Skip to main content
Log in

An Experiment with Satisfiability Modulo SAT

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

In recent years, the approach of satisfiability modulo theories (SMT) has been very successful in solving many constraint satisfaction problems. In a typical SMT solver, the base constraints are expressed as a set of propositional clauses, where each Boolean variable is an abstraction of an atomic formula of first-order logic and the interpretation of the formula is constrained by a background theory. A widely studied theory is the linear pseudo-Boolean logic. Following this approach, we present an experiment of a SMT solver where the background theory can be specified in propositional logic and implemented by a procedure. We chose such a procedural background theory because we found no better ways to attack a previously open problem in combinatorial design, i.e., the existence of diagonally ordered magic squares of all orders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abe, G.: Unsolved problems on magic squares. Discrete Math. 127, 3–13 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahmed, M.: Algebraic combinatorics of magic squares. Ph.D. Dissertation, University of California, Davis (2004)

  3. Barrett, C., de Moura, L., Stump, A.: SMT-COMP: satisfiability modulo theories competition. In: Computer Aided Verification, Lecture Notes in Computer Science, vol. 3576, pp. 20–23 (2005)

  4. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) Proceedings of the 19th International Conference on Computer Aided Verification, vol. 4590 of LNCS, pp. 298–302 (Berlin, July 3–7). Springer, Berlin (2007)

  5. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo Theories, vol. 185 of Frontiers in Artificial Intelligence and Applications, Chapter 26. IOS Press, pp. 825–885 (2009)

  6. Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB). www.SMT-LIB.org (2010)

  7. Bayless, S., Val, C.G., Ball, T., Hoos, H.H., Hu, A.J.: Efficient modular SAT solving for IC3. In: FMCAD, pp. 149–156 (2013)

  8. Chen, K., Li, W., Pan, F.: A family of pandiagonal bimagic squares based on orthogonal arrays. J. Comb. Des. 19, 427–438 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. Assoc. Comput. Mach. 7, 394–397 (1962)

    MathSciNet  Google Scholar 

  10. De Moura, L.: Bjorner, N. Z3: an efficient SMT solver. In: Proceedings of the Theory and Practice of Software, in 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’08/ETAPS’08), pp. 337–340. Springer, Berlin

  11. Een, N., Sorensson, N.: Translating pseudo-boolean constraints into SAT. J. Satisf. Boolean Model. Comput. 2(3–4), 1–25 (2006)

    MATH  Google Scholar 

  12. Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability Solvers, vol. 185 of Frontiers in Artificial Intelligence and Applications, Chapter 2. IOS Press, pp. 89–134 (2009)

  13. Gomes, C., Sellmann, M.: Streamlined constraint reasoning. Lect. Notes Comput. Sci. 3258, 274–289 (2004)

    Article  Google Scholar 

  14. Kudrle, J.M., Menard, S.B.: Magic squares. In: Colbourn, C.J., Dinitz, J.H. (eds.) The CRC Handbook of Combinatorial Designs, 2nd edn, pp. 524–528. Chapman and Hall/CRC, Boca Raton (2006)

  15. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver, 39th Design Automation Conference (DAC 2001), Las Vegas, ACM, pp. 530–535 (2001)

  16. Nam, G.-J., Sakallah, K.A., Rutenbar, R.: A new FPGA detailed routing approach via search-based Boolean satisfiability. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 21(6), 674–684 (2002)

    Article  Google Scholar 

  17. Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for an extensional theory of arrays. In: Proceedings of LICS 01, IEEE, pp. 29–37 (2001)

  18. Moskewicz, M., Madigan, C., Malik, S.: Method and system for efficient implementation of boolean satisfiability, US 7418369 B2. http://www.google.com/patents/US7418369 (2008)

  19. Nieuwenhuis, R., Oliveras, A., Tinelli, C., Solving, S.A.T., Modulo Theories, S.A.T.: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J. ACM 56(6), 937–977 (2006)

    Article  Google Scholar 

  20. Zhang, H.: SATO: an efficient propositional prover. In: Proceedings of International Conference on Automated Deduction (CADE-97), Lecture Notes in Artificial Intelligence, vol. 1104, pp. 308–312. Springer (1997)

  21. Zhang, H.: Combinatorial Designs by SAT Solvers, Chapter 17, vol. 185 of Frontiers in Artificial Intelligence and Applications, IOS Press, pp. 533–568 (2009)

  22. Zhang, H., Stickel, M.: An efficient algorithm for unit propagation. In: Kautz, S. (eds.) Proceedings of the Fourth International Symposium on Artificial Intelligence and Mathematics, pp. 166–179. Ft. Lauderdale, Florida (1996)

  23. Zhang, Y., Chen, J., Wu, D., Zhang, H.: The existence and application of strongly idempotent self-orthogonal row Latin magic arrays. Acta Math. Appl. Sin. to appear

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hantao Zhang.

