
J Autom Reasoning (2015) 54:327–352
DOI 10.1007/s10817-015-9323-7

Decision Procedures for Flat Array Properties

Francesco Alberti · Silvio Ghilardi · Natasha Sharygina

Received: 19 May 2014 / Accepted: 27 February 2015 / Published online: 20 March 2015
© Springer Science+Business Media Dordrecht 2015

Abstract We present new decidability results for quantified fragments of theories of arrays.
Our decision procedures are parametric in the theories of indexes and elements and orthog-
onal with respect to known results. We show that transitive closures (’acceleration’) of
relation expressing certain array updates produce formulas inside our fragment; this obser-
vation will be used to identify a class of programs handling arrays having decidable
reachability problem.

Keywords Decision procedures · Quantifiers · Arrays · SMT

1 Introduction

The demand for efficient decision procedures has enormously increased in the last decades,
as witnessed by the success of the SMT-LIB initiative and the excellent performances of
current SMT-solvers in dealing with various verification tasks related not only to hard-
ware but also to software systems of different nature (sequential, distributed, hybrid, etc.).
Decision procedures constitute, nowadays, one of the fundamental components of tools and
algorithms developed for formal methods applications.

Given the complex nature of concrete problems, it is important to develop decision
procedures not only for numerical domains, but also for theories modeling container data

This paper extends material previously published in [6].

F. Alberti (�) · N. Sharygina
Faculty of Informatics, Università della Svizzera Italiana, via G. Buffi, 13, CH-6904, Lugano,
Switzerland
e-mail: francesco.alberti@usi.ch

N. Sharygina
e-mail: natasha.sharygina@usi.ch

S. Ghilardi
Department of Mathematics, Università degli Studi di Milano, via C. Saldini, 50, I-20133, Milano, Italy
e-mail: silvio.ghilardi@unimi.it

mailto:francesco.alberti@usi.ch
mailto:natasha.sharygina@usi.ch
mailto:silvio.ghilardi@unimi.it

328 F. Alberti et al.

structures, like arrays, lists, stacks, records, etc. For these theories it is usually impossible to
establish a useful quantifier-elimination result, hence genuinely quantified assertions must
be handled directly. And indeed quantified formulas arise from several static analysis and
verification tasks, like modeling properties of the heap, asserting frame axioms, checking
user-defined assertions in the code and reasoning about parameterized systems.

In this paper we are interested in studying the decidability of quantified fragments of the-
ories of arrays. Quantification is required over the indexes of the arrays in order to express
significant properties like “the even positions of the array a have been initialized to 0” or
“the values of array a are all smaller then the values of the array b”, for example.

From a logical point of view, we view arrays as free function symbols. Strictly speaking,
McCarthy theory of arrays [33] considers also built-in update operations and has explicit
extensionality support; although these features seem to get lost when modeling arrays as
plain free function symbols, the loss is not very relevant in the present context because
we can recover them through a mild use of single quantifiers - e.g. instead of writing
a = upd(b, i, e) we can write the ∀-formula a(i) = e ∧ ∀j (j �= i → a(j) = b(j)).
The real problem is that adding free function symbols to a theory T (with the goal of mod-
eling array variables) may yield to undecidable extensions of widely used theories like
Presburger arithmetic [29]. It is, therefore, mandatory to identify fragments of the quanti-
fied theory of arrays which are on one side still decidable and on the other side sufficiently
expressive.

The quantified fragment of the theory of arrays we investigate in this paper is new: its
key feature is the flatness condition. We briefly report how this condition was suggested
to us by our practice in analyzing imperative programs through our model checkers MCMT

[26] and SAFARI [2]. One of the main distinguishing features of our tools is the abil-
ity of synthesizing invariants involving quantifiers. In fact, whenever arrays are involved,
the synthesis of good quantified invariants is necessary to solve safety problems, even
in case system specification and verification tasks are modeled via ground formulas (see
e.g. [31] for examples in this sense). To generate quantified invariants, we have refined
the interpolation-based abstraction/refinements loop underlying our tools (an extension of
the approach presented in [34]) by a special heuristics [1, 3], aimed at searching ‘good’
interpolants. For the heuristics to be productive, formulas must be subjected to ‘flatness’
limitations on dereferencing: only positions named by variables are allowed in derefer-
encing. In short, let φ(a[t], . . .) be a formula involving the term a[t]. Instead of handling
φ(a[t], . . .) directly, we maintain the equivalent formula ∃x (x = t ∧ φ(a[x], . . .)). This
gives the possibility to abstract out the term t while simultaneously synthesizing a genuinely
quantified assertion. Thus, flatness limitations constitute a key entry for some heuristics to
work.

In this paper, we show that flatness limitations can also be used to gain decidability.
In fact, whereas it is trivially true that every formula can be flattened via logical equiva-
lences introducing extra quantifiers (by the above outlined method), it is also well-known
that decidability results are sensible to the shape of quantifiers prefixes in prenex normal
forms. Hence, flatness limitations combined with prefix limitations may introduce mean-
ingful restrictions and our contribution will show that such restrictions can play a positive
role for getting decidability. Another feature that can lead to decidability is the limitation
to a single universally quantified variable in certain contexts [27] and in fact we show that
this kind of limitation can be usefully combined with flatness restrictions too. We call the
fragments we obtain Flat Array Properties; such fragments are orthogonal to the fragments
already proven decidable in the literature [16, 27, 28] (we shall defer the technical compar-
ison with these contributions to Section 7). Here we explain the modularity character of our

Decision Procedures for Flat Array Properties 329

results and their applications to concrete decision problems for array programs annotated
with assertions or postconditions.

We examine Flat Array Properties in two different settings. In one case, we consider
Flat Array Properties over the theory of arrays generated by adding free function sym-
bols to a given theory T modeling both indexes and elements of the arrays. In the other
one, we take into account Flat Array Properties over a theory of arrays built by connecting
two theories TI and TE describing the structure of indexes and elements. Our decidabil-
ity results are fully declarative and parametric in the theories T , TI , TE . For both settings,
we provide sufficient conditions on T and TI , TE for achieving the decidability of Flat
Array Properties. Such hypotheses are widely met by theories of interest in practice, like
Presburger arithmetic. Our decision procedures reduce the decidability of Flat Array Prop-
erties to the decidability of T -formulas in one case and TI - and TE-formulas in the other
case.

We further show, as an application of our decidability results, that the safety of an inter-
esting class of programs handling arrays or strings of unknown length is decidable. We
call this class of programs simple0

Aprogams: this class covers non-recursive programs
implementing for instance searching, copying, comparing, initializing, replacing and test-
ing functions. The method we use for showing these safety results is similar to a classical
method adopted in the model-checking literature for programs manipulating integer vari-
ables (see for instance [15, 17, 22]): we first assume flatness conditions on the control
flow graph of the program and then we assume that transitions labeling cycles are “accel-
eratable”. However, since we are dealing with array manipulating programs, acceleration
requires specific results that we borrow from [4]. The key point is that the shape of most
accelerated transitions from [4] matches the definition of our Flat Array Properties (in fact,
Flat Array Properties were designed also in order to encompass such accelerated transitions
for arrays).

From the experimental point of view, the situation needs to be better investigated.
We leave the related task to future (more implementation-oriented) work, we shall
just make some preliminary observations in the final sections of the paper. In Sec-
tion 6 we tested the effectiveness of state of the art SMT-solvers in checking the
satisfiability of some Flat Array Properties arising from the verification of simple0

A-
progams. Results show that such tools fail or timeout on some Flat Array Proper-
ties. We tried to identify some reasons for such failures and we indicate how our
procedure can cope with them; at the same time, we isolate the main sources of
complexity in our procedures and discuss the impact they might have on practica
l benchmarks.

Plan of the paper The paper starts by recalling in Section 2 required background notions.
Section 3 introduces a decision procedure for Flat Array Properties in the case of a mono-
sorted theory ARR1(T) generated by adding free function symbols to a theory T . Section 4
discusses a decision procedure for Flat Array Properties in the case of the multi-sorted array
theory ARR2(TI , TE) built over two theories TI and TE for the indexes and elements (we
supply also full lower and upper complexity bounds for the case in which TI and TE are both
Presburger arithmetic). In Section 5 we recall and adapt required notions from [4], define
the class of flat0-programs and establish the requirements for achieving the decidability of
reachability analysis on some flat0. Such requirements are instantiated in Section 5.1 in the
case of simple0

A-progams, array programs with flat control-flow graph admitting definable
accelerations for every loop. In Section 6 we position the fragment of Flat Array Properties
with respect to the actual practical capabilities of state-of-the-art SMT-solvers. Section 7

330 F. Alberti et al.

compares our results with the state of the art, in particular with the approaches of [16, 27].
In Section 8, we conclude and discuss future work covering potential implementations.

2 Background

We use lower-case latin letters x, i, c, d, e, . . . for variables; for tuples of variables we use
bold face letters like x, i, c, d, e The n-th component of a tuple c is indicated with cn and
| − | may indicate tuples length (so that we have c = c1, . . . , c|c|). Free constants coming
from skolemizations of existential quantifiers might be given the same name of the variable
they skolemize. For terms, we use letters t, u, . . ., with the same conventions as above; t, u
are used for tuples of terms (however, tuples of variables are assumed to be distinct, whereas
the same is not assumed for tuples of terms - this is useful for substitutions notation, see
below). When we use u = v, we assume that two tuples have equal length, say n (i.e.
n := |u| = |v|) and that u = v abbreviates the formula

∧n
i=1 ui = vi .

With E(x) we denote that the syntactic expression (term, formula, tuple of terms or of
formulas) E contains at most the free variables taken from the tuple x. We use lower-case
Greek letters φ, ϕ, ψ, . . . for quantifier-free formulas and α, β, . . . for arbitrary formulas.
The notation φ(t) identifies a quantifier-free formula φ obtained from φ(x) by substituting
the tuple of variables x with the tuple of terms t.

