
ar
X

iv
:1

20
6.

44
58

v1
 [

cs
.L

O
]

 2
0

Ju
n

20
12

Terminating Calculi for Propositional Dummett

Logic with Subformula Property

Guido Fiorino

Dipartimento di Metodi Quantitativi per le Scienze Economiche ed Aziendali,

Università di Milano-Bicocca, Piazza dell’Ateneo Nuovo, 1, 20126 Milano, Italy.

guido.fiorino@unimib.it

September 29, 2018

Abstract

In this paper we present two terminating tableau calculi for proposi-
tional Dummett logic obeying the subformula property. The ideas of our
calculi rely on the linearly ordered Kripke semantics of Dummett logic.
The first calculus works on two semantical levels: the present and the
next possible world. The second calculus employs the usual object lan-
guage of tableau systems and exploits a property of the construction of
the completeness theorem to introduce a check which is an alternative to
loop check mechanisms.

1 Introduction

In this paper we present two terminating tableau calculi for propositional Dum-
mett logic obeying the subformula property. The depth of the deductions of the
first calculus is quadratic and allow to extract a counter model whose depth is
n + 1 at most, with n the number of propositional variables in the formula to
be decided. The depth of the deductions of the second calculus is linear. To
avoid the introduction of loop check mechanisms, our calculi exploit the linearly
ordered Kripke semantics of Dummett logic. The first calculus uses the ideas
presented in paper [11], and works on two semantical levels: the present and
the next possible world. The second calculus uses the usual T and F signs and
exploits a property of the construction of the completeness theorem to introduce
a check which is an alternative to loop check mechanisms.

Dummett logic has been extensively investigated both by people working in
computer science and in logic. The history of this logic starts with Gödel, who
studied the family of logics semantically characterised by a sequence of n-valued
(n > 2) matrices ([12]). In paper [6] Dummett studied the logic semantically
characterized by an infinite valued matrix which is included in the family of
logics studied by Gödel and proved that such a logic is axiomatizable by adding

1

http://arxiv.org/abs/1206.4458v1

to any Hilbert system for propositional intuitionistic logic the axiom scheme
(p → q) ∨ (q → p). Moreover, it is well-known that such a logic is semantically
characterised by linearly ordered Kripke models. Dummett logic also appear
in investigations related to the relevance logics [7] and Heyting provability [16].
Dummett logic has been studied also in recent years for its relationships with
computer science ([2]) and fuzzy logics ([13]). For a survey of proof theory for
Gödel-Dummett logics we cite [5].

To perform automated deduction both tableau and sequent calculi have been
proposed. To get a terminating calculus for Dummett logic obeying to the
subformula property, the main problem is how to handle formulas of the kind
T(A → B) (left-implicative formulas, in the sequent terminology). A termi-
nating calculus can be achieved by introducing specialized rules based on the
main connective of A. In the conclusions of such specialized rules some formu-
las are not subformulas of the premise. Calculi of this nature are provided in
[1, 3, 8, 9, 10, 11, 14]. The specialized rules used in [1, 8, 9, 10, 11] are based on
the rules proposed by Vorobiev [17] to handle formulas of the kind T(A → B) in
propositional Intuitionistic logic. Papers [3, 14] decompose implicative formulas
by rules whose correctness is justified by the semantics of Dummett logic.

In this work we present calculi whose deductions have, respectively, linear
and quadratic depth in the size of the formula to be decided and the subformula
property, a feature that the calculi in the above quoted papers fail.

Papers [4] and [15] provide calculi with the subformula property. Work [4]
provides a calculus based on sequents called sequent of relations calculus whose
deductions have exponential depth in the formula to be proved, because in the
premise of some rules can occur multiple copies of a subformula of the conclu-
sion. Moreover, the nodes of a proof with such a system are more cumbersome
than the nodes of a tableau proof, because every node of the deduction ex-
presses the relation order between the subformulas of the formula to be proved.
Thus every node has a quadratic number of formula occurrences. Paper [15]
provides two goal-oriented calculi, one based on hypersequents and one on la-
belled sequents. The systems are restricted to the implicative fragment. The
first advantage is that our results are given for the full language. Although a
translation from the full language to the implicative fragment is possible but,
in the case of disjunction the cost is an exponential blow-up in the size of the
formula. Moreover, we do not need the more expressive power of hypersequents
and differently from the labelled sequents, the object language of our calculi
does not depend on the input.

As regards our results, it is worth to remark that our final calculus is a gen-
uine tableau calculus only employing the usual two signs T and F corresponding
respectively to the left-hand side and right-hand side of the sequent systems.

As regards the techniques used in the paper, we have deliberately chosen
to employ tableaux as proof-systems. Our choice is justified by the fact that
the rules of our calculi can be easily explained by semantical considerations
based on Kripke models. For this reason we do not use the sequent systems,
whose behaviour is upside-down with respect to a semantical characterization.
However, since tableau and sequent calculi are related, it is an easy exercise

2

to translate our calculi into sequents. Moreover, correctness and completeness
are proved always taking the Kripke models for propositional Dummett logic
as semantical reference. Following the proofs of the completeness theorems, the
procedures we provide can be modified to return a proof or a counter model.

2 Basic definitions and a terminating tableau

calculus with the subformula property

We consider the propositional language based on a denumerable set of proposi-
tional variables PV, the boolean constants ⊤ and ⊥ and the logical connectives
∧,∨,→. We call atoms the elements of PV ∪{⊤,⊥}. In the following, formulas
(respectively set of formulas and propositional variables) are denoted by letters
A, B, C. . . (respectively S, T , U ,. . . and p, q, r,. . .) possibly with subscripts or
superscripts.

From the introduction we recall that Dummett Logic (Dum) can be axiom-
atized by adding to any axiom system for propositional intuitionistic logic the
axiom scheme (p → q) ∨ (q → p) and a well-known semantical characterization
of Dum is by linearly ordered Kripke models. In the paper model means a lin-
early ordered Kripke model, namely a structure K = 〈P,≤,ρ,
〉, where 〈P,≤, ρ〉
is a linearly ordered set with ρ minimum with respect to ≤ and
 is the forcing
relation, a binary relation on P × (PV ∪ {⊤,⊥}) such that: (i) if α
 p and
α ≤ β, then β
 p; (ii) for every α ∈ P , α
 ⊤ holds and α
 ⊥ does not
hold. Hereafter we denote the members of P by means of lowercase letters of
the Greek alphabet.

The forcing relation is extended in a standard way to arbitrary formulas of
our language as follows:

1. α
 A ∧B iff α
 A and α
 B;

2. α
 A ∨B iff α
 A or α
 B;

3. α
 A → B iff, for every β ∈ P such that α ≤ β, β
 A implies β
 B;

We write α 1 A when α
 A does not hold. It is easy to prove that for every
formula A the persistence property holds: If α
 A and α ≤ β, then β
 A.
We say that β is immediate successor of α iff α < β and there is no γ ∈ P such
that α < γ < β. A formula A is valid in a model K = 〈P,≤,ρ,
〉 if and only if
ρ
 A. It is well-known that Dum coincides with the set of formulas valid in
all models.

In Figures 1 and 2 are given the rules of D1, a terminating tableau calculus
exploiting the truth at present and next possible world in the Kripke semantics.