Additional information

Dedicated to the memory of Mark E. Stickel, friend and colleague.

Appendix: SISORLMA(n) for \(n\in \{5 - 13, 15, 19, 23\}\)

Appendix: SISORLMA(n) for \(n\in \{5 - 13, 15, 19, 23\}\)

$$\begin{aligned} {(5)}:\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 0 &{} 2 &{} 3 &{} 1 &{} 4 \\ 4 &{} 1 &{} 0 &{} 3 &{} 2 \\ 4 &{} 3 &{} 2 &{} 1 &{} 0 \\ 2 &{} 1 &{} 4 &{} 3 &{} 0 \\ 0 &{} 3 &{} 1 &{} 2 &{} 4 \end{array} \right) ~~~~ {(6)}:\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 0 &{} 4 &{} 2 &{} 3 &{} 1 &{} 5 \\ 0 &{} 1 &{} 3 &{} 2 &{} 4 &{} 5 \\ 5 &{} 1 &{} 2 &{} 3 &{} 4 &{} 0 \\ 5 &{} 4 &{} 2 &{} 3 &{} 1 &{} 0 \\ 5 &{} 1 &{} 3 &{} 2 &{} 4 &{} 0 \\ 0 &{} 4 &{} 3 &{} 2 &{} 1 &{} 5 \end{array} \right) ~~~~ {(7)}:\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 0 &{} 1 &{} 2 &{} 4 &{} 3 &{} 5 &{} 6 \\ 6 &{} 1 &{} 4 &{} 3 &{} 2 &{} 5 &{} 0 \\ 3 &{} 5 &{} 2 &{} 6 &{} 4 &{} 0 &{} 1 \\ 1 &{} 6 &{} 4 &{} 3 &{} 2 &{} 0 &{} 5 \\ 5 &{} 6 &{} 2 &{} 0 &{} 4 &{} 1 &{} 3 \\ 6 &{} 1 &{} 4 &{} 3 &{} 2 &{} 5 &{} 0 \\ 0 &{} 1 &{} 3 &{} 2 &{} 4 &{} 5 &{} 6 \end{array} \right) \end{aligned}$$
$$\begin{aligned} {(8)}: \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 0 &{} 1 &{} 4 &{} 2 &{} 3 &{} 6 &{} 5 &{} 7 \\ 3 &{} 1 &{} 2 &{} 4 &{} 7 &{} 5 &{} 6 &{} 0 \\ 6 &{} 3 &{} 2 &{} 7 &{} 1 &{} 5 &{} 4 &{} 0 \\ 6 &{} 7 &{} 5 &{} 3 &{} 4 &{} 1 &{} 2 &{} 0 \\ 7 &{} 6 &{} 2 &{} 3 &{} 4 &{} 0 &{} 1 &{} 5 \\ 3 &{} 6 &{} 2 &{} 4 &{} 1 &{} 5 &{} 0 &{} 7 \\ 3 &{} 1 &{} 5 &{} 0 &{} 7 &{} 4 &{} 6 &{} 2 \\ 0 &{} 3 &{} 6 &{} 5 &{} 1 &{} 2 &{} 4 &{} 7 \end{array} \right) ~~~~ {(9)}:\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 0 &{} 1 &{} 2 &{} 3 &{} 4 &{} 5 &{} 6 &{} 7 &{} 8 \\ 0 &{} 1 &{} 2 &{} 6 &{} 8 &{} 5 &{} 4 &{} 7 &{} 3 \\ 7 &{} 8 &{} 2 &{} 5 &{} 0 &{} 3 &{} 6 &{} 1 &{} 4 \\ 6 &{} 7 &{} 8 &{} 3 &{} 0 &{} 5 &{} 1 &{} 4 &{} 2 \\ 8 &{} 6 &{} 7 &{} 5 &{} 4 &{} 3 &{} 1 &{} 2 &{} 0 \\ 6 &{} 4 &{} 7 &{} 3 &{} 8 &{} 5 &{} 0 &{} 1 &{} 2 \\ 4 &{} 7 &{} 2 &{} 5 &{} 8 &{} 3 &{} 6 &{} 0 &{} 1 \\ 5 &{} 1 &{} 4 &{} 3 &{} 0 &{} 2 &{} 6 &{} 7 &{} 8 \\ 0 &{} 1 &{} 2 &{} 3 &{} 4 &{} 5 &{} 6 &{} 7 &{} 8 \end{array} \right) \end{aligned}$$