A prenex formula is a formula of the form Q1x1 . . . Qnxnϕ(x1, . . . , xn), where Qi ∈
{∃,∀} and x1, . . . , xn are pairwise different variables. Q1x1 · · ·Qnxn is the prefix of the
formula. Let R be a regular expression over the alphabet {∃,∀}. The R-class of formulas
comprises all and only those prenex formulas whose prefix generates a string Q1 · · ·Qn

matched by R.
According to the SMT-LIB standard [9], a theory T is a pair (�, C), where � is a signa-

ture and C is a class of �-structures; the structures in C are called the models of T . Given
a �-structure M, we denote by SM, fM, PM, . . . the interpretation in M of the sort S,
the function symbol f , the predicate symbol P , etc. A �-formula α is T -satisfiable if there
exists a �-structure M in C such that α is true in M under a suitable assignment to the
free variables of α (in symbols, M |= α); it is T -valid (in symbols, T |= α) if its negation
is T -unsatisfiable. Two formulas α1 and α2 are T -equivalent if α1 ↔ α2 is T -valid; α1 T -
entails α2 (in symbols, α1 |=T α2) iff α1 → α2 is T -valid. The satisfiability modulo the
theory T (SMT (T)) problem amounts to establishing the T -satisfiability of quantifier-free
�-formulas. All theories T we consider in this paper have decidable SMT (T)-problem
(we recall that this property is preserved when adding free function symbols, see [23, 41]).

A theory T = (�, C) admits quantifier elimination iff for any arbitrary �-formula α(x)

it is always possible to compute a quantifier-free formula ϕ(x) such that T |= ∀x.(α(x) ↔
ϕ(x)). Thus, in view of the above assumption on decidability of SMT (T)-problem, a theory
having quantifier elimination is decidable (i.e. T -satisfiability of every formula is decid-
able). Our favorite example of a theory with quantifier elimination is Presburger Arithmetic,
hereafter denoted with P; this is the theory in the signature {0, 1,+, −, =,<} augmented
with infinitely many unary predicates Dk (for each integer k greater than 1). Semantically,
the intended class of models for P contains just the structure whose support is the set of the
natural numbers, where {0, 1,+, −, =,<} have the natural interpretation and Dk is inter-
preted as the set of natural numbers divisible by k (these extra predicates are needed to get
quantifier elimination [36]).

Although P represents the fragment of arithmetic mostly used in formal approaches for
the static analysis of systems, we underline that there are many other fragments that have

Decision Procedures for Flat Array Properties 331

quantifier elimination and can be quite useful; these fragments can be both weaker (like
Integer Difference Logic [35]) and stronger (like the exponentiation extension of Semënov
theorem [39]) than P. Thus, the modular approach proposed in this Section to model arrays
is not motivated just by generalization purposes, but can have practical impact.

There exist two ways of introducing arrays in a declarative setting, the mono-sorted and
the multi-sorted ways. The former is more expressive because (roughly speaking) it allows
to consider indexes also as elements1, but might be computationally more difficult to handle.
We discuss decidability results for both cases, starting from the mono-sorted case.

3 The Mono-sorted Case

Let T = (�, C) be a theory; the theory ARR1(T) of arrays over T is obtained from T

by adding to it infinitely many (fresh) free unary function symbols. This means that the
signature of ARR1(T) is obtained from � by adding to it unary function symbols (we use
the letters a, a1, a2, . . . for them) and that a structure M is a model of ARR1(T) iff (once
the interpretations of the extra function symbols are disregarded) it is a structure belonging
to the original class C.

For array theories it is useful to introduce the following notation. We use a for a tuple
a = a1, . . . , a|a| of distinct ‘array constants’ (i.e. free function symbols); if t = t1, . . . , t|t|
is a tuple of terms, the notation a(t) represents the tuple (of length |a| · |t|) of terms
a1(t1), . . . , a1(t|t|), . . . , a|a|(t1), . . . , a|a|(t|t|).
ARR1(T) may be highly undecidable, even when T itself is decidable (see [29]), thus it is

mandatory to limit the shape of the formulas we want to try to decide. A prenex formula or a
term in the signature of ARR1(T) are said to be flat iff for every term of the kind a(t) occur-
ring in them (here a is any array constant), the sub-term t is always a variable. Notice that
every formula is logically equivalent to a flat one; however the flattening transformations
usually employed in the literature are based on rewriting as

φ(a(t), ...) � ∃x(x = t ∧ φ(a(x), . . .) or φ(a(t), ...) � ∀x(x = t → φ(a(x), . . .)

and consequently they may alter the quantifiers prefix of a formula. Thus it must be kept
in mind (when understanding the results below), that flattening transformation cannot be
operated on any occurrence of a term without exiting from the class that is claimed to be
decidable. When we indicate a flat quantifier-free formula with the notation ψ(x, a(x)), we
mean that such a formula is obtained from a �-formula of the kind ψ(x, z) (i.e. from a
quantifier-free �-formula where at most the free variables x, z can occur) by replacing the
variables z by the terms a(x).

Theorem 1 If the T -satisfiability of ∃∗∀∃∗ sentences is decidable, then the ARR1(T)-
satisfiability of ∃∗∀-flat sentences is decidable.

Proof We present an algorithm, SATMONO, for deciding the satisfiability of the ∃∗∀-flat
fragment of ARR1(T) (we let T be (�, C)). Subsequently, we show that SATMONO is sound
and complete. From the complexity viewpoint, notice that SATMONO produces a quadratic
instance of a ∃∗∀∃∗-satisfiability problem.

1This is useful in the analysis of programs, when pointers to the memory (modeled as an array) are stored
into array variables.

332 F. Alberti et al.

STEP I. Let
F := ∃c ∀i.ψ(i, a(i), c, a(c))

be a ∃∗∀-flat ARR1(T)-sentence, where ψ is a quantifier-free �-formula. Sup-
pose that s is the length of a and t is the length of c (that is, a = a1, . . . , as and
c = c1, . . . , ct). Let e = 〈el,m〉 (1 ≤ l ≤ s, 1 ≤ m ≤ t) be a tuple of length s · t
of fresh variables and consider the ARR1(T)-formula:

F1 := ∃c ∃e ∀i.ψ(i, a(i), c, e) ∧
∧

1≤l≤t

∧

1≤m≤s

am(cl) = el,m

STEP II. Build the formula (logically equivalent to F1)

F2 := ∃c ∃e ∀i.

⎡

⎣ψ(i, a(i), c, e) ∧
∧

1≤l≤t

⎛

⎝i = cl →
∧

1≤m≤s

am(i) = el,m

⎞

⎠

⎤

⎦

STEP III. Let d be a fresh tuple of variables of length s; check the T -satisfiability of

F3 := ∃c ∃e ∀i ∃d.

⎡

⎣ψ(i, d, c, e) ∧
∧

1≤l≤t

⎛

⎝i = cl →
∧

1≤m≤s

dm = el,m

⎞

⎠

⎤

⎦

SATMONO transforms an ARR1(T)-formula F into an equisatisfiable T -formula F3
belonging to the ∃∗∀∃∗ fragment. More precisely, it holds that F,F1 and F2 are equivalent
formulas, because

∧

1≤l≤t

∀i.(i = cl →
∧

1≤m≤s

am(i) = el,m) ≡
∧

1≤l≤t

∧

1≤m≤s

am(cl) = el,m

From F2 to F3 and back, satisfiability is preserved because F2 is the Skolemization of F3,
where the existentially quantified variables d = d1, . . . , ds are substituted with the free
unary function symbols a = a1, . . . as .

In the above proof, it is essential that F is flat and that only one universally quantified
variable occurs in it: these features are precisely the features needed for the formula F2 to
come from the skolemization of F3. Flat formulas with two universally quantified variables
are not decidable for satisfiability (for T = P), as one can realize by slightly modifying for
instance the last counterexample in the Appendix of [25].

Since Presburger Arithmetic is decidable (via quantifier elimination), we get in particular
that

Corollary 1 The ARR1(P)-satisfiability of ∃∗∀-flat sentences is decidable.

4 The Multi-sorted Case

We are now considering a theory of arrays parametric in the theories specifying constraints
over indexes and elements of the arrays. Formally, we need two ingredient theories, TI =
(�I , CI) and TE = (�E, CE). We can freely assume that �I and �E are disjoint (otherwise
we can rename some symbols); for simplicity, we let both signatures be mono-sorted (but
extending our results to many-sorted TE is quite straightforward): let us call INDEX the
unique sort of TI and ELEM the unique sort of TE .

The theory ARR2(TI , TE) of arrays over TI and TE is obtained from the union of
�I ∪ �E by adding to it infinitely many (fresh) free unary function symbols (these new

Decision Procedures for Flat Array Properties 333

function symbols will have domain sort INDEX and codomain sort ELEM). The models of
ARR2(TI , TE) are the structures whose reducts to the symbols of sorts INDEX and ELEM
are models of TI and TE , respectively.

Consider now an atomic formula P(t1, . . . , tn) in the language of ARR2(TI , TE) (in the
typical situation, P is the equality predicate). Since the predicate symbols of ARR2(TI , TE)

are from �I ∪�E and �I ∩�E = ∅, P belongs either to �I or to �E ; in the latter case, all
terms ti have sort ELEM and in the former case all terms ti are �I -terms (notice in fact that
to produce a term of sort INDEX one must use only �I -symbols). We say that P(t1, . . . , tn)

is an INDEX − atom in the former case and that it is an ELEM − atom in the latter
case.

When dealing with ARR2(TI , TE), we shall limit ourselves to quantified variables of
sort INDEX: this limitation is justified by the benchmarks arising in applications (see Sec-
tion 5). If we need topmost existentially quantified variables of sort ELEM, we can model
them by skolemization, i.e. by enriching TE with free constants. A sentence in the lan-
guage of ARR2(TI , TE) is said to be monic iff it is in prenex form and every INDEX
atom occurring in it contains at most one variable falling within the scope of a universal
quantifier.