The calculus D1 works on signed formulas, that is well-formed formulas
prefixed with one of the signs T (with TA to be read “the fact A is known
at the present state of knowledge”), F (with FA to be read “the fact A is not
known at the present state of knowledge”), Fl (with FlA to be read “this is
the last state of knowledge where A is not known”), Fn (with FnA to be read

3

S,T(A ∧B)

S,TA,TB
T∧

S,Fl(A ∧B)

S,FlA,TnB|S,TA,FlB
Fl∧

S,T(A ∨B)

S,TA|S,TB
T∨

S,Fl(A ∨B)

S,FA,FlB|S,FB,FlA
Fl∨

S,T(A → B)

S,TB|S,FlA,TnB|S, T̃(A → B)
T→

S,Fl(A → B)

S,TA,FlB
Fl→

S,FA

S,FlA|S,FnA
F−decide

S, T̂(A → B)

S,FlA,TnB|S, T̃(A → B)
T̂−decide

Figure 1: The invertible rules of D1.

S, T̃(A1 → B1), . . . , T̃(An → Bn),FnCn+1, . . . ,FnCu

Sc, V1, SF| . . . |Sc, Vn, SF|Sc, ST̂
, Vn+1| . . . |Sc, ST̂

, Vu

FnT̃

where: SF = {FCn+1, . . . ,FCu}, S
T̂
= {T̂(A1 → B1), . . . , T̂(An → Bn)},

for j = 1, . . . , n,

Vj = {T̂(A1 → B1), . . . , T̂(Aj−1 → Bj−1),FlAj ,TnBj , T̂(Aj+1 → Bj+1), . . . , T̂(An → Bn)},

for j = n+ 1, . . . , u, Vj = {FCn+1, . . . ,FCj−1,FlCj ,FCj+1, . . . ,FCu} and

Sc = {TA|TA ∈ S} ∪ {TA|FlA ∈ S} ∪ {TA|TnA ∈ S};

Figure 2: The non-invertible rule FnT̃.

“A is not known in the next state of knowledge”), Tn (with TnA to be read

“A will be known in the next state of knowledge”), T̂ (with T̂A to be read as

“TA holds and if A is of the kind B → C, then FB holds”) and T̃ (with T̃A

to be read as “TA holds and if A is of the kind B → C, then FnB holds”)
and on sets of signed formulas (hereafter we omit the word “signed” in front of
“formula” in all the contexts where no confusion arises). Formally, the meaning
of the signs is provided by the relation realizability (⊲) defined as follows: Let
K = 〈P,≤,ρ,
〉 be a model, let α ∈ P , let H be a signed formula and let S be
a set of signed formulas. We say that α realizes H (respectively α realizes S

and K realizes S), and we write α ⊲H (respectively α ⊲ S and K ⊲ S), if the
following conditions hold:

4

1. α⊲TA iff α
 A;

2. α⊲ FA iff α 1 A;

3. α⊲ FnA iff there exists β > α, β ⊲ FA;

4. α⊲TnA iff for every β > α, β ⊲TA;

5. α⊲ FlA iff α⊲ FA and α⊲TnA;

6. α⊲ T̃A iff A ≡ B → C and α⊲TA and α⊲ FnB;

7. α⊲ T̂A iff A ≡ B → C and α⊲TA and α⊲ FB;

8. α⊲ S iff α realizes every formula in S.

By inspecting the rules of the calculus we have that signs T̃ and T̂ are used
for implicative formulas only.

From the meaning of the signs we get the conditions that make a set of
formulas inconsistent. A set S is inconsistent if one of the following conditions
holds:
-T⊥ ∈ S;
-{TA,FA} ⊆ S;
-{TA,FlA} ⊆ S.

It is easy to prove the following proposition:

Proposizione 1 If a set of formulas S is inconsistent, then for every Kripke
model K = 〈P,≤,ρ,
〉 and for every α ∈ P , α ⋫ S.

A proof table (or proof tree) for S is a tree, rooted in S and obtained by the
subsequent instantiation of the rules of the calculus. A closed proof table is a
proof table whose leaves are all inconsistent sets. A closed proof table is a proof
of the calculus and a formula A is provable iff there exists a closed proof table
for {FlA}.

The premise of the rules are instantiated in a duplication-free style: in the
application of the rules we always consider that the formulas in evidence in
the premise are not in S. We say that a rule R applies to a set U when it
is possible to instantiate the premise of R with the set U and we say that a
rule R applies to a formula H ∈ U (respectively the set {H1, . . . , Hn} ⊆ U) to
mean that it is possible to instantiate the premise of R taking S as U \ {H}
(respectively U \ {H1, . . . , Hn}). As an example, given the set U = {T(B ∧
C),T(A ∧ C),F(A ∨ B)}, by applying the rule T∧ taking T(A ∧ C) as main
formulameans to instantiate the premise ofT∧ taking S = {T(B∧C),F(A∨B)}
and H = T(A ∧ C).

Before going into technical details we give an informal description of the
whole machinery. First, note that there are no rules for sign Tn. The sign
Tn aims to mark formulas that will be signed with T after an application of
FnT̃. Moreover, F-formulas are handled by F-decide. In semantical terms of
counter model construction, given the formula FA, rule F-decide decides if in

5

S, T̃(A1 → B1), . . . , T̃(An → Bn),FnCn+1, . . . ,FnCu

Sc, V1, SF| . . . |Sc, Vn, SF|Sc, ST̃
, Vn+1| . . . |Sc, ST̃

, Vu

FnT̃−opt

where: SF = {FCn+1, . . . ,FCu}, S
T̃
= {T̃(A1 → B1), . . . , T̃(An → Bn)},

for j = 1, . . . , n,

Vj = {T̃(A1 → B1), . . . , T̃(Aj−1 → Bj−1),FlAj ,TnBj , T̂(Aj+1 → Bj+1), . . . , T̂(An → Bn)},

for j = n+ 1, . . . , u, Vj = {FnCn+1, . . . ,FnCj−1,FlCj ,FCj+1, . . . ,FCu} and

Sc = {TA|TA ∈ S} ∪ {TA|FlA ∈ S} ∪ {TA|TnA ∈ S};

Figure 3: The non-invertible rule FnT̃.

the next state of knowledge the formula A will be a known or an unknown fact.
Similarly, rule T̂-decide decides the semantical status of the antecedent A for
formulas of the kind T̂(A → B). By the rules of the calculus, if T(A → B)

becomes T̃(A → B), then in the subsequent sets the sign of A → B can only

be T̂ or T̃ and rules T̂-decide and FnT̃ are the only rules where the sign can
be switched. Rule FnT̃ is the only non-invertible rule of D1, thus to devise a
complete strategy that does not require backtracking it is sufficient that rule
FnT̃ is applied when no other rule is applicable. Finally, the following features
of D1 allow us to prove the termination: every node of the proof table contains
at least a Fl-formula and an application of FnT̃ increases the number of T-
signed formulas. Also note that, if FnT̃ is applied only if no other rule is
applicable, which is the way we want to use FnT̃, then the premise is always
instantiated to a set containing at least an Fl-atomic formula. This implies
that in the conclusion at least one new T-signed atomic formula is introduced.
Summarizing, in spite of the rightmost set in the conclusion of rules T →,
F − decide and T̂ − decide, any sequence of application of rules ends in a set
containing signed atomic formulas only and we do not have infinite loops.

