be useful in other formalization tasks.

As a particular case, we also obtained an ACL2 proof of Dickson’s lemma.
Dickson’s lemma is a particular case of Higman’s lemma, where � is the set of natural
numbers and the infinite sequences of strings considered are of the same fixed length.
A proof (different from the one reported in [11]) has easily been obtained from our
formalization, via functional instantiation.

Although mainly based on [14], our proof is slightly different. For exam-
ple, the way we define reductions of simple patterns is not the same. Of
course, another important point is the level of detail that we must have in
the formalization; this reveals important properties needed in the develop-
ment of the proof that are not mentioned in [14]. For example, to prove the
lemma member-pattern-list-reduce-pattern-sequence we need a sta-
bility property about �∗: w1 �∗ w2 ∧ w3 �∗ w4 → w1w3 �∗ w2w4. The proof of this
property was not trivial in our formalization, because we must explicitly compute the
indices from the embedding of w3 into the substring of w2w4, after the last position
indicated by the indices from the embedding of w1 into w2.

As we have said in the introduction, there are several constructive mechanizations
of Higman’s lemma in the literature. The most recent formalizations are given in
[2], using the Isabelle system, and [18], using MINLOG. These proofs are based on

http://www.glc.us.es/fmartin/acl2/higman

Coquand and Fridlender’s constructivization [3] of the Nash-Williams classical proof,
restricted to the case of a two-letter alphabet � and using equality as the well-quasi-
ordering on the alphabet (although [18] extends the proof for a finite alphabet).

Those formalizations were based on inductively defined predicates. For example,
a predicate Bar on finite sequences of strings is defined in the following way: a
finite sequence verifies Bar if it is good, or if for every string added to the finite
sequence, the resulting finite sequence verifies Bar. Intuitively, Bar(ws) if ws is
already good or if successively adding strings will turn it into a good sequence.
Therefore, Higman’s lemma is formulated as Bar(〈〉). The proof is mainly based on
inductions on derivations of inductively defined predicates. Thus, a comparison with
the formalization we present here is difficult, because the source proofs are very
different. Anyway, it would be an interesting challenge to formalize in the ACL2
logic the proof in [3].

We should also say that all these previous formalizations are concerned with
program extraction from proofs, which it is not our case. Our approach is just
the opposite: we start with a program solving the problem and then we prove its
properties. This results in a more concise code: for example, our program has 18
lines of Common Lisp code whereas in [2] the program has 70 lines of ML code; and
a more simple result: our program returns the first elements in the sequence such
that wi �∗ w j, this is not the case in [2, 18].

Acknowledgements We thank the anonymous reviewers for their constructive comments and
suggestions that helped to improve the paper. This work has been supported by Spanish Ministry
of Science and Innovation through the project MTM2009-13842-C02-02.

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge
(1998)

2. Berghofer, S.: A constructive proof of Higman’s lemma in Isabelle. In: Types for Proofs and
Programs, TYPES’04, vol. 3085, pp. 66–82. LNCS, Springer, Berlin (2004)

3. Coquand, T., Fridlender, D.: A proof of Higman’s lemma by structural induction. Unpublished
draft, available at http://www.brics.dk/∼daniel/texts/open.ps (1993)

4. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun. ACM 22(8),
465–476 (1979)

5. Fridlender, D.: Higman’s Lemma in Type Theory. Ph.D. thesis, University of Göteborg (1997)
6. Herbelin, H.: A program from an A-translated impredicative proof of Higman’s Lemma. Avail-

able at http://coq.inria.fr/contribs/HigmanNW.html (1994)
7. Higman, G.: Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc. 3(2), 326–336

(1952)
8. Kaufmann, M., Manolios, P., Moore, J S.: Computer-Aided Reasoning: An Approach. Kluwer

Academic, Boston (2000)
9. Kaufmann, M., Moore, J S.: ACL2 Version 3.5, Homepage: http://www.cs.utexas.edu/users/

moore/acl2/ (2009)
10. Kaufmann, M., Moore, J S.: Structured theory development for a mechanized logic. J. Autom.

Reason. 26(2), 161–203 (2001)
11. Martín-Mateos, F.J., Alonso, J.A., Hidalgo, M.J., Ruiz-Reina, J.L.: A formal proof of Dickson’s

lemma in ACL2. In: Proceedings of LPAR’03, vol. 2850, pp. 49–58. LNAI, Springer, Berlin
(2003)

12. Martín-Mateos, F.J., Ruiz-Reina, J.L., Alonso, J.A., Hidalgo, M.J.: Proof pearl: a formal proof
of Higman’s lemma in ACL2. In: Proceedings of TPHOL’05, vol. 3603, pp. 358–372. LNCS,
Springer, Berlin (2005)

http://www.brics.dk/~daniel/texts/open.ps
http://coq.inria.fr/contribs/HigmanNW.html
http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/

13. Murthy, C.: Extracting Constructive Content from Classical Proofs. Ph.D. thesis, Cornell Uni-
versity (1990)

14. Murthy, C., Russell, J.R.: A constructive proof of Higman’s lemma. In: Fifth Annual IEEE
Symposium on Logic in Computer Science, pp. 257–269 (1990)

15. Nash-Williams, C.: On well-quasi-ordering finite trees. Proc. Camb. Philos. Soc. 59(4), 833–835
(1963)

16. Richman, F., Stolzenberg, G.: Well quasi-ordered sets. Adv. Math. 97, 145–153 (1993)
17. Ruiz-Reina, J.L., Alonso, J.A., Hidalgo, M.J., Martín-Mateos, F.J.: Termination in ACL2 Using

Multiset Relations. In: Thirty Five Years of Automating Mathematics, Kluwer Academic, Boston
(2003)

18. Seisenberger, M.: On the Constructive Content of Proofs, Ph.D. thesis, Fakultät für Mathematik,
Ludwig-Maximilians-Universität München (2003)

19. Seisenberger, M.: An Inductive Version of Nash-Williams’ Minimal-Bad-Sequence Argument
for Higman’s Lemma. In: Types for Proofs and Programs, TYPES’00, vol. 2277, pp. 233–242.
LNCS, Springer, Berlin (2002)

20. Simpson, S.G.: Ordinal numbers and the Hilbert basis theorem. J. Symb. Log. 53(3), 961–974
(1988)

	Proof Pearl: a Formal Proof of Higman's Lemma in ACL2
	Abstract
	Introduction
	A Brief Introduction to ACL2
	Higman's Lemma and Its ACL2 Formulation
	Patterns
	A Well-founded Measure and the Termination Proof
	A Well-founded Measure on Finite Sequences of Strings
	Well-Quasi-orderness of *
	Termination of Higman-Indices

	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