Example 1 Consider the following sentences:

(I) ∀i. a(i) = i; (II) ∀i1∀i2. (i1 ≤ i2 → a(i1) ≤ a(i2));
(III) ∃i1∃i2. (i1 ≤ i2 ∧ a(i1) �≤ a(i2)); (IV) ∀i1∀i2. a(i1) = a(i2);
(V) ∀i. (D2(i) → a(i) = 0); (V I) ∃i ∀j. (a1(j) < a2(3i)).

The flat formula (I) is not well-typed, hence it is not allowed in ARR2(P,P); however, it
is allowed in ARR1(P). Formula (II) expresses the fact that the array a is sorted: it is flat
but not monic (because of the atom i1 ≤ i2). On the contrary, its negation (III) is flat
and monic (because i1, i2 are now existentially quantified). Formula (IV) expresses that
the array a is constant; it is flat and monic (notice that the universally quantified variables
i1, i2 both occur in a(i1) = a(i2) but the latter is an ELEM atom). Formula (V) expresses
that a is initialized so to have all even positions equal to 0: it is monic and flat. Formula
(VI) is monic but not flat because of the term a2(3i) occurring in it; however, in 3i no
universally quantified variable occurs, so it is possible to produce by flattening the following
sentence

∃i ∃i′ ∀j (i′ = 3i ∧ a1(j) < a2(i
′))

which is logically equivalent to (VI), it is flat and still lies in the ∃∗∀-class. Finally, as a
more complicated example, notice that the following sentence

∃k ∀i.

⎛

⎝
D2(k) ∧ a(k) =′ \0′ ∧
∧ (D2(i) ∧ i < k → a(i) =′ b′) ∧
∧ (¬D2(i) ∧ i < k → a(i) =′ c′)

⎞

⎠

is monic and flat: it says that a represents a string of the kind (bc)∗.

Theorem 2 below reduces ARR2(TI , TE)-satisfiability of ∃∗∀∗-monic-flat sentences to
TI -satisfiability of ∃∗∀-sentences. We give here an informal account of the main argument
we use in the proof. The fact that the formulas to be tested for satisfiability are monic

334 F. Alberti et al.

is essential2 and we make use of this hypothesis by introducing witnesses for the real-
ized unary types. The notion of a type is commonly used in model theory; we adapt it
to our context by defining a type to be a maximal consistent set of INDEX literals occur-
ring in the formula to be tested for satisfiability. In other words: in every model, every
element from the support of the interpretation of the INDEX sort satisfies a maximal con-
sistent set of such INDEX literals; the latter, modulo renamings, are of the kind L(i, c)
(only one free variable occurs here by the monicity hypothesis, the c are free constants
coming from the skolemization of the outermost existential quantifiers). The satisfiabil-
ity algorithm guesses in advances which types M are realized (i.e. satisfied), it introduces
for each of them a witnesss constant bM , it takes the conjunction of the original for-
mula with the literals L(bM, c) for L ∈ M (varying M) and with a universal INDEX
formula saying that only the guessed types are realized. Then, the universal quantifiers
of the original formula are instantiated over all constants. The final part of the algo-
rithm follows some Nelson-Oppen like combination schema in order to separately test the
INDEX and the ELEM components for satisfiability. We point out, once again, that the
above machinery works because we need to care about unary types only; if we had to
deal with non-monic formulas, we were in trouble: guessing binary types (i.e. maximal
consistent sets of two-variables literals) would not be sufficient, as one should also guess
ternary types to match e.g. the second components and the first components of binary types,
etc., etc.

Theorem 2 If TI -satisfiability of ∃∗∀-sentences is decidable, then ARR2(TI , TE)-
satisfiability of ∃∗∀∗-monic-flat sentences is decidable.3

Proof As we did for SATMONO, we give a decision procedure, SATMULTI, for the ∃∗∀∗-
monic-flat fragment of ARR2(TI , TE). Since the procedure is complex, we divide our
exposition in different phases. We summarize again here some high level information,
then we formally introduce the procedure in Section 4.1. Correctness and completeness
of SATMULTI are split into two lemmas (Lemmas 2 and 1) to be proved in Section 4.2
below.

First (STEP I), the procedure guesses the sets (called ‘types’) of relevant INDEX
atoms satisfied in a model to be built. Subsequently (STEP II) it introduces a witness
existential variable for each type together with the constraint that guessed types are exhaus-
tive. Finally (STEP III, IV and V) the procedure applies combination techniques for
purification.

4.1 The Decision Procedure SATMULTI.

The algorithm is non-deterministic: the input formula is satisfiable iff we can guess suitable
data T ,B so that the formulas FI , FE below are satisfiable.

2Undecidability arises otherwise, see again for instance the Appendix of [25] for a reduction to reachability
problems of Minsky machines.
3The reader might have noticed that (by considering the special case of formulas in which ELEM atoms do not
occur), Theorem 2 has the following corollary concerning only TI : “if TI -satisfiability of the ∃∗∀-sentences
is decidable, then TI -satisfiability of ∃∗∀∗-monic-flat sentences is decidable”. There is nothing wrong in this,
because by help of (computationally expensive indeed!) Boolean manipulations one can check directly that
∃∗∀∗-monic-flat TI -sentences are equivalent to disjunctions of ∃∗∀ TI -sentences. In other words, the notion
of being monic becomes interesting only in presence of ELEM atoms.

Decision Procedures for Flat Array Properties 335

STEP I. Let F be a ∃∗∀∗-monic-flat formula; let it be

F := ∃c ∀i.ψ(i, a(i), c, a(c)),

(where ψ is a TI ∪ TE-quantifier-free formula). Suppose a = a1, . . . , as , i =
i1, . . . , in and c = c1, . . . , ct . Consider the set (notice that all atoms in K are
�I -atoms and have just one free variable because F is monic)

K = {A(x, c) | A(ik, c) is an INDEX atom of F }1≤k≤n ∪ {x = cl}1≤l≤t

Let us call type a set of literals M such that: (i) each literal of M is an atom in
K or its negation; (ii) for all A(x, c) ∈ K , either A(x, c) ∈ M or ¬A(x, c) ∈
M (thus, types are maximal Boolean-consistent sets and as such are pairwise
incompatible). Guess a set T = {M1, . . . , Mq} of types.

STEP II. Let b = b1, . . . , bq be a tuple of new variables of sort INDEX and let

F1 := ∃b ∃c

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∀x.

⎛

⎝
q∨

j=1

∧

L∈Mj

L(x, c)

⎞

⎠ ∧

q∧

j=1

∧

L∈Mj

L(bj , c) ∧
∧

σ :i→b

ψ(iσ, a(iσ), c, a(c))

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where iσ is the tuple of terms σ(i1), . . . , σ (in).
STEP III. Let e = 〈el,m〉(1 ≤ l ≤ s, 1 ≤ m ≤ t + q) be a tuple of length s · (t + q) of

free constants of sort ELEM. Consider the formula

F2 := ∃b ∃c

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∀x.

⎛

⎝
q∨

j=1

∧

L∈Mj

L(x, c)

⎞

⎠ ∧

q∧

j=1

∧

L∈Mj

L(bj , c) ∧

ψ̄(b, c, e) ∧
∧

dm,dn∈b∗c

s∧

l=1

(dm = dn → el,m = el,n)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where b ∗ c := d1, . . . , dq+t is the concatenation of the tuples b and c and
ψ̄(b, c, e) is obtained from

∧

σ :i→b

ψ(iσ, a(iσ), c, a(c))

by substituting each term in the tuple a(b) ∗ a(c) with the constant occupying
the corresponding position in the tuple e.

STEP IV. Let B a full Boolean satisfying assignment for the atoms of the formula

F3 := ψ̄(b, c, e) ∧
∧

dm,dn∈b∗c

s∧

l=1

(dm = dn → el,m = el,n)

336 F. Alberti et al.

and let ψ̄I (b, c), ψ̄E(e) be the (conjunction of the) sets of literals of sort
INDEX and ELEM, respectively, induced by B.

STEP V. Check the TI -satisfiability of

FI := ∃b ∃c.

⎡

⎣∀x.

⎛

⎝
q∨

j=1

∧

L∈Mj

L(x, c)

⎞

⎠ ∧
q∧

j=1

∧

L∈Mj

L(bj , c) ∧ ψ̄I (b, c)

⎤

⎦

and the TE-satisfiability of

FE := ψ̄E(e)

Notice that FI is an ∃∗∀-sentence; FE is ground and the TE-satisfiability of FE (consid-
ering the e as variables instead of as free constants) is decidable because we assumed that
all the theories we consider (hence our TE too) have quantifier-free fragments decidable for
satisfiability. The procedure SATMULTI returns SAT if both satisfiability tests are successful.

4.2 Correctness and Completeness

Before proving correctness and completeness, we introduce useful notation. The notation
we introduce is aimed at using language expansions (instead of variable assignments) in
Tarski semantics. The formalism of language expansion is adopted in standard mathematical
logic textbooks [40] and is a default machinery in all model-theoretic literature.

We use letters b̃, c̃, . . . for elements from the support of a model; notation b̃, c̃, . . . is used
for tuples (possibly with repetitions) of such elements. For a formula ϕ(c) containing the
free variables c := c1, . . . , cn and for a tuple of elements c̃ := c̃1, . . . , c̃n from the support
of a model M, the notation M |= ϕ(c̃) means that: (i) we expanded the language with free
constants naming c̃1, . . . , c̃n (the constant naming c̃i is called c̃i again for simplicity); (ii)
the constant naming c̃i is interpreted as c̃i ; (iii) in this expansion of M, we have that ϕ(c̃)
turns out to be true (here, according to our general conventions, ϕ(c̃) is obtained from ϕ(c)
by replacing the variables c with the names of the c̃).4

Below, we assume that F is the ∃∗∀∗-monic-flat formula

F := ∃c ∀i.ψ(i, a(i), c, a(c));
the formulas F1, F2, F3, FI , FE are as described in the decision procedure SATMULTI of
Section 4.1.