Remark 1 The presentation of the calculus is without efficiency in mind. We
could exploit the meaning of signs Fl and Tn to introduce more rules and checks
that allow us to reduce the size of the proofs. As an example we could ex-
tend the notion of inconsistent set by adding to those given above the following
conditions: {FA, T̂A} ⊆ S; {FA, T̃A} ⊆ S; {TA,FnA} ⊆ S; {TA, T̃(A →

B)} ⊆ S; {TA, T̂(A → B)} ⊆ S; {TnA, T̃(A → B)} ⊆ S; {Tn⊥,FnA} ⊆ S;

{TnA,FnA} ⊆ S; {FlA, T̃(A → B)} ⊆ S; {Fl⊥,FnA} ⊆ S. This would
avoid to perform useless deduction steps all ending in inconsistent sets. The
rule FnT̃ − opt given in Figure 3 is an optimization of rule FnT̃ of Figure 2.
This rule avoids useless applications of F-decide and T̂-decide which are rules
that introduce branching points.

6

3 Correctness

To obtain the correctness of D1 with respect to Dummett logic, we proceed by
showing that the existence of a proof table for {FlA}, implies the validity of A
in Dummett logic. The main step consists in establishing that the rules of the
calculus preserve realizability:

Proposizione 2 For every rule of D1, if a world α of a model K = 〈P,≤,ρ,
〉
realizes the premise, then α realizes at least one of the conclusions.

Proof 1 We consider only two rules:
Rule Fl∧. Let us suppose that α ⊲ Fl(A ∧ B). By the meaning of Fl we have
that α 1 A ∧ B and for every world β ∈ P , if α < β, then β
 A ∧ B. This
implies that α 1 A or α 1 B and β
 A and β
 B. We have two main cases
on A: if α 1 A holds, then, since β
 A, we get α ⊲ FlA. Moreover, from
β
 B, α⊲TnB follows; if α
 A holds, then α⊲TA holds and, by α 1 A∧B,
we have α 1 B and since β
 B it follows that α⊲ FlB holds;
Rule FnT̃. The correctness of the rule can be explained following [1]. Let us

suppose that α⊲ S, T̃(A1 → B1), . . . , T̃(An → Bn),FnAn+1, . . . ,FnAu. By the

meaning of T̃ we have that α ⊲ FnA1,T(A1 → B1), . . . ,FnAn,T(An → Bn).
Thus there exists βi such that α < βi and βi⊲FlAi, for i = 1, . . . , u. We notice
that βi realizes all the T formulas in S and βi ⊲ TC if FlC ∈ S. Moreover,
if βi = min{β1, . . . , βu}, then βi ⊲ FA1, . . . ,FAi−1,FlAi,FAi+1, . . . ,FAu. By

the meaning of T, T̂ and Tn we conclude that if i ∈ {1, . . . , n}, then

βi ⊲ {T̂(A1 → B1), . . . , T̂(An → Bn),FAn+1, . . .FAu} ∪ {FlAi,TnBi},

otherwise βi ⊲ {T̂(A1 → B1), . . . , T̂(An → Bn),FAn+1, . . . ,FAu} ∪ {FlAi}.

From the proposition above we get

Theorem 1 If there exists a closed proof table for A, then A is valid in Dum-
mett logic.

4 Completeness

We describe a procedure using the rules of the calculus to return a proof or a
counter model for a given set of signed formulas S.

In the following we sketch the recursive procedure D(S). Given a set S of
formulas, D(S) returns either a closed proof table for S or NULL (if there exists
a model realizing S). To describe D we use the following definitions and nota-
tions. We call α-rules and β-rules the rules of Figure 1 with one conclusion and
with two conclusions, respectively. The α-formulas and β-formulas are the kind
of the signed formulas in evidence in the premise of the α-rules and β-rules,
respectively (e.g. T(A ∧ B) is an α-formula and T(A ∨ B) is a β-formula).
Let S be a set of formulas, let H ∈ S be an α or β-formula. With Rule(H)

7

we denote the rule corresponding to H in Figure 1. Let S1 or S1|S2 be the
nodes of the proof tree obtained by applying to S the rule Rule(H). If Tab1
and Tab2 are closed proof tables for S1 and S2 respectively, then S

Tab1
Rule(H) or

S
Tab1|Tab2

Rule(H) denote the closed proof table for S defined in the obvious way.

Moreover, Ri(H) (i = 1, 2) denotes the set containing the formulas of Si which
replaces H . For instance:
R1(T(A ∧B)) = {TA,TB },
R1(T(A ∨B)) = {TA}, R2(T(A ∨B)) = {TB},

In the case of FnT̃ we generalize the above notation. Let S
FnT̃

be the set of
all the Fn-formulas of S. Let S1| . . . |Sn be the nodes of the proof tree ob-

tained by applying to S the rule FnT̃. If Tab1 . . . , T abn are closed proof tables
for S1, . . . , Sn, respectively, then

S
Tab1|...|Tabn

FnT̃ is the closed proof table for S.

With Ri(SFnT̃
) we denote the set of formulas that replaces the set S

FnT̃
in the i-

th conclusion of FnT̃. For example, given S
FnT̃

= {T̃(A1 → B1),FnA2,FnA3},

R2(SFnT̃
) = {T̂(A1 → B1),FlA2,FA3}.

Function D(S)
1. If S is an inconsistent set, then D returns the proof S;

2. If an α-rule applies to S, then let H be a α-formula of S. If D((S \ {H}) ∪
R1(H)) returns a proof π, then D returns the proof S

π
Rule(H), otherwise D re-

turns NULL;

3. If a β-rule applies to S, then let H be a β-formula of S. Let π1 =
D((S \ {H}) ∪ R1(H)) and π2 = D((S \ {H}) ∪ R2(H)). If π1 or π2 is NULL,
then D returns NULL, otherwise D returns S

π1|π2

Rule(H);

4. If the rule FnT̃ applies to S, then let S
FnT̃

= {SA ∈ S|S ∈ {T̃,Fn}} and n =
|S

FnT̃
|. If there exists i ∈ {1, . . . , n}, such that πi = D((S \S

FnT̃
)c∪Ri(SFnT̃

))
is NULL, then D returns NULL. Otherwise π1, . . . , πn are proofs and D returns

S
π1|...|πn

FnT̃;

5. If none of the previous points apply, then D returns NULL.

end function D.

