Skip to main content
Log in

Reconsidering Pairs and Functions as Sets

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

We give representations for ordered pairs and functions in set theory with the property that ordered pairs are functions from the finite ordinal 2. We conjecture that these representations are useful for formalized mathematics since certain isomorphic sets are identified. The definitions, theorems and proofs have been formalized in the proof assistant Coq using only the simply typed features of Coq. We describe the development within the context of an intuitionistic simply typed (higher-order) version of (well-founded) Zermelo-Fraenkel set theory without the axiom of infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aczel, P.: On relating type theories and set theories. In: Altenkirch, T., Naraschewski, W., Reus, B. (eds.) TYPES, Lecture notes in computer science, vol. 1657, pp 1–18. Springer (1998)

  2. Agerholm, S., Gordon, M.: Experiments with ZF set theory in HOL and Isabelle. In: Proceedings of the 8th International Workshop on Higher Order Logic Theorem Proving and its Applications, LNCS, pp 32–45. Springer (1995)

  3. Bancerek, G.: The ordinal numbers. Formalized Mathematics 1(1), 91–96 (1990). http://fm.mizar.org/1990-1/pdf1-1/ordinal1.pdf

    Google Scholar 

  4. Bancerek, G.: Sequences of ordinal numbers. Formalized Mathematics 1(2), 281–290 (1990). http://fm.mizar.org/1990-1/pdf1-2/ordinal2.pdf

    Google Scholar 

  5. Bancerek, G.: Algebra of morphisms. Formalized Mathematics 6(2), 303–310 (1997). http://fm.mizar.org/1997-6/pdf6-2/catalg_1.pdf

    Google Scholar 

  6. Bancerek, G., Hryniewiecki, K.: Segments of natural numbers and finite sequences. Formalized Mathematics 1(1), 107–114 (1990). http://fm.mizar.org/1990-1/pdf1-1/ finseq_1.pdf

    Google Scholar 

  7. Byliński, C.: Functions and their basic properties. Formalized Mathematics 1 (1), 55–65 (1990). http://fm.mizar.org/1990-1/pdf1-1/funct_1.pdf

    Google Scholar 

  8. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5, 56–68 (1940)

    Article  MathSciNet  Google Scholar 

  9. DeMarco, M., Lipton, J.: Completeness and cut-elimination in the intuitionistic theory of types. J. Log. Comput. 15(6), 821–854 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. van Heijenoort, J.: From Frege to Gödel. A source book in mathematical logic 1879–1931. Harvard University Press, Cambridge (1967)

    MATH  Google Scholar 

  11. Kaiser, J.: Formal Construction of a Set Theory in Coq. Master’s thesis, Universität des Saarlandes (2012)

  12. The Coq development team: The Coq proof assistant reference manual. LogiCal Project (2012). http://coq.inria.fr. Version 8.4

  13. Morse, A.P.: A theory of sets. Academic Press (1965)

  14. Myhill, J.: Some properties of intuitionistic Zermelo-Fraenkel set theory. In: Mathias, A., Rogers, H. (eds.) 1971 Cambridge summer school in mathematical logic, Lecture Notes in Mathematics, vol. 337, pp 206–231. Springer, Berlin (1973)

    Google Scholar 

  15. Obua, S.: Partizan games in Isabelle/HOLZF. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC, Lecture Notes in Computer Science, vol. 4281, pp 272–286. Springer (2006)

  16. Paulson, L.C.: Set theory for verification: I. from foundations to functions. J. Autom. Reason. 11, 353–389 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Prawitz, D.: Natural deduction: a proof-theoretical study. Dover (2006)

  18. Russell, B.: The principles of mathematics. Cambridge University Press (1903)

  19. Sĉêdrov, A.: Intuitionistic set theory. In: Harrington, A.S.L.A., Morley, M.D., Simpson, S. (eds.) Harvey Friedman’s research on the foundations of mathematics, Studies in Logic and the Foundations of Mathematics, vol. 117, pp 257–284. Elsevier (1985)

  20. Suppes, P.: Axiomatic set theory. Dover (1972)

  21. Trybulec, A.: Tarski Grothendieck set theory. Formalized Mathematics 1(1), 9–11 (1990). http://fm.mizar.org/1990-1/pdf1-1/tarski.pdf

    Google Scholar 

  22. Zermelo, E.: Untersuchungen über die Grundlagen der Mengenlehre I. Mathematische Annalen 65, 261–281 (1908). English translation, “Investigations in the foundations of set theory” in [10], pages 199–215

    Article  MATH  MathSciNet  Google Scholar 

  23. Zermelo, E.: Über Grenzzahlen und Mengenbereiche. Fundamenta Mathematicae 16, 29–47 (1930)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad E. Brown.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, C.E. Reconsidering Pairs and Functions as Sets. J Autom Reasoning 55, 199–210 (2015). https://doi.org/10.1007/s10817-015-9340-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-015-9340-6

Keywords

Navigation