Lemma 1 (Completeness of SATMULTI) If F is ARR2(TI , TE)-satisfiable, then it is possible
to choose the set T and the Boolean assignment B so that FI is TI -satisfiable and FE is
TE-satisfiable.

Proof Let M be a model of F . We have M |= ∀i.ψ(i, a(i), c̃, a(c̃)) for suitable c̃ from
INDEXM.

A type M is realized in M iff there is some b̃ ∈ INDEXM such that M |=∧
L∈M L(b̃, c̃) (we say in this case that b̃ realizes M).5 We take T to be the set of types real-

4People preferring a formulation of Tarski semantics in terms of assignments may interpret M |= ϕ(c̃) as
meaning that ϕ(c) is true in M under the assignment mapping the c to the c̃.
5Notice that this type realization notion is relative to the choice of the elements c̃ assigned to the c.

Decision Procedures for Flat Array Properties 337

ized in M; if T = {M1, . . . , Mq}, we pick a tuple b̃ = b̃1, . . . , b̃q from INDEXM realizing
them. By assigning precisely this tuple to the variables b of F1, we get6

M |= ∀x.

⎛

⎝
q∨

j=1

∧

L∈Mj

L(x, c̃)

⎞

⎠ ∧

q∧

j=1

∧

L∈Mj

L(b̃j , c̃) ∧
∧

σ :i→b̃

ψ(iσ, a(iσ), c̃, a(c̃))

(this formula is F1 without the outermost existential quantifiers and with c, b replaced by -
the names of - c̃, b̃). If we furthermore let the tuple ẽ be the tuple of the elements denoted
by the terms a[c̃] ∗ a[b̃], we get

M |= ∀x.

⎛

⎝
q∨

j=1

∧

L∈Mj

L(x, c̃)

⎞

⎠ ∧

q∧

j=1

∧

L∈Mj

L(b̃j , c̃) ∧

ψ̄(b̃, c̃, ẽ) ∧
∧

d̃m,d̃n∈b̃∗c̃

s∧

l=1

(d̃m = d̃n → ẽl,m = ẽl,n)

as well. Now we can get our B just by collecting the truth-values of the relevant INDEX
and ELEM atoms involved in the above formula; by construction, it is clear that FI and FE

become both true.

Lemma 2 (Soundness of SATMULTI) If there exist T := {M1, . . . , Mq} and B such that FI

is TI -satisfiable and FE is TE-satisfiable, then F is ARR2(TI , TE)-satisfiable.

Proof Suppose we are given a set of types T = {M1, . . . , Mq} and a Boolean assignment
B such that there exists two models MI ,ME of TI , TE , respectively, such that MI |= FI

and ME |= FE . From the fact that FI is satisfied in MI , it follows that there are elements
c̃, b̃ from INDEXMI such that

MI |= ∀x.

⎛

⎝
q∨

j=1

∧

L∈Mj

L(x, c̃)

⎞

⎠ ∧
q∧

j=1

∧

L∈Mj

L
(
b̃j , c̃

)
∧ ψ̃I

(
b̃, c̃

)
. (1)

6In particular, M |= ∀x.

(
q∨

j=1

∧

L∈Mj

L(x, c̃)

)

says that at most M1, . . . ,Mq are realized and M |=
q∧

j=1

∧

L∈Mj

L
(
b̃j , c̃

)
says that in fact M1, . . . , Mq are realized

(
by b̃1, . . . , b̃q , respectively

)
.

338 F. Alberti et al.

In particular,

MI |=
∧

L∈Mj

L
(
b̃j , c̃

)

holds for every Mj ∈ T . Thus, each Mj ∈ T is associated with an element b̃j ∈ INDEXMI

that realizes it, while

MI |= ∀x.

⎛

⎝
q∨

j=1

∧

L∈Mj

L(x, c̃)

⎞

⎠ (2)

implies that every z̃ ∈ INDEXMI realizes some Mj ∈ T (see the proof of the previous
Lemma for the definition of type realization). We introduce the following notation: given
two elements z̃1, z̃2 ∈ INDEXMI , z̃1 ≈ z̃2 holds iff z̃1 and z̃2 realize the same type. Thus,
for every z̃ ∈ INDEXMI there is a (unique because types are mutually inconsistent) b̃j ∈ b̃
such that z̃ ≈ b̃j . We call this bj the representative of z̃.

Now, since ME |= FE , there are elements ẽ ∈ ELEMME such that (once they are used
to interpret the constants e) we have

ME |= ψ̄E(ẽ) . (3)

To get a model M for ARR2(TI , TE) we need only to interpret the function symbols a =
a1, . . . , as as functions from INDEXMI into ELEMME . Before doing that, let us observe
that, because of our choice of B, we have that ψ̄I (b, c) ∧ ψ̄E(e) → F3 is a tautology.
Recalling the definition of F3 from STEP IV of the procedure SATMULTI, this means that
(independently on how we define the interpretation of the symbols a not occurring in F3)
we shall have

M |= ψ̄(b̃, c̃, ẽ) ∧
∧

d̃m,d̃n∈b̃∗c̃

s∧

l=1

(
d̃m = d̃n → ẽl,m = ẽl,n

)
. (4)

For every l = 1, . . . , s and for every d̃m ∈ b̃ ∗ c̃ we put

aM
l

(
d̃m

)
:= ẽl,m . (5)

By (4), this definition gives a partial function. To make it total, for any other z̃ (i.e. z̃ �∈ b̃∗ c̃)
pick the representative b̃j of z̃, and define

aM
l (z̃) := aM

l (b̃j) . (6)

We claim that we have, for every z̃1, z̃2 ∈ INDEXMI

z̃1 ≈ z̃2 ⇒ aM
l (z̃1) = aM

l (z̃2) . (7)

To prove the claim, it is sufficient to show that, if b̃j is the representative of z̃, then aM
l (z̃) =

aM
l (b̃j). This is obvious if z̃ �∈ b̃∗ c̃ and if z̃ ∈ b̃∗ c̃, we only have to check the case in which

z̃ is some c̃l ∈ c̃. However, since x = cl is among the atoms contributing to the definition
of a type (see STEP I of the procedure SATMULTI), it follows that the representative b̃j of c̃l

satisfies the formula x = c̃l (because the latter is trivially satisfied by c̃l) and hence we have
that b̃j = c̃l . By (4) and (5), it follows that aM

l (c̃j) = aM
l (b̃j). This ends the proof of the

claim.
It remains to prove that M is a model of F , i.e. that we have

M |= ∀i.ψ(i, a(i), c̃, a(c̃)) . (8)

Decision Procedures for Flat Array Properties 339

First notice that, by (5),(4) and by the definition of ψ̄(b, c,e) (see STEP III of the procedure
SATMULTI), we have7

M |=
∧

σ :i→b̃

ψ(iσ, a(iσ), c̃, a(c̃)) . (9)

Let τ be the map that associates with every z̃ its representative b̃j ∈ b̃; it is sufficient to show
that for every z̃ = z̃1, . . . , z̃n from INDEXM,8 we have, for every atom A(i, a(i), c, a(c))
occurring in ψ(i, a(i), c, a(c))

M |= A(z̃, a(z̃), c̃, a(c̃)) ↔ A(z̃τ, a(z̃τ), c̃, a(c̃)) (10)

(then (8) follows from (9) and (10) by induction on the number of Boolean connectives in
ψ , taking for every assignment i �→ z̃ the conjunct σ corresponding to i �→ z̃ �→ z̃aτ). In
turn, (10) is a special case of the following more general fact: if z̃ and z̃′ have length n and
we have z̃i ≈ z̃′

i (for every i = 1, . . . , n), then

M |= A(z̃, a(z̃), c̃, a(c̃)) ↔ A(z′, a(z′), c̃, a(c̃)) (11)

for every atom A occurring in ψ . However, (11) holds for ELEM atoms thanks to (7) and
for INDEX atoms due to the fact that z̃i , z̃

′
i realize the same type and the input formula

F := ∃c ∀i.ψ(i, a(i), c, a(c)) is monic.

4.3 Complexity Analysis

Theorem 2 applies to ARR2(P,P) because P admits quantifier elimination. For this theory,
we can determine complexity upper and lower bounds:

Theorem 3 ARR2(P,P)-satisfiability of ∃∗∀∗-monic-flat sentences is NEXPTIME-
complete.

Proof The proof is split into the two lemmas below, giving the lower and upper bound
required.

Lemma 3 (Lower Bound) ARR2(P,P)-satisfiability of ∃∗∀∗-monic-flat sentences is
NEXPTIME-hard.

Proof First, we introduce the bounded version of the domino problem used in the reduction.
A domino system is a triple D = (D, H, V), where D is a finite set of domino types and
H, V ⊆ D × D are the horizontal and vertical matching conditions. Let D be a domino
system and I = d0, . . . , dn−1 ∈ D∗ an initial condition, i.e. a sequence of domino types of
length n > 0. A mapping τ : {0, . . . , 2n+1−1}×{0, . . . , 2n+1−1} → D is a 2n+1 -bounded
solution of D respecting the initial condition I iff, for all x, y < 2n+1, the following holds:

– if τ(x, y) = d and τ(x ⊕2n+1 1, y) = d ′, then (d, d ′) ∈ H ;
– if τ(x, y) = d and τ(x, y ⊕2n+1 1) = d ′, then (d, d ′) ∈ V ;
– τ(i, 0) = di for i < n;

7The elements b̃ are in bijective correspondence to the variables b, hence we can freely suppose that the
maps σ indexing the big conjunct of (9) have codomain b̃.
8Recall that n is the length of the tuple i. Here z̃ ranges over all possible tuples of elements that can be
assigned to the tuple of variables i.