We emphasize that function D respects a particular sequence in the appli-
cation of the rules: FnT̃ is applied if no other rule is applicable. As a result
no backtracking step is necessary. Moreover, to decide A, the function call
D({FlA}) is performed. By the rules handling Fl-formulas we have that when

rule FnT̃ is applied the formal parameter S contains at least a Fl-atomic for-
mula and by rule FnT̃, every actual parameter of the recursive call performed in
Step 4, contains a Fl-formula and a T-atomic formula not occurring in S. This
implies that every application of FnT̃ introduces a new T-atomic formula and
thus we can have at most n applications of rule FnT̃, where n is the number
of propositional variables in A. Since between two applications of rule FnT̃
we cannot have an infinite sequence of rule applications, we conclude that the

8

function call D({FlA}) always terminates. More formally, we can define a bi-
nary relation ≺ on sets of formulas defined as follows: S′ ≺ S iff (i) the set of
T-atomic formulas in S′ includes the set of atomic formulas in S, or (ii) the
set of T-atomic formulas in S′ coincides with the set of atomic formulas in S

and the number of connectives in S′ is lower than in S or (iii) the sets S and
S′ contain the same T-atomic formulas, the same number of connectives and
they differ for the sign of a single formula A such that TA ∈ S and T̃A ∈ S′

or T̃A ∈ S and T̂A ∈ S′ or FA ∈ S and FlA ∈ S′ or FA ∈ S and FnA ∈ S′.
By inspecting the rules of the calculus it follows that every recursive call is per-
formed on a actual parameter S′ such that S′ ≺ S. By definition of ≺ and the
fact that the sets only contain subformulas of the formula to be decided, every
chain of recursive calls on non-inconsistent sets ends in a set only containing
signed atomic formulas. This implies that function D terminates.

In order to get the completeness of D, in the following it is proved that
given a set of formulas S, if the call of D(S) returns NULL, then there is enough
information to build a model K = 〈P,≤,ρ,
〉 such that ρ⊲ S.

Theorem 2 (Completeness of D) Let A be a formula. If A is valid in propo-
sitional Dummett logic, then D({FlA}) returns a proof.

Proof 2 To prove the theorem, we consider a set S of formulas and we prove
that if D(S) returns NULL, then there exists a Kripke model K = 〈P,≤,ρ,
〉 such
that ρ⊲S. We get the statement of the theorem by setting S = {FlA} and using
the contrapositive.

We proceed by induction on the number of nested recursive calls. It is worth
to note that the construction of K uses the sets of formulas involved in Step 4
or 5 of function D as elements of P .
Basis: There are no recursive calls. Then Step 5 has been performed. We notice
that S is not inconsistent (otherwise Step 1 would have been performed). Indeed,
S only contains atomic formulas signed with T, Tn, Fl. It is easy to prove that
the model K = 〈P,≤,ρ,
〉, where ρ = S, P = {ρ}, ρ ≤ ρ and ρ
 p iff Tp ∈ S,
realizes S.

Step: By induction hypothesis we assume that the proposition holds for all sets
S′ such that D(S′) requires less than n recursive calls. We prove the proposition
holds for a set S such that D(S) requires n recursive calls by inspecting all the
possible cases where the procedure returns the NULL value.
NULL value returned performing Step 4. By induction hypothesis there exists
a model K ′ = 〈P ′,≤′, ρ′,
′〉 such that ρ′ ⊲ (S \ S

FnT̃
)c ∪ Rj(SFnT̃

). We

have two cases: if the j-th formula in the enumeration of S
FnT̃

is T̃(Aj →

Bj), then Rj(SFnT̃
) =({T̂(A → B)|T̃(A → B) ∈ S

FnT̃
}\{T̂(Aj → Bj)}) ∪

{FlAj ,TnBj} ∪ {FC|FnC ∈ S
FnT̃

}. By ρ′ ⊲FlAj ,TnB, we have ρ⊲ T̂(Aj →

Bj) and ρ 1 Aj. We also have that for every T̂(A → B) ∈ Rj(SFnT̃
), ρ′ 1′ A

and for every FC ∈ Rj(SFnT̃
), ρ′ 1 C. We build the following structure

9

K = 〈P,≤, ρ,
〉 such that

P = P ′ ∪ {ρ},
≤ = ≤′ ∪ {(ρ, α)|α ∈ P ′},

 =
′ ∪ {(ρ, p)|Tp ∈ S},

where we set ρ = S. Since K ′ is a Dummett model realizing (S \ S
FnT̃

)c, it
follows that K is a Dummett model. As a matter of fact, ρ′ is the immediate
successor of ρ and TA ∈ S implies TA ∈ (S \ S

FnT̃
)c, thus the forcing relation

is preserved. This also implies that: ρ 1 Aj holds, that, together with the facts

ρ′
′ Aj → Bj and ρ′ 1′ Aj, implies ρ ⊲ T̃(Aj → Bj); for every T̂(A →
B) ∈ Rj(SFnT̃

), ρ 1 A holds, that together with the facts ρ′
′ A → B and

ρ′ 1′ A, implies that ρ ⊲ T̃(A → B); for every FC ∈ Rj(SFnT̃
), ρ 1 C holds,

that together with the fact ρ′ 1 C implies ρ ⊲ FnC. Thus we have proved that
ρ⊲ S

FnT̃
. As regard the other formulas in S: if FlA ∈ S, then A is an atomic

formula and TA ∈ (S \ S
FnT̃

)c. Since S is not inconsistent (otherwise Step 1
would have been performed) TA 6∈ S holds, this implies ρ 1 A; if TnA ∈ S

holds, then TA ∈ (S \S
FnT̃

)c and hence ρ′
 A. Summarizing we conclude that
ρ⊲ S.

We remark that following the construction of Theorem 2, it is straightforward
how to modify function D to get a function returning a proof or a counter model.
In particular, the proof puts in evidence that a counter model can be extracted
by any branch of a tableau proof ending in a non-contradictory set to which no
further rule is applicable. By the fact that every application of FnT̃ introduces
in the conclusion a new propositional variable, it follows that if a formula A

is realizable, then D returns a counter model for A having n + 1 elements at
most, where n is the number of propositional variables of A. Finally, note that
the elements of the counter model K are sets of formulas only with the aim to
simply the discussion in next section.

5 Handling F-formulas

Now we start to discuss a calculus handling formulas signed with T and F only.
We present our ideas in two steps. First we introduce calculus D2 having rules
to handle the main connective of F-formulas, this allow us to get rid of T̂-decide
rule. Then we go a step further to get our final calculus D3.

To handle F-formulas by rules based on the main connective, it is necessary
to introduce a machinery to determine, given T̃(A → B), if A is forced. Such a
machinery is based on a notion similar to the boolean satisfiability of a formula
in a model. Let S be a non-inconsistent set of signed formulas and let A be a
formula, we write S |= A iff TA ∈ S, T̃A ∈ S or one of the following conditions
holds: (i) A = ⊤; (ii) A = B ∧ C, S |= B and S |= C; (iii) A = B ∨ C, S |= B

or S |= C; (iv) A = B → C and FnA 6∈ S and if S |= B then S |= C.

We are interested to check if S |= A holds when FnT̃ is the only rule applicable

10

to S. The relation |= aims to express via syntax the semantical notion of
realizability. In other words, we are looking for a syntactical checking for forcing
and non-forcing of a formula in a world of the Kripke model built in the proof
of Theorem 2. Relation |= allows us to express such a checking via the way the
formulas are handled in the construction of the counter model. The construction
has the properties suggesting that a new calculus managing T and F-formulas
and a syntactical checking based on |= can be given. We start to show a relation
between
 and |= in the construction given in Theorem 2:

Lemma 1 Let S be a set occurring in the construction of the model K =
〈P,≤,ρ,
〉 in the proof of Theorem 2 and let α ∈ P . Let us suppose that α⊲ S.
Then:
(i) if SA ∈ S, with SA ∈ {T, T̃, T̂}, then for every β ∈ P such that α ≤ β,
β |= A and
(ii) if SA ∈ S, with SA ∈ {F,Fl,Fn}, then α 6|= A.