340 F. Alberti et al.

where ⊕2n+1 denotes addition modulo 2n+1.
It is well-known [13, 32] that there is a domino system D = (D, H, V) such that the

following problem is NEXPTIME-hard: given an initial condition I = d0, . . . , dn−1 ∈ D∗,
does D have a 2n+1-bounded solution respecting I or not?

We show that this problem can be reduced in polynomial time to satisfiability of ∃∗∀∗-flat
and simple sentences in ARR2(P,P).

Let us associate (in an injective way) with every element d ∈ D a numeral (we call this
numeral again d for simplicity);9 we shall use just one array variable, to be called a.

Let p0, . . . , pn, q0, . . . , qn be distinct pairwise coprime numbers. We underline that
p0, . . . , pn, q0, . . . , qn can be computed in time polynomial in n and that polynomially
many bits are needed to represent them and, as a consequence, also the divisibility predi-
cates Dp0 , . . . , Dpn, Dq0 , . . . , Dqn (to see that this is the case, one can use the well-known
bound, proved by Rosser in [38] - see also [7], saying that the N -th prime number is less
than N log N + 2N log log N , for all N > 3).10

We say a natural number i represents the point of coordinates (x, y) ∈ [
0, 2n+1 − 1

] ×
[
0, 2n+1 − 1

]
iff for all k = 0, . . . , n, we have that

(i) Dpk
(i) holds iff the k-th bit of the binary representation of x is 0;

(ii) Dqk
(i) holds iff the k-th bit of the binary representation of y is 0.

Of course, the same (x, y) can be represented in many ways, but at least one representative
number exists by the Chinese Reminder Theorem.

We now introduce the following abbreviations:

– HE(e, e′) stands for
∨

(d,d ′)∈H (e = d ∧ e′ = d ′);
– VE(e, e′) stands for

∨
(d,d ′)∈V (e = d ∧ e′ = d ′);

– HI (i, i
′) stands for the conjunction of

∧n
k=0(Dqk

(i) ↔ Dqk
(i′)) with

(
n∧

k=0

(
¬Dpk

(i) ∧ Dpk
(i′)

)
)

∨
n∨

k=0

(
∧

l>k

(Dpl
(i) ↔ Dpl

(i′)) ∧

∧Dpk
(i) ∧ ¬Dpk

(i′) ∧
∧

l<k

(¬Dpl
(i) ∧ Dpl

(i′))
)

– VI (i, i
′) stands for the conjunction of

∧n
k=0(Dpk

(i) ↔ Dpk
(i′)) with

(
n∧

k=0

(¬Dqk
(i) ∧ Dqk

(i′))
)

∨
n∨

k=0

(
∧

l>k

(Dql
(i) ↔ Dql

(i′)) ∧

∧Dqk
(i) ∧ ¬Dqk

(i′) ∧
∧

l<k

(¬Dql
(i) ∧ Dql

(i′))
)

9 A numeral is a ground term of the kind 1 + · · · + 1, i.e. a ground term canonically representing a number.
The argument we use works also for weaker theories like ARR2(P, Eq), where Eq is the pure identity theory
in a language containing infinitely many constants constrained to be distinct.
10For our purposes, the following elementary argument would be sufficient as well, because it gives a formula
for a direct polynomial computation (under logarithmic cost criterion). Define h(2) := 2 and h(n + 1) :=
1 + ∏

m<n h(m); it is clear that if k1 < k2, then h(k1) and h(k2) are coprime, because the reminder of the
division of h(k2) by every factor of h(k1) is 1. Also, we easily get h(n) ≤ n! by induction: indeed, h(2) ≤ 2!
and h(n + 1) ≤ 1 + ∏

m≤n h(m) ≤ 1 + n · n! ≤ (n + 1)!.

Decision Procedures for Flat Array Properties 341

Thus, HI (i, i
′) holds iff i represents (x, y), i′ represents (x′, y′) and we have y = y′ and

x′ = x ⊕2n+1 1. Similarly, VI (i, i
′) holds iff i represents (x, y), i′ represents (x′, y′) and we

have x = x′ and y′ = y ⊕2n+1 1.
We introduce abbreviations P0,0(i), . . . , Pn−1,0(i) to express the fact that i represents

the point of coordinates (0, 0), . . . , (n − 1, 0), respectively, by using the formulae

P0,0(i) :=
n∧

k=0

Dqk(i) ∧
n∧

k=0

Dpk(i)

P1,0(i) :=
n∧

k=0

Dqk(i) ∧ ¬Dp0(i) ∧
n∧

k=1

Dpk(i)

P2,0(i) :=
n∧

k=0

Dqk(i) ∧ Dp0(i) ∧ ¬Dp1(i) ∧
n∧

k=2

Dpk(i)

· · ·
The existence of a tiling is then expressed by the satisfiability of the formula below (the

first conjunct takes care of the initialization, whereas the last two about tile matching):

n−1∧

k=0

∀i (Pk,0(i) → a[i] = dk) ∧

∧ ∀i1 ∀i2 (HI (i1, i2) → HE(a[i1], a[i2])) ∧
∧ ∀i1 ∀i2 (VI (i1, i2) → VE(a[i1], a[i2])) .

Notice that the above (polynomially long) formula is in the ∀∗-monic-flat fragment,
as it can be seen by inspecting the definitions of the macros we used for for
Pk,0(i), VI (i1, i2),HI (i1, i2).

Lemma 4 (Upper Bound) ARR2(P,P)-satisfiability of ∃∗∀∗-monic-flat sentences is in
NEXPTIME.

Proof 1 To show the matching upper bound, it is sufficient to inspect our decision
algorithm SATMULTI. Clearly, STEP I introduces an exponential guess; the formulas
F1, F2, F3, FI , FE are all exponentially long (notice that there are exponentially many σ

in F1 and B can be seen as a set of exponentially many literals). It is well-known that P-
satisfiability of quantifier-free formulas is in NP (see the historical references in [36] for the
origins of this result), so that satisfiability of FE also takes non deterministic exponential
time. We only have to discuss P-satisfiability of FI in more detail. Now, FI is not quantifier-
free and in order to check its satisfiability we need to run a quantifier elimination procedure
to the subformula

¬ ∃x ¬
⎛

⎝
q∨

j=1

∧

L∈Mj

L(x, c)

⎞

⎠ (12)

The point is that this formula is exponentially long and so we must carefully analyze the
cost of the elimination of a single existential quantifier in Presburger arithmetic. We need
the following lemma from [36] (Theorem 1, p.327):

Lemma 5 Suppose that Cooper’s quantifier elimination algorithm, applied to a formula
∃x φ (with quantifier-free φ) yields the quantifier-free formula φ′. Let c0 (resp. c1) be

342 F. Alberti et al.

the number of distinct positive integers appearing as indexes of divisibility predicates
or as variable coefficients within φ (resp. φ′); let s0 (resp. s1) be the largest abso-
lute values of integer constants (including coefficients) occurring in φ (resp. φ′); let
a0 (resp. a1) be the number of atoms of φ (resp. φ′). Then the following relationship
hold:

c1 ≤ c4
0, s1 ≤ s

4c0
0 , a1 ≤ a4

0s
2c0
0 .

Now notice that (12) is exponentially long, but integer constants, integer coefficients
and indexes of divisibility predicates are the same as in the input formula. Thus, if N

bounds the length of the input formula, we get a 2O(N2)-bound for the above parame-
ters c1, s1, a1 for the formula φ′ resulting from the elimination of the universal quantifier
from (12). Now (quoting from [36], p.329), “the space required to store [a formula] Fk

is bounded by the product of the number of atoms ak in Fk , the maximum number
m + 1 of constants per atom, the maximum amount of space sk required to store each
constant, and some constant q (included for the various arithmetic and logical operators,
etc.).” This means that our φ′ is exponentially long and, as a consequence, our satisfiabil-
ity testing for FI works in NEXPTIME, as it applies an NP algorithm to an exponential
instance.

5 A Decidability Result for the Reachability Analysis of Flat Array Programs

Based on the decidability results described in the previous section, we can now achieve
important decidability results in the context of reachability analysis for programs han-
dling arrays of unbounded length. As a reference theory, we shall use ARR1(P+) or
ARR2(P+,P+), where P+ is P enriched with free constant symbols and with definable pred-
icate and function symbols. We do not enter into more details concerning what a definable
symbol is (see, e.g., [40]), we just underline that definable symbols are nothing but useful
macros that can be used to formalize case-defined functions and SMT-LIB commands like
if-then-else. The addition of definable symbols does not compromise quantifier elimination,
hence decidability of P+. Below, we let T be ARR1(P+) or ARR2(P+,P+).

Henceforth v will denote, in the following, the variables of the programs we will analyze.
Formally, v = a, c where, according to our conventions, a is a tuple of array variables
(modeled as free unary function symbols of T in our framework) and c a tuple of scalar
variables; the latter can be considered as variables in the logical sense - in ARR2(P+,P+)

we can conveniently model them either as variables of sort INDEX or as free constants of
sort ELEM.

A state-formula is a formula α(v) of T representing a (possibly infinite) set of config-
urations of the program under analysis. A transition formula is a formula of T of the kind
τ(v, v′) where v′ is obtained from copying the variables in v and adding a prime to each
of them. For the purpose of this work, programs will be represented by their control-flow
automaton.

Definition 1 (Programs) Given a set of variables v, a program is a triple P = (L,
,E),
where (i) L = {l1, . . . , ln} is a set of program locations among which we distinguish an
initial location linit and an error location lerror; (ii)
 is a finite set of transition formulas
{τ1(v, v′), . . . , τr (v, v′)} and (iii) E ⊆ L ×
 × L is a set of actions.