Proof 3 Note that (i) states that |= is persistent. The proof proceeds by induc-
tion on A.

Basis: A is an atomic formula. We have the cases TA, FlA, FnA and FA.
Case TA. By construction of K, for every β ∈ P such that α ≤ β, TA ∈ β

holds and we get β |= A by definition of |=.
Case FlA. By construction FlA ∈ α and TA 6∈ α. By definition of |= we get
α 6|= A.
Case FnA. By construction FnA ∈ α. Since by construction there exists a
subsequent set S′ of α such that FlA ∈ S′, it follows that TA 6∈ S, thus, by
definition of |= we get α 6|= A.
Case FA. By construction FlA ∈ α or FnA ∈ α and we immediately get that
α 6|= A.

Step: we proceed according to the outer connective of A.
Case TA = T(B → C). By construction of proof in Theorem 2 we have three
cases: (i) there is a subsequent set S′ of S such that TC ∈ S′ and α⊲ S′. For
every β ∈ P such that α ≤ P , β⊲TC and by induction hypothesis we conclude
β |= C; (ii) there exists a subsequent set S′ such that FlB,TnC ∈ S. Thus
α⊲FlB,TnC and by induction hypothesis applied to FlB we get α 6|= B. More-
over by the construction we have that there exists a set S′′ such that TC ∈ S′′

and for every β ∈ P such that α < β, β ⊲ TC. By induction hypothesis on
C we get that β |= C that together α 6|= B proves that α |= B → C; (iii) by
construction there exist a subsequent set S′ of S and α such that FlB,TnC ∈ S′

and β ∈ P such that α < β and β ⊲ S′. By proceeding as in Point (ii) we get
that for every γ ∈ P such that β ≤ γ, γ |= B → C. Moreover for every γ ∈ P

such that α ≤ γ and γ < β, T̃A ∈ γ. By definition of |= we immediately get that

γ |= T̃(B → C). Thus we have proved that for every β ∈ P such that α ≤ β,
β |= B → C.

Next Proposition 3 is the main step to introduce our new calculus. We

11

express the relationship between
 and |= in the construction of the counter
model given in Theorem 2:

Proposizione 3 Let S be a set and let us suppose that FlA ∈ S, the call D(S)
returns NULL and in the counter model K = 〈P,≤, ρ,
〉 built in Theorem 2 there
exists an element of P forcing A. Let α ∈ P be the minimum world such that
α
 A. We have that α |= A and for every β ∈ P such that β < α, β 6|= A.

Proof 4 By the construction given in Theorem 2, the hypothesis FlA ∈ S im-
plies ρ 1 A. Moreover, by the meaning of the sign Fl we have that α is the
immediate successor of ρ. What we are going to prove is that if in the construc-
tion of the counter model K the formula FlA is occurred and there exists α ∈ P

such that α
 A, then the syntactical information in α allows us to prove α
 A

via α |= A also when TA 6∈ α. We proceed by induction on A.
Basis: A is a propositional variable. We have that α
 A iff (by definition of

) TA ∈ α iff α |= A (by definition of |=). Moreover, for every β < α, since
β 1 A we have that TA 6∈ β, thus β 6|= A.
Step:
Case A = B → C. In the stack of the recursive calls of D(S) there exists a
subsequent set S′ of S such that TB ∈ S′ and FlC ∈ S′. By the completeness
theorem we have ρ⊲ S′, thus ρ
 B and ρ 1 C. Since α
 B → C, from ρ
 B

it follows that α
 C. By induction hypothesis on C, α |= C. Thus we conclude
that α |= B → C. Since TB ∈ S′, FlC ∈ S′ and ρ ⊲ S′, by Lemma 1 we get
that ρ 6|= B → C holds.

Case A = B ∧ C. We have three cases: (i) in the stack of the recursive calls
there exists a subsequent set S′ of S such that FlB,FlC ∈ S′. By Theorem 2
ρ ⊲ FlB,FlC, thus ρ 1 B and ρ 1 C. Since α
 A ∧ B we have α
 A and
α
 B. By induction hypothesis applied to B and C we get α |= B and α |= C,
thus α |= B ∧ C, ρ 6|= B and ρ 6|= C, thus ρ 6|= B ∧ C; (ii) FlB,TC ∈ S′. By
Theorem 2, ρ ⊲ FlB,TC. Since α
 B ∧ C, we have α
 B and α
 C. By
induction hypothesis and Lemma 1, α |= B ∧ C. Moreover, since ρ ⊲ S′ and
FlB ∈ S′ we get ρ 6|= B. (iii) TB,FlC ∈ S. The case goes as (ii).
Case A = B ∨ C. We have two cases: (i) FC,FlB ∈ S′. By completeness
theorem ρ ⊲ S′. By hypothesis, α ⊲ B, thus by induction hypothesis applied to
B, α |= B and ρ 6|= B. This implies α |= B ∨ C. Now, since FC ∈ S′ we have
that there exists a set S′′ subsequent to S′ such that ρ ⊲ S′′ and FlC ∈ S′′ or
FnC ∈ S′′. In both cases we get ρ 6|= C and thus ρ 6|= B∨C. (ii) FB,FlC ∈ S′.
The case goes as (i).

Note that in the proof above, we take advantage from the fact that the world
α is the immediate successor of ρ and, as in Case A = B ∨ C, we appeal to
the fact ρ ⊲ S′. The difficult part will come when, by construction, we cannot
say that the world α is the immediate successor of ρ. We will face this problem
with our final calculus D3. The strategy employed by function D implies that
a F-formula sooner or later become a Fl-formula. We can use the result above
to get calculus D2, which represents a first slight change to calculus D1:

12

S,T(A → B)

S,TA|S,FA,T(A → B)
T→1

S,T(A → B)

S,TB
T, provided S |= A

Figure 4: Rules for D2

• We leave out the signs T̃ and T̂ and the rule T̂-decide.

• the new calculus D2 has the rules T∧, T∨, Fl∧, Fl∨, Fl → and F-decide
of D1. Rule FnT̃ now becomes a rule handling Fn-formulas only, thus we
refer to it with the name of Fn. Finally, D2 has the rules in Figure 4;

• relation |= needs to be redefined according to the syntax of the new cal-
culus: Let S be a set of signed formulas and A a formula, we write S |= A

iff TA ∈ S, TA ∈ S or one of the following conditions hold: (i) A = ⊤;
(ii) A = B ∧ C and S |= B and S |= C; (iii) A = B ∨ C and S |= B or
S |= C; (iv) A = B → C, FnA 6∈ S and if S |= B then S |= C.

• the sign T is introduced to mark forced formulas of the kind A → B that
are not at disposal of the rule T → because already handled previously
in the branch. By the propositions given above, if S 6|= A holds, then

meaning of T(A → B) is exactly the same of T̃(A → B).

By using previous results it is not difficult design a decision procedure based on
D2 and to prove correctness and completeness. In such a procedure rule T is
possibly applied if no other rule but Fn is applicable.

Now we can do another step and get rid of sign Fl and rule F-decide. The
propositions given above use the fact that the information about an F-formula
is not syntactically lost. As a matter of fact, every F-formula is handled by
F-decide and sooner or later a F-formula is turned into a Fl-formula and in the
meantime the F-formula has become a Fn-formula.