Decision Procedures for Flat Array Properties 343

Fig. 1 The initEven procedure (a) and its control-flow graph (b)

We indicate by src,L, tgt the three projection functions on E; that is, for e =
(li , τj , lk) ∈ E, we have src(e) = li (this is called the ‘source’ location of e), L(e) = τj

(this is called the ‘label’ of e) and tgt (e) = lk (this is called the ‘target’ location of e).

Example 2 Consider the procedure initEven in Fig. 1. For this procedure, a = a, c = i, v. N
is a constant of the background theory.
 is the set of formulas (we omit identical updates):

τ1 := i′ = 0

τ2 := i < N ∧ a′ = λj.if (j = i) then v else a(j) ∧ i′ = i + 2

τ3 := i ≥ N ∧ i′ = 0

τ4 := i < N ∧ a(i) = v ∧ i′ = i + 2

τ5 := i ≥ N

τE := i < N ∧ a(i) �= v

The procedure initEven can be formalized as the control-flow graph depicted in Fig. 1b,
where L = {linit, l1, l2, l3, lerror}.

Definition 2 (Program paths) A program path (in short, path) of P = (L,
,E) is a
sequence ρ ∈ En, i.e., ρ = e1, e2, . . . , en, such that for every ei, ei+1, tgt (ei) = src(ei+1).
We denote with |ρ| the length of the path. An error path is a path ρ with src(e1) = linit

and tgt (e|ρ|) = lerror. A path ρ is a feasible path if
∧|ρ|

j=1 L(ej)
(j) is T -satisfiable, where

L(ej)
(j) represents τij

(
v(j−1), v(j)

)
, withL(ej) = τij (the notation τij

(
v(j−1), v(j)

)
means

that we made copies v(j−1), v(j) of the program variables v and we replaced v, v′ by them
in τ(v, v′)).

The (unbounded) reachability problem for a program P is to detect if P admits a feasible
error path. Proving the safety of P , therefore, means solving the reachability problem for P .
This problem, given well known limiting results, is not decidable for an arbitrary program
P . The consequence is that, in general, reachability analysis is sound, but not complete,

344 F. Alberti et al.

and its incompleteness manifests itself in (possible) divergence of the verification algorithm
(see, e.g., [1, 3]).

To gain decidability, we must first impose restrictions on the shape of the transi-
tion formulas, for instance we can constrain the analysis to formulas falling within
decidable classes like those we analyzed in the previous section. This is not suffi-
cient however, due to the presence of loops in the control flow. Hence we assume
flatness conditions on such control flow and “accelerability” of the transitions label-
ing self-loops. This is similar to what is done in [15, 17, 22] for integer variable
programs, but since we handle array variables we need specific restrictions for acceler-
ation. Our result for the decidability of the safety of annotated ARR ay programs builds
upon the results presented in Sections 3 and 4 and the acceleration procedure presented
in [4].

We first give the definition of flat0-program, i.e., programs with only self-loops for
which each location belongs to at most one loop. Subsequently we will identify suffi-
cient conditions for achieving the full decidability of the reachability problem for flat0 −
program.

Definition 3 (flat0-program) A program P is a flat0 − program if for every path ρ =
e1, . . . , en of P it holds that for every j < k (j, k ∈ {1, . . . , n}), if src(ej) = tgt (ek) then
ej = ej+1 = · · · = ek .

We now turn our attention to transition formulas. Acceleration is a well-known formalism
in the area of model-checking. It has been integrated in several frameworks and constitutes
a fundamental technology for the scalability and efficiency of modern model checkers (e.g.,
[10]). Given a loop, represented as a transition relation τ , the accelerated transition τ+
allows to compute in one shot the precise set of states reachable after n unwindings of that
loop, for any n. This prevents divergence of the reachability analysis along τ , caused by its
unwinding. An obstacle for the applicability of acceleration in the domain we are targeting
is that accelerations are not always definable in the logical formalisms we consider. By
definition, the acceleration of a transition τ(v, v′) is the union of the n-th compositions of τ

with itself, i.e. it is τ+ := ∨
n>0 τn, where

τ 1(v, v′) := τ(v, v′), τn+1(v, v′) := ∃v′′.(τ (v, v′′) ∧ τn(v′′, v′)) .

τ+ can be practically exploited only if there exists a formula ϕ(v, v′) equivalent, in the
models of the considered background theory, to

∨
n>0 τn.

Based on this observation, we are now ready to state a general result about the
decidability of the reachability problem for programs with arrays. The theorem we
give is, as we did for results in Sections 3 and 4, modular and general. We will
show instances of this result in Section 6. Notationally, let us modify the projec-
tion function L by putting L+(e) := L(e)+ if src(e) = tgt (e) and L+(e) :=
L(e) otherwise, where L(e)+ denotes the acceleration of the transition labeling the
edge e.

Theorem 4 Let F be a class of formulas decidable for T -satisfiability. The unbounded
reachability problem for a flat0 − program P is decidable if (i) L is closed under con-
junctions and (ii) for each e ∈ E one can compute α(v, v′) ∈ L such that T |= L+(e) ↔
α(v, v′).

Decision Procedures for Flat Array Properties 345

Proof Let ρ = e1, . . . , en be an error path of P ; when testing its feasibility, according to
Definition 3, we can limit ourselves to the case in which e1, . . . , en are all distinct, provided
we replace the labels L(ek)

(k) with L+(ek)
(k) in the formula

∧n
j=1 L(ej)

(j) from Defini-

tion 2.11 Thus P is unsafe iff, for some path e1, . . . , en whose edges are all distinct, the
formula

L+(e1)
(1) ∧ · · · ∧ L+(en)

(n) (13)
is T -satisfiable. Since the involved paths are finitely many and T -satisfiability of formulas
like (13) is decidable, the safety of P can be decided.

5.1 A Class of Array Programs with Decidable Reachability Problem

We now produce a class of programs with arrays – we call it simple0
Aprogams – for

which requirements of Theorem 4 are met. The class of simple0
A-progams contains non

recursive programs implementing searching, copying, comparing, initializing, replacing
and testing procedures. As an example, the initEven program reported in Fig. 1 is a
simple0

A-progam. Formally, a simple0
A − progamP = (L,
,E) is a flat0−-program

such that (i) every τ ∈
 is a formula belonging to one of the decidable classes
covered by Corollary 1 or Theorem 3; (ii) if e ∈ E is a self-loop, then L(e) is a
simplek-assignment.

Simplek-assignments are transitions (defined below) for which the acceleration is first-
order definable and is a Flat Array Property. For an integer number k, we denote by k the
term 1 + · · · + 1 (k-times) and by k · t the term t + · · · + t (k-times).

Definition 4 (simplek-assignment) Let k �= 0; a simplek − assignment is a transition
τ(v, v′) of the kind

φL(c, a(d)) ∧ d ′ = d + k ∧ d′ = d ∧ a′ = λj.if (j = d) then t(c, a(d)) else a(j)

where (i) c = d, d and (ii) the quantifier-free formula φL(c, a(d)) and the terms t(c, a(d))

are flat.

To understand the above notation, recall that according to our conventions, if
a = a1, . . . , as , then a(d) means the s-tuple of terms a1(d), . . . , as(d); moreover,
t(c, a(d)) stands for an s-tuple of terms t1(c, a(d), . . . , ts(c, a(d)). Finally, a′ = λj (· · ·)
stands for a conjunction of s-equations updating the tuple a, where the λj (· · ·) nota-
tion indicates the s-tuple of functions which are defined by the displayed macros.
The formula a′ = λj (· · ·) can thus be rewritten as a plain first order formula as
follows12

s∧

h=1

∀j.

(
(j = d ∧ a′

h(j) = th(c, a(d))) ∨
∨ (j �= d ∧ a′

h(j) = ah(j))

)

(14)

In a simplek-assignment, the arrays a are scanned by the counter d , the cells a(d) are over-
written and the counter is then increased by k. It would be possible to use different scanners
for the different arrays (one scanner for each of them) with different increments; such gen-
eralization is easy and left to the reader (we prefer not to formally introduce it in order not
to complicate the notation).

11Notice that by these replacements we can represent in one shot infinitely many paths, namely those
executing self-loops any given number of times.
12Using McCarthy [33] update notation, we can write it as

∧
h a′

h = upd(ah, d, th(c, a(d))).

346 F. Alberti et al.

The following Lemma (which is an instance of a more general result from [4]) gives the
template for the accelerated counterpart of a simplek-assignment.

Lemma 6 Let τ(v, v′) be a simplek − assignment like in Definition 4. Then τ+(v, v′) is
T -equivalent to the formula

∃y > 0

(
∀z. (d ≤ z < d + k · y ∧ Dk(z − d) → φL(z, d, a(z))) ∧
a′ = λj.U(j, y, v) ∧ d ′ = d + k · y ∧ d′ = d

)

(15)

where the definable functions Uh(j, y, v), 1 ≤ h ≤ |a|, of the tuple of functions U are

if (d ≤ j < d + k · y ∧ Dk(j − d)) then th(j, d, a(j)) else ah(j) .

Proof It is sufficient to check by induction on y ≥ 1 that if we execute y-times the
simplek − assignment of Definition 4, we get

∀z. (d ≤ z < d + k · y ∧ Dk(z − d) → φL(z, d, a(z))) ∧
∧ a′ = λj.U(j, y, v) ∧ d ′ = d + k · y ∧ d′ = d

which means that the accelerated assignment is described by (15).

Example 3 Consider transition τ2 from the formalization of our running example of Fig. 1.
The acceleration τ+

2 of such formula is (we omit identical updates)

∃y > 0.

(
∀z.(i ≤ z < i + 2y ∧ D2(z − i) → z < N) ∧ i′ = i + 2y ∧
a′ = λj. (if (i ≤ j < 2y + i ∧ D2(j − i)) then v else a(j))

)

We can now formally show that the reachability problem for simple0
A-progams is

decidable, by instantiating Theorem 4 with the results obtained so far.

Theorem 5 The unbounded reachability problem for simple0
Aprogams is decidable.

Proof By prenex transformations, distributions of universal quantifiers over conjunctions,
etc., it is easy to see that the decidable classes covered by Corollary 1 or Theorem 3 are
closed under conjunctions. Since the acceleration of a simplek − assignment fits inside
these classes (just eliminate definitions via λ-abstractions by using universal quantifiers,
like in (14)), Theorem 4 applies.

6 Experimental Observations

SMT-solvers constitute nowadays one of the fundamental components in tools dealing
with the formal verification of software systems. Given the growing demand for solvers
supporting quantified fragments of theory of interests from a practical perspective, differ-
ent SMT-solvers started implementing procedures for handling quantified formulas. As an
example, cvc4 [8], VERIT [14] and Z3 [18] are SMT-solvers, according to [21], able to deal
with sentences over the theory of arrays over linear arithmetic (constraining both indices
and values).

Decision Procedures for Flat Array Properties 347

Nowadays, the vast majority of the software model-checkers exploit abstraction tech-
niques in order to check the safety of a program, as witnessed by the report of the last
international competition on software verification (SV-COMP, [11]). Checking the safety
of (some) simple0

A-progams with abstraction techniques can be really challenging. As an
example, proving the safety of the procedure initEven of Fig. 1 (i.e., generating a safe induc-
tive invariant for it) requires a reasoning schema able to realize the need of a divisibility
predicate. This is a non trivial task, and even highly engineered tools, e.g., those described
in [12], are not able to deal with this problem. Implementing the procedure identified in
the proof of Theorem 4 as a preprocessing step in a software model-checker (partially13)
overcomes this problem, as simple0

A-progams will not be analyzed at all by the abstraction
module.

In our case, we implemented the decision procedure described in the proof of
Theorem 4 in the tool BOOSTER [5] as an additional analysis technique targeting
the verification of simple0

A-progams. This section reports on our experimental find-
ings. Indeed, the decision procedures presented in this paper have not been imple-
mented in any SMT-solver. It is natural to ask, therefore, whether there is a real need
for them in practice or if the available solvers are already able to cope with those
Flat Array Properties arising from pragmatic solutions for the analysis of computer
systems.

BOOSTER has been built over Z3. Z3 has several ways for dealing with quantifiers:
it offers an implementation of the matching modulo equalities (E-matching) solution
[19], the decision procedures for arrays described in [16] and a more advanced instan-
tiation procedures, Model Based Quantifier Instantiation (MBQI), described in [24].
While the first two procedures are generally not enough for checking Flat Array Prop-
erties (the first is not automatic since an “instantiation pattern” has to be suggested
while the second works on formulas produced by a grammar not matching Flat Array
Properties, see the discussion in the next section), the MBQI procedure works pretty
well with our Flat Array Properties, even though fails on a few of them. More pre-
cisely, the solver detects fastly the unsatisfiability of inconsistent formulas and the
only slow-downs are detected for a few satisfiable instances. The other SMT-solvers
implementing features for dealing with quantified formulas fail as well with such
instances.

We report below a typical example example of a Flat Array Property on which we
observed the failure of the SMT-solvers.14 The failure is due to the presence of constraints
(like divisibility predicates) requiring instantiation strategies that, in order to be complete,
must be rather sophisticated.

6.1 A Concrete Example of a Flat Array Property

As an example of Flat Array Property out of reach for the available SMT-solvers, consider
the mergeInterleave procedure taken from [20] and reported in Fig. 2a. For this procedure,

13This solution fully works only if the input program is a simple0
A-progams. Otherwise, however, acceleration

procedures for arrays can be adopted as well inside a abstraction-refinement loop, as described in [4].
14The versions of the solvers we tested are the following: cvc4, version 1.4-prerelease. VERIT, version
201310d. Z3, version 4.3.1.

348 F. Alberti et al.

a = a, b, r , c = i, k. N is a constant of the background theory.
 is the set of formulas (we
omit identical updates and the transitions not leading to error locations):

τ1 := i′ = 0

τ2 := i < N ∧ r ′ = λj.if (j = i) then a(j) else r(j) ∧ i′ = i + 2

τ3 := i ≥ N ∧ i′ = 1

τ4 := i < N ∧ r ′ = λj.if (j = i) then b(j) else r(j) ∧ i′ = i + 2

τ5 := i ≥ N

τE1 := k ≥ 0 ∧ k < N ∧ k ≡2 0 ∧ r[k] �= b[k]
τE2 := k ≥ 0 ∧ k < N ∧ k ≡2 1 ∧ r[k] �= a[k]

The procedure mergeInterleave can be formalized as the control-flow graph depicted in
Fig. 2b (as before, we are not reporting edges of the control-flow graph that are not
considered for checking the safety of the procedure), where L = {linit, l1, l2, l3, lerror}.

Transitions τ2 and τ4 are simplek-assignments. Their accelerations are (omitting identical
updates):

τ+
2 := ∃y.

(
y > 0 ∧ ∀j.((i ≤ j < i + 2y ∧ D2(j − i)) → j < N) ∧
i′ = i + 2y ∧ r ′ = λj.if (i ≤ j < 2y + i ∧ D2(j − i)) then a(j) else r(j)

)

and

τ+
4 := ∃y.

(
y > 0 ∧ ∀j.((i ≤ j < i + 2y ∧ D2(j − i)) → j < N) ∧
i′ = i + 2y ∧ r ′ = λj.if (i ≤ j < 2y + i ∧ D2(j − i)) then b(j) else r(j)

)

The procedure mergeInterleave is not safe: a possible execution run showing the unsafety
is τ1 ∧ τ+

2 ∧ τ3 ∧ τ+
4 ∧ τ5 ∧ τE1 , because r is initialized in the even positions with elements

from a, not from b. The error trace is the Flat Array Property:

i1 = 0 ∧ ∀j.r1(j) = r0(j) ∧

∃y1.

⎛

⎜
⎝

y1 > 0 ∧ i2 = i1 + 2y1 ∧
∀j.((i1 ≤ j < i1 + 2y1 ∧ D2(j − i1)) → j < N) ∧
∀j.(r2(j) = if (i1 ≤ j < 2y1 + i1 ∧ D2(j − i1)) then a(j) else r1(j))

⎞

⎟
⎠ ∧

i2 ≥ N ∧ i3 = 1 ∧ ∀j.(r3(j) = r2(j)) ∧

∃y3.

⎛

⎜
⎝

y3 > 0 ∧ i4 = i3 + 2y3 ∧
∀j.((i3 ≤ j < i3 + 2y3 ∧ D2(j − i3)) → j < N) ∧
∀j.(r4(j) = if (i3 ≤ j < 2y3 + i3 ∧ D2(j − i3)) then b(j) else r3(j))

⎞

⎟
⎠ ∧

i4 ≥ N ∧ i5 = i4 ∧ ∀j.(r5(j) = r4(j)) ∧
0 ≤ k ∧ k < N ∧ D2(k) ∧ r5(k) �= b(k) ∧
i6 = i5 ∧ ∀j.(r6(j) = r5(j))

7 Related Work

The modular nature of our solution makes our contributions orthogonal with respect to the
state of the art: we can enrich P with various definable or even not definable symbols [39]
and get from our Theorems 1, 2 decidable classes which are far from the scope of existing

Decision Procedures for Flat Array Properties 349

Fig. 2 The mergeInterleave procedure (a) and its control-flow graph (b)

results. Given the parameterized nature of our results, there is some similarity with [30],
although (contrary to [30]) we consider purely syntactically specified classes of formulas.
It is interesting to notice that also the special cases of the decidable classes covered by
Corollary 1 and Theorem 3 are orthogonal to the results from the literature. To this aim, we
make a closer comparison with [16, 27].

The two fragments considered in [16, 27] are characterized by rather restrictive syntactic
constraints. In [27] it is considered a subclass of the ∃∗∀-fragment of ARR1(T) called SIL,
Single Index Logic. In this class, formulas are built according to a grammar allowing (i) as
atoms occurring in universally quantified subformulas only difference logic constraints and
some equations modulo a fixed integer and (ii) as universally quantified subformulas only
formulas of the kind ∀i.φ(i) → ψ(i, a(i + k)) (here k is a tuple of integers) where φ, ψ are
conjunctions of atoms (in particular, no disjunction is allowed in ψ). On the other side, SIL
includes some non-flat formulas, due to the dereference applied to increment terms i + k
in the consequents of the above universally quantified implications. Similar restrictions are
in [28].

The Array Property Fragment described in [16] is basically a subclass of the ∃∗∀∗-
fragment of ARR2(P,P); however universally quantified subformulas are constrained to be
of the kind ∀i.φ(i) → ψ(a(i)), where in addition the INDEX part φ(i) is restricted to be
a conjunction of atoms of the following four kinds: i ≤ j, i ≤ t, t ≤ i (with i, j ∈ i
and where t does not contain occurrences of the universally quantified variables i). These
formulas are flat; they may not be monic because of the atoms i ≤ j .

From a computational point of view, a complexity bound for SATMONO has been shown
in the proof of Theorem 1, while the complexity of the decision procedure proposed in
[27] is unknown. On the other side, both SATMULTI and the decision procedure described
in [16] run in NEXPTIME. The decision procedure in [16] is in NP only if the number of
universally quantified index variables is bounded by a constant N (this is not the case of
SATMULTI, where with two universally quantified index variables the NEXPTIME lower and
upper bounds are attained).

Our decision procedures for quantified formulas are also partially different, in spirit,
from those presented so far in the SMT community. While the vast majority of SMT-Solvers

350 F. Alberti et al.

address the problem of checking the satisfiability of quantified formulas via instantiation
(see, e.g., [16, 19, 24, 37]), our procedure SATMULTI is still based on instantiation, but the
instantiation refers to a set of terms enlarged with the free constants witnessing the guessed
set of realized types. Notice also that SATMULTI introduces in Step II (see Section 4.1) a
universally quantified arithmetic subformula to be handled in Step V (for the lack of a
better method) via quantifier-elimination; a similar remark applies also to SATMONO, thus
the generation of quantified purely arithmetic subgoals is an additional specific feature of
our satifiability procedures.