The rules of this new calculus D3 are given in Figure 5. The calculus works
on the signs T and F. The sign T labels formulas that are not at disposal of
deduction, thus it is not part of the object language. The signs Fl, Tn and Fl

are no longer necessary to get a calculus obeying the subformula property. A
set S is inconsistent iff T⊥ ∈ S or {TA,FA} ⊆ S. Note rule F∧ where both
A and B occur. This is necessary to get for D3 the analogous of Proposition 3.
For this calculus relation |= is defined as follows: S |= A iff TA ∈ S, TA ∈ S or
one of the following conditions hold: (i) A = B ∧C and S |= B and S |= C; (ii)
A = B ∨C and S |= B or S |= C; (iii) A = B → C, FA 6∈ S and if S |= B then
S |= C. As for the rules of the calculus, T is the only rule requiring a proof of
correctness. Moreover, for every rule of D3 but F →, it is immediate to check
that if an element α ∈ P of a model K = 〈P,≤,ρ,
〉 realizes one of the sets in
the conclusion, then α also realizes the premise. The following Function G uses
calculus D3 to decide a set S. We recall that the formulas in S can be written
only using T and F, since T is a private labelling of the deduction and as far

13

S,T(A ∧ B)

S,TA,TB
T∧

S,F(A ∧B)

S,FA,FB|S,FA,TB|S,TA,FB
F∧

S,T(A ∨B)

S,TA|S,TB
T∨

S,F(A ∨ B)

S,FA,FB
F∨

S,T(A → B)

S,TB|S,FA,T(A → B)
T→1

S,T(A → B)

S,TB
T provided S |= A

S,F(A1 → B1), . . . ,F(Au → Bu)

Sc, V1| . . . |Sc, Vu

F→

where:
for j = 1, . . . , u
Vj = ({F(A1 → B1), . . . ,F(Au → Bu)} \ {F(Aj → Bj)}) ∪ {TAj ,FBj}

Sc = {TA ∈ S} ∪ {TA ∈ S}

Figure 5: The calculus D3

as concerns the deduction T-formulas are T formulas which are not at disposal
of deduction.
Function G(S)
1. If S is an inconsistent set, then G returns the proof S;

2. If an α-rule applies to S, then let H be a α-formula of S. If G((S \ {H}) ∪
R1(H)) returns a proof π, then G returns the proof S

π
Rule(H), otherwise G

returns NULL;

3. If a β-rule applies to S, then let H be a β-formula of S. Let π1 = G((S \
{H}) ∪ R1(H)) and π2 = G((S \ {H}) ∪ R2(H)). If π1 or π2 is NULL, then G

returns NULL, otherwise G returns S
π1|π2

Rule(H);

4. If rule F∧ applies to S, then let H = F(A ∧ B) be a formula in S. Let
π1 = G((S \ {H}) ∪ {FA,FB}), π2 = G((S \ {H}) ∪ {FA,TB}) and π3 =
G((S \ {H}) ∪ {TA,FB}). If π1, π2 or π3 is NULL, then G returns NULL,
otherwise G returns S

π1|π2|π3

F∧;

5. If T(A → B) ∈ S and S |= A, then let π1 = G((S \ {T(A → B)}) ∪ {TB}).
If π1 is NULL then G returns NULL, otherwise G returns S

π1

T.

6. If the rule F → applies to S, then let SF→ = {F(A → B) ∈ S} and
n = |SF→|. If there exists i ∈ {1, . . . , n}, such that πi = G(Sc ∪ Ri(SF→))
is NULL, then G returns NULL. Otherwise π1, . . . , πn are proofs and G returns

S
π1|...|πn

F→;

7. If none of the previous points apply, then G returns NULL.

end function .
We need to prove that the properties of |= still hold in the construction of G.
Following the lines of Lemma 1, we can prove that relation |= is persistent:

14

Lemma 2 Let us suppose that TX ∈ S. Then in the construction, for every
subsequent set S′ of S, we have that S′ |= X.

In the following lemma we sketch correctness and completeness of G.

Theorem 3 Let S be a set of formulas. We have that:
(i) if G(S) returns NULL, then there exists a Kripke model K = 〈P,≤,ρ,
〉 such
ρ⊲ S;
(ii) if G(S) returns a proof, then for every Kripke model K = 〈P,≤,ρ,
〉 and
for every α ∈ P , α ⋫ S.

Proof 5 We proceed by induction on the number of nested recursive calls. Note
that if function G returns NULL, the elements of the Kripke model we build are
the sets of formulas involved in Steps 6 and 7.
Basis: There are no recursive calls.
(i) If G(S) returns NULL, then Step 7 has been performed. We notice that S is
not inconsistent (otherwise Step 1 would have been performed). Indeed, S only
contains atomic formulas signed with T or F. It is easy to prove that the model
K = 〈P,≤,ρ,
〉, where ρ = S, P = {ρ}, ρ ≤ ρ and ρ
 p iff Tp ∈ S, realizes S.
(ii) If G(S) returns a proof, then Step 1 is performed, thus S is inconsistent
and an inconsistent set is not realizable.
Step: By induction hypothesis we assume that the proposition holds for all sets
S′ such that G(S′) requires less than n recursive calls. To prove the proposition
holds for a set S such that G(S) requires n recursive calls, one has to inspect
all the possible steps of G.
Let us suppose that Step 5 is performed. Thus we have that T(X → Y) ∈ S

and S |= X. The call G((S \ {T(X → Y)}) ∪ {TY }) is performed. We have to
analyze two main cases:
(i) The call G((S\{T(X → Y)})∪{TY }) returns NULL. By induction hypothesis
there is a model K = 〈P,≤,ρ,
〉 such that ρ⊲ S \ {T(X → Y)}) ∪ {TY }, thus
ρ⊲ S;
(ii) The call G(S \ {T(X → Y)}) ∪ {TY }) returns a proof. We have to show
that the rule application is correct. We want to prove that if S |= X, α is an
element of a Kripke model such that α
 p iff Tp ∈ S and α⊲S, then α⊲TX.
By construction we have that in the stack of the recursive calls there exists a set
S0 such that T(X → Y) ∈ S0 and a subsequent set S1 of S0 such that FX ∈ S1.
This means that S1 6|= X.

Claim 1 Let U be a set of the construction, Z a formula and β an element of
a Kripke model respectively meeting the conditions of S, X and α. We claim
that:
(i) if U 6|= Z and β ⊲ U , then β ⊲ FZ;
(ii) if U |= Z and β ⊲ U , then β ⊲TZ.

Proof 6 The proof of the claim goes by induction on Z:
Basis: Z is an atomic formula.
(i) If U 6|= Z, then TZ 6∈ U and by the relation of forcing defined on β we have
β ⊲ FZ;

15

(ii) if U |= Z, then TZ ∈ U , thus β ⊲TZ.
Step: we only prove the case Z = K → H.
(i) U 6|= K → H. We have two cases: (a) F(K → H) ∈ U , thus we immediately
get β ⊲ F(K → H); (b) F(K → H) 6∈ U . Thus U |= K and U 6|= H. By
induction hypothesis β ⊲TK and β ⊲ FH and we get α⊲ F(K → H);
(ii) U |= K → H. Thus F(K → H) 6∈ U . Since in the stack of the recursive calls
there exists a set S1 such that F(K → H) ∈ S1, then there exists a subsequent
set S2 of S1 such that TK,FH ∈ S2. Thus S2 |= K. By Lemma 2, U |= K and
thus U |= H. By induction hypothesis β ⊲TH and thus β ⊲T(K → H).

Now, since α⊲T(X → Y) means α
 X → Y , by the claim we get α
 X and
thus α
 Y , that is α ⊲ TY (note that by construction α meets the conditions
of the claim).
Let us suppose that Step 6 is performed. Note that in this case S contains
atomic formulas, formulas of the kind T(A → B), with S 6|= A, and F(A → B).
Point (ii) is an easy task, since it is based on the fact that rule F → preserves
the realizability (Point (ii) corresponds to the proof correctness of rule F →). As
for Point (i), by induction hypothesis there exists a Kripke model K′ = 〈P ′,≤′,
ρ′,
′〉 such that ρ′ realizes one of the set in the conclusion of the rule. We build
the following structure K = 〈P,≤, ρ,
〉 such that

P = P ′ ∪ {ρ},
≤ = ≤′ ∪ {(ρ, α)|α ∈ P ′},

 =
′ ∪ {(ρ, p)|Tp ∈ S},

where we set ρ = S. The difficult part in proving ρ⊲S is to show that if T(A →
B) ∈ S, then ρ⊲T(A → B). Since if Step 6 is performed and T(A → B) ∈ S

then S 6|= A. Note that by construction, in the stack of recursive calls, there
exists a previous set S0 of S such that FA ∈ S. Now by proceeding as in the
claim above we can prove that ρ 1 A and this allow us to get that ρ
 A → B.
An analogous argument has to be applied when Step 7 is performed, since in this
case S can contain T-formulas.

By inspecting the rules of the calculus, it is easy to prove that the procedure
terminates and the depth of the deductions is linear in the size of the formula
to be decided.

The check to decide if rule T has to be applied is performed on every T-
formula when no other rule but F → or possibly T is applicable. Thus before
every application of F → or T → the check is performed. Note that every appli-
cation of F → and T → erases at least an implication, thus along a branch the
number of times that the check is performed is linear in the length of the proof.
A single check requires a linear number of steps in the number of connectives
in the antecedent. Summarizing, along a branch to check if |= holds requires a
quadratic number of steps in the size of the formula to be proved.

16

6 Conclusions

In this paper we have presented two tableau calculi for propositional Dummett
logic obeying to the subformula property and whose deductions have respectively
quadratic and linear depth in the size of the formula to be decided. The papers
presented in literature lack of fulfilling all these features.

Both calculi do not require backtracking and are based on a multiple premise
rule. The object language of calculus D1 contains signs to characterize the
semantical status of “forced/non-forced in the next possible world” or “this is
last possible world where the formula is not known”, which are also employed
in [11]. Calculus D3 uses the signs T and F, that is the semantics of the
signed formulas is restricted to the forcing or non-forcing, and the proof is
built-up without the necessity of any particular labelling. Calculus D3 has a
straightforward translation into a sequent calculus.

Our completeness theorems prove that calculi D1 and D3 allow to provide
a procedure returning a counter model or a proof. In particular, a feature of
D1 is that from a failed proof of a formula A it is possible to extract a counter
model for A whose depth is n+ 1 at most, with n the number of propositional
variables occurring in A. From a remark on the completeness of D1 we get
calculus D3. Calculus D3 shows that the semantics of Dummett logic implies
that deduction conveys syntactical information about implicative formulas that
can be used to drive the deduction by means of a fast computational check on
some formulas which are possibly not at disposal of the deduction.

The multiple premise rules such as FnT̃ and F →, which are analogous to the
multiple premise rule introduced in [1], have been criticized because they have
an arbitrary number of premises and thus they are supposed not to be suitable
for automated deduction. In papers [10, 11] we showed that implementations of

systems equipped with a rule analogous to FnT̃ and F → are far better than
the implementation based on decomposition systems of [3, 14], which reduce the
formulas to implicative atomic formulas and then applies transitivity rules or
procedures based on graph reachability.

We note that it is possible to add some rules to optimize the proof search.
As an example, by refining the completeness theorem for D3, follows that given
T(A → B), if A does not contain implications, then we can turn T(A → B) into
T(A → B), thus saving an application of T → still preserving the completeness.
We believe that there are more general cases on the syntax on A that allow
to avoid an useless application of rule T →. Moreover, since the sign of the
occurrence of A in T(A → B) is F, it could be possible to apply our check to
F-formulas in order to avoid also useless applications of F-rules.

As a future work, the first question is an investigation along the above line,
that could be useful both to deepen the understanding of the proof theory
of Dummett logic and to design more efficient decision procedures. Another
question is to extend, if possible, the same technique to the first-order case
of Dummett logic. Finally, currently we are investigating how to adapt these
techniques employed for D3 to propositional intuitionistic logic, whose Kripke
semantics is more complicated than Dummett logic. Our preliminary results

17

show that both the syntactical check and the strategy are more involved than
those given for D3.

References

[1] A. Avellone, M. Ferrari, and P. Miglioli. Duplication-free tableau calculi
and related cut-free sequent calculi for the interpolable propositional inter-
mediate logics. Logic Journal of the IGPL, 7(4):447–480, 1999.

[2] A. Avron. Simple consequence relations. Journal of Information and Com-
putation, 92:276–294, 1991.

[3] A. Avron and B. Konikowska. Decomposition proof systems for gödel-
dummett logics. Studia Logica, 69(2):197–219, 2001.

[4] M. Baaz and C.G. Fermüller. Analytic calculi for projective logics. In
Neil V. Murray, editor, Automated Reasoning with Analytic Tableaux and
Related Methods, International Conference, TABLEAUX ’99, volume 1617
of Lecture Notes in Computer Science, pages 36–50. Springer, 1999.

[5] M. Baaz, A. Ciabattoni, and C. G. Fermüller. Hypersequent calculi for
Gödel logics – a survey. J. of Logic and Computation, 13(6):835–861, 2003.

[6] M. Dummett. A propositional calculus with a denumerable matrix. Journal
of Symbolic Logic, 24:96–107, 1959.

[7] J. M. Dunn and R. K. Meyer. Algebraic completeness results for Dummett’s
LC and its extensions. Zeitschrift für Mathematische Logik und Grundlagen
der Mathematik, 17:225–230, 1971.

[8] R. Dyckhoff. A deterministic terminating sequent calculus for Gödel-
Dummett logic. Logic Journal of the IGPL, 7(3):319–326, 1999.

[9] G. Fiorino. An O(n logn)-space decision procedure for the propositional
Dummett Logic. Journal of Automated Reasoning, 27(3):297–311, 2001.

[10] G. Fiorino. Fast decision procedure for propositional Dummett logic
based on a multiple premise tableau calculus. Information Sciences,
180(19):3633–3646, 2010.

[11] G. Fiorino. Refutation in dummett logic using a sign to express the truth
at the next possible world. In Toby Walsh, editor, IJCAI, pages 869–874.
IJCAI/AAAI, 2011.

[12] K. Gödel. On the intuitionistic propositional calculus. In S. Feferman et al,
editor, Collected Works, volume 1. Oxford University Press, 1986.