From the point of view of the applications, providing a full decidability result for the
unbounded reachability analysis of a class of array programs is what differentiates our work
with other contributions like [1, 3, 4].

8 Conclusions and Future Work

In this paper we identified a class of Flat Array Properties, a quantified fragment of theories
of arrays, admitting decision procedures. We provided a complexity analysis of our decision
procedures. We also showed that the decidability of Flat Array Properties, combined with
acceleration results, allows to depict a sound and complete procedure for checking the safety
of a class of programs with arrays.

A thorough experimental evaluation of the new procedures presented in this paper is
still missing and is deferred to future work. We just make here some observations concern-
ing implementation. First of all, it must be pointed out that the fragments covered by our
decision procedures are quite expressive - witness the above mentioned fact that the NEX-
PTIME lower bound is attained by SATMULTI already by fixing the number of the universally
quantified variables. It is not clear, on the other hand, whether this large expressivity is
needed in concrete applications (the encoding of the domino problem in Section 4.3 seems
to be far from the kind of formulas arising from software problems like those analyzed in
Section 5). However, we have seen in Section 6 that there are concrete problems where
pure instantiation procedures are insufficient: as it is evident from the analysis of the com-
pleteness proof in [16], the rationale behind instantiation procedures like that of [16] is that
(up to satisfiability) we limit to models where arrays are ‘constants on definable intervals’.
This assumption is not appropriate for instance for procedures like initEven or mergeInter-
leave where arrays are scanned in a non uniform way: it is precisely in these cases that
we need to enlarge the set of instantiation terms using extra constants witnessing type real-
izations. Of course type guessing is one of the ingredients making the algorithm SATMULTI

highly problematic. To alleviate the problem, we probably need to have a closer look to the
formulae arising in the applications. For instance, array accelerations (15) typically parti-
tion the array domain into intervals and thus naturally indicate the right set of types that
has to be realized: most information given by a type over a variable z consists in appro-
priately locating z inside an interval, hence it is obvious that all these types have to be
realized (unless intervals are somewhat degenerated). Thus non-determinism seems to be
limited if we look at the applications; a similar remark applies to the other source of com-
plexity of SATMONO and SATMULTI, namely the need of discharging quantified arithmetic
subgoals. For instance, in SATMULTI the quantifier elimination applied to the arithmetic sub-

formula ∀x.
(∨q

j=1

∧
L∈Mj

L(x, c)
)

introduced in Step II–V computes the (often trivial)

side effects of the missed realization of some types (for instance if there is no even z inside
an interval [t, u] this is because the interval is degenerated and t = u is odd).

Decision Procedures for Flat Array Properties 351

In conclusion, given that the state-of-the-art techniques for handling quanti-
fiers seem to be insufficient, the additional methodologies indicated in this paper,
although hardly feasible in their full generality, seem to indicate promising tech-
niques in order to attack intermediate classes of problems suggested by concrete
applications.

References

1. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: Lazy abstraction with interpolants
for arrays. In: LPAR, pp. 46–61 (2012)

2. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: SAFARI: SMT-Based Abstraction
for Arrays with Interpolants. In: CAV, pp. 679–685 (2012)

3. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: An extension of lazy abstraction
with interpolation for programs with arrays. Formal Methods in System Design 45(1), 63–109 (2014)

4. Alberti, F., Ghilardi, S., Sharygina, N.: Definability of accelerated relations in a theory of arrays and its
applications. In: FroCoS, pp. 23–39 (2013)

5. Alberti, F., Ghilardi, S., Sharygina, N.: Booster: An acceleration-based verification framework for array
programs. In: Cassez, F., Raskin, J.-F. (eds.) Automated Technology for Verification and Analysis - 12th
International Symposium, ATVA 2014, Sydney, NSW, Australia, November 3-7, 2014, Proceedings,
volume 8837 of Lecture Notes in Computer Science, pp. 18–23, Springer (2014)

6. Alberti, F., Ghilardi, S., Sharygina, N.: Decision procedures for flat array properties. In: TACAS (2014)
7. Bach, E., Shallit, J.: Algorithmic Number Theory. Vol. 1. Foundations of Computing Series. MIT Press

(1996)
8. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T., Reynolds, A., Tinelli, C.:

CVC4. In: CAV, pp. 171–177 (2011)
9. Barrett, C., Stump A., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB).

www.SMT-LIB.org (2010)
10. Behrmann, G., Bengtsson, J., David, A., Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL implementation

secrets. In: FTRTFT, pp. 3–22 (2002)
11. Beyer, D.: Status report on software verification - (competition summary sv-comp 2014). In: Ábrahám,

E., Havelund, K. (eds.) TACAS, volume 8413 of Lecture Notes in Computer Science, pp. 373–388.
Springer (2014)

12. Bjørner, N., McMillan, K.L., Rybalchenko, A.: On solving universally quantified horn clauses. In: SAS,
pp. 105–125 (2013)

13. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives in Mathematical
Logic. Springer-Verlag, Berlin (1997)

14. Bouton, T., Caminha, D., de Oliveira, B., Déharbe, D., Fontaine, P.: Verit: An open, trustable and efficient
smt-solver. In: Schmidt, R.A. (ed.) CADE, volume 5663 of Lecture Notes in Computer Science, pp.
151–156. Springer (2009)

15. Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. Fundamenta Informaticae 91, 275–
303 (2009)

16. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: VMCAI, pp. 427–442 (2006)
17. Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and presburger arithmetic. In: CAV,

vol. 1427 of LNCS, pp. 268–279. Springer (1998)
18. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS, pp. 337–340 (2008)
19. Detlefs, D.L., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. Technical Report

HPL-2003-148, HP Labs (2003)
20. Dillig, I., Dillig, T., Aiken, A.: Fluid updates: Beyond strong vs. weak updates. In: ESOP, pp. 246–266

(2010)
21. Weber, T., Cok, D.R., Stump, A.: The 2013 SMT Evaluation. Available at http://smtcomp.sourceforge.

net/2013/report/SMTEVAL-2013.pdf (2013)
22. Finkel, A., Leroux, J.: How to compose Presburger-accelerations: Applications to broadcast protocols.

In: FSTTCS, pp. 145–156 (2002)
23. Ganzinger, H.: Shostak light. Automated deduction—CADE-18, vol. 2392 of Lecture Notes in Comput.

Sci., pp. 332–346. Springer, Berlin (2002)
24. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfiabiliby modulo theories.

In: CAV, pp. 306–320 (2009)

http://www.SMT-LIB.org
http://smtcomp.sourceforge.net/2013/report/SMTEVAL-2013.pdf
http://smtcomp.sourceforge.net/2013/report/SMTEVAL-2013.pdf

352 F. Alberti et al.

25. Ghilardi, S., Ranise, S.: Backward reachability of array-based systems by SMT solving: Termination and
invariant synthesis. Logical Methods in Computer Science 6(4) (2010)

26. Ghilardi, S., Ranise, S.: MCMT: A Model Checker Modulo Theories. In: IJCAR, pp. 22–29 (2010)
27. Habermehl, P., Iosif, R., Vojnar, T.: A logic of singly indexed arrays. In: LPAR, pp. 558–573 (2008)
28. Habermehl, P., Iosif, R., Vojnar, T.: What else is decidable about integer arrays? In: FOSSACS (2008)
29. Halpern, J.Y.: Presburger arithmetic with unary predicates is Π1

1 complete. J. Symbolic Logic 56(2),
637–642 (1991)

30. Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: On local reasoning in verification. In: TACAS, pp.
265–281. Springer (2008)

31. Jhala, R., McMillan, K.L.: Array Abstractions from Proofs. In: CAV (2007)
32. Lewis, H.B.: Complexity of solvable cases of the decision problem for the predicate calculus. In: 19th

Ann. Symp. on Found. of Comp. Sci., pp. 35–47. IEEE (1978)
33. McCarthy, J.: Towards a mathematical science of computation. In: International Federation for Informa-

tion Processing Congress, pp. 21–28 (1962)
34. McMillan, K.L.: Lazy Abstraction with Interpolants. In: CAV (2006)
35. Nieuwenhuis, R., Oliveras, A.: DPLL(T) with Exhaustive Theory Propagation and Its Application to

Difference Logic. In: CAV’05, pp. 321–334 (2005)
36. Oppen, D.C.: A superexponential upper bound on the complexity of Presburger arithmetic. J. Comput.

Syst. Sci. 16(3), 323–332 (1978)
37. Reynolds, A., Tinelli, C., Goel, A., Krstic, S., Deters, M., Barrett, C.: Quantifier instantiation techniques

for finite model finding in SMT. In: CADE, pp. 377–391 (2013)
38. Rosser, B.: The n-th prime is greater than n log n. Proc. Lond. Math. Soc., II. Ser. 45, 21–44 (1938)
39. Semënov, A.L.: Logical theories of one-place functions on the set of natural numbers. Izvestiya:

Mathematics 22, 587–618 (1984)
40. Shoenfield, J.R.: Mathematical logic. Association for Symbolic Logic, Urbana, IL. Reprint of the 1973

second printing (2001)
41. Tinelli, C., Zarba, C.G.: Combining nonstably infinite theories. J. Automat. Reason. 34(3), 209–238

(2005)

	Decision Procedures for Flat Array Properties
	Abstract
	Introduction
	Plan of the paper

	Background
	The Mono-sorted Case
	The Multi-sorted Case
	The Decision Procedure SATMULTI.
	Correctness and Completeness
	Complexity Analysis

	A Decidability Result for the Reachability Analysis of Flat Array Programs
	A Class of Array Programs with Decidable Reachability Problem

	Experimental Observations
	A Concrete Example of a Flat Array Property

	Related Work
	Conclusions and Future Work
	References