[13] P. Hajek. Metamathematics of Fuzzy Logic. Kluwer, 1998.

18

[14] D. Larchey-Wendling. Graph-based decision for Gödel-Dummett logics. J.
Autom. Reasoning, 38(1-3):201–225, 2007.

[15] G. Metcalfe, N. Olivetti, and D. M. Gabbay. Goal-directed calculli for
Gödel-Dummett logics. In Matthias Baaz and Johann A. Makowsky, ed-
itors, Computer Science Logic, 17th International Workshop, CSL 2003,
12th Annual Conference of the EACSL, and 8th Kurt Gödel Colloquium,
KGC 2003, Vienna, Austria, August 25-30, 2003, Proceedings, volume 2803
of Lecture Notes in Computer Science, pages 413–426. Springer, 2003.

[16] A. Visser. On the completenes principle: A study of provability in heyting’s
arithmetic and extensions. Annals of Mathematical Logic, 22(3):263 – 295,
1982.

[17] N. N. Vorob’ev. A new algorithm of derivability in a constructive calculus
of statements. In Sixteen papers on logic and algebra, volume 94 of Amer-
ican Mathematical Society Translations, Series 2, pages 37–71. American
Mathematical Society, Providence, R.I., 1970.

A My review of CLS reviewers

BERTRAND MEYER:

”Refereeing should be what it was before science publication turned
into a business: scientists giving their polite but frank opinion on
the work of other scientists.” (CACM, Vol. 54 No. 11).

I submitted this paper to IJCAR 2012 and, in the present form to CSL 2012.
In both cases it was rejected. Now it is my turn to give a review of reviewers
and spend some words about my experience as an author in proof-theory.
I start with the facts: at CLS the paper had three reviewers. The first gave an
accept and was the only reviewer to read the paper. Reviewers 2 and 3 clearly
read the introduction, at most, as anyone can understand from the general
comments they give.

----------------------- REVIEW 2 ---------------------

PAPER: 49

TITLE: Terminating Calculi for Propositional Dummett Logic with Subformula Property

AUTHORS: Guido Fiorino

OVERALL RATING: -3 (strong reject)

This paper is presenting two new calculi for propositional Dummet logic aka

Goedel logic. This logic can be viewed both as an intermediate logic

(intuitionistic logic + axiom scheme (a->b)\/(b->a)) or as a fuzzy logic

with operators over the unit interval.

19

http://cacm.acm.org/magazines/2011/11/138207-in-support-of-open-reviews-better-teaching-through-large-scale-data-mining/fulltext

While this is a nice paper in pure logic, it is not clear to me why

this paper is submitted to CSL.

1) The paper contains no motivation that relates to computer science

except for a reference to a famous 1991 paper [2] on simple consequence

relations. It is neither clear why [2] is called "recent" nor why it

is considered a CS motivation.

2) There already exist many calculi for this logic including

[1,3,8,9,10,11,14]

3) The paper contains no generic discussion why tableau calculi are

the right approach for Dummett logic. Given the simplicity of

the logic considered, and its simple semantic characterization in

terms of the unit interval (i.e., Goedel logic), one would expect that a

DPLL style procedure similar to standard SAT and SMT solving is more

efficient in practice. Reductions of fuzzy logics to arithmetic

solvers have been proposed by Haehnle and others in the 90ies.

4) There also is no methodological breakthrough which can be

generalized to other logics.

In conclusion I think the paper is lacking motivation.

----------------------- REVIEW 3 ---------------------

PAPER: 49

TITLE: Terminating Calculi for Propositional Dummett Logic with Subformula Property

AUTHORS: Guido Fiorino

OVERALL RATING: 1 (weak accept)

This paper describes two terminating calculi for propositional Goedel

Dummett logicwith subformula property which is not the important point as

subformula property can be always obtained by suitable choice of the

linguistic frame. The first calculus is completely straightforwardly

obtained from valuations in linearly ordered Kripke semantics, the claim on

the size of models is however trivial as only valuations of variables count

in Goedel-Dummett logics, they are projective. The second calculus is much

more interesting and the paper should concentrate on this. Furthermore the

paper has the deficiency for non-experts of providing no single example.

In my opinion the reviewers have a conflict interest and want to make space for
their papers, thus I consider them in bad faith.
As regard review 3, he/she gives a borderline rating. Here we meet the first
characteristic of many reviews in proof-theory: “the topic is not important”.
The reviewer pretend of ignoring that there are many papers about calculi

20

with the subformula property and many authors consider this property im-
portant. Statement “suitable choice of the linguistic frame”, means to have
hypertableaux/hypersequents and/or labelled systems. The advantage of my
systems is in evidence in the introduction (see paragraph starting with “Papers
[4] and [15] provide calculi ...”) but the reviewer has ignored my considerations.
This is one of the behaviours that I observed by reviewers in proof-theory: min-
imize the idea and the interest of the problem, in order not to give importance
to the whole paper, even if there are many papers along the same line (note that
at CLS 2003 a paper addressing the same question was proposed and in all the
quoted papers the efficiency or the subformula property or the proof-system or
the termination is addressed).
Reviewer 2 is the typical coward that hide himself under anonymous review
to make nasty statements and to give a very bad mark without entering into
technical details. The aim of the reviewer is clear: to be sure that the paper is
rejected, independently of the others reviews. A strong reject implies that the
paper contains technical errors that cannot be clearly fixed. But here the review
is not scientific and the program committee is responsible for this (I wonder if
the reviewer has read the whole introduction or at least the abstract).
The reviewer states that he/she does not understand my submission to the con-
ference. To understand the submission he/she should read CSL call for paper.
The paper perfectly matches the topic both in proof-theory and automated de-
duction. Point 2) is perfect to understand the bad faith of the reviewer: the
argument is that there are enough papers on Dummett logic thus we do not
need more. It’s a pity, my paper is late! On this base, I aspect that in the
future CSL will reject papers on Dummett/Goedel logic, independently of
the name(s) of the author(s). Also Point 3) deserves attention, because it is
another typical scheme to reject a/my paper: “why to provide a calculus when
there is a translation into another logic?” On this base we cannot have calculi
for propositional intuitionistic logic, since there exist translations in S4 or clas-
sical logic and so on for many other logics. Variants of this are “why do you use
semantical techniques?” and “I don’t like the presentation” and, following the
Point 4) “the result is not interesting because it cannot be generalized”.

I charge the reviewers to have used anonymous review to be unfair, biased and
in bad faith instead of giving a frank scientific opinion.

The problem is not the content of the paper but the name of the au-
thor. Proof-theory is a close world, a kind of private club made of some schools
and newcomers are not welcome. Thus can happen that also a trivial mistake
as a typo is used as an excuse to give the minimum rate and the original ideas
are ignored. The result is that for authors that are not part of the club it is
almost impossible to have a paper accepted to a conference, the timings to have
a paper accepted on a journal are amplified and when the papers is published
it is not cited, also if pertinent.

For these reasons I support the statement of Bertrand Meyer.

21

	1 Introduction
	2 Basic definitions and a terminating tableau calculus with the subformula property
	3 Correctness
	4 Completeness
	5 Handling F-formulas
	6 Conclusions
	A My review of CLS reviewers