$$\begin{aligned} {(10):} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 0&{} 8&{} 7&{} 2&{} 5&{} 3&{} 6&{} 1&{} 4&{} 9\\ 9&{} 1&{} 4&{} 5&{} 2&{} 3&{} 6&{} 7&{} 8&{} 0\\ 0&{} 3&{} 2&{} 5&{} 1&{} 6&{} 8&{} 7&{} 4&{} 9\\ 5&{} 9&{} 8&{} 3&{} 7&{} 4&{} 6&{} 2&{} 0&{} 1\\ 7&{} 6&{} 2&{} 9&{} 4&{} 5&{} 8&{} 3&{} 0&{} 1\\ 2&{} 0&{} 9&{} 6&{} 4&{} 5&{} 3&{} 7&{} 8&{} 1\\ 8&{} 1&{} 2&{} 3&{} 4&{} 7&{} 6&{} 0&{} 5&{} 9\\ 5&{} 8&{} 2&{} 4&{} 9&{} 6&{} 1&{} 7&{} 3&{} 0\\ 9&{} 1&{} 7&{} 4&{} 2&{} 3&{} 0&{} 5&{} 8&{} 6\\ 0&{} 8&{} 2&{} 4&{} 7&{} 3&{} 1&{} 6&{} 5&{} 9 \end{array} \right) ~~~~ {(11):} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 0 &{} 1 &{} 2 &{} 3 &{} 4 &{} 5 &{} 6 &{} 7 &{} 8 &{} 9 &{} 10 \\ 0 &{} 1 &{} 2 &{} 3 &{} 4 &{} 5 &{} 6 &{} 7 &{} 8 &{} 9 &{} 10 \\ 0 &{} 9 &{} 2 &{} 7 &{} 10 &{} 3 &{} 5 &{} 6 &{} 8 &{} 4 &{} 1 \\ 9 &{} 10 &{} 8 &{} 3 &{} 4 &{} 2 &{} 5 &{} 7 &{} 0 &{} 6 &{} 1 \\ 10 &{} 9 &{} 7 &{} 8 &{} 4 &{} 5 &{} 6 &{} 2 &{} 0 &{} 3 &{} 1 \\ 9 &{} 6 &{} 8 &{} 10 &{} 7 &{} 5 &{} 3 &{} 0 &{} 2 &{} 4 &{} 1 \\ 9 &{} 7 &{} 10 &{} 8 &{} 4 &{} 5 &{} 6 &{} 2 &{} 3 &{} 1 &{} 0 \\ 9 &{} 4 &{} 10 &{} 3 &{} 5 &{} 8 &{} 6 &{} 7 &{} 2 &{} 0 &{} 1 \\ 9 &{} 6 &{} 2 &{} 4 &{} 5 &{} 7 &{} 0 &{} 3 &{} 8 &{} 1 &{} 10 \\ 0 &{} 1 &{} 2 &{} 3 &{} 4 &{} 5 &{} 6 &{} 7 &{} 8 &{} 9 &{} 10 \\ 0 &{} 1 &{} 2 &{} 3 &{} 4 &{} 5 &{} 6 &{} 7 &{} 8 &{} 9 &{} 10 \end{array} \right) \end{aligned}$$
$$\begin{aligned} {(12):} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 0 &{} 10 &{} 4 &{} 2 &{} 9 &{} 3 &{} 5 &{} 7 &{} 6 &{} 8 &{} 1 &{} 11 \\ 8 &{} 1 &{} 5 &{} 4 &{} 3 &{} 9 &{} 11 &{} 6 &{} 0 &{} 2 &{} 10 &{} 7 \\ 5 &{} 10 &{} 2 &{} 6 &{} 7 &{} 8 &{} 11 &{} 3 &{} 4 &{} 9 &{} 1 &{} 0 \\ 5 &{} 1 &{} 7 &{} 3 &{} 11 &{} 6 &{} 0 &{} 2 &{} 8 &{} 10 &{} 9 &{} 4 \\ 11 &{} 9 &{} 8 &{} 10 &{} 4 &{} 6 &{} 1 &{} 7 &{} 5 &{} 3 &{} 2 &{} 0 \\ 7 &{} 10 &{} 9 &{} 8 &{} 3 &{} 5 &{} 6 &{} 11 &{} 0 &{} 4 &{} 2 &{} 1 \\ 7 &{} 3 &{} 1 &{} 10 &{} 9 &{} 5 &{} 6 &{} 2 &{} 0 &{} 8 &{} 11 &{} 4 \\ 9 &{} 0 &{} 5 &{} 8 &{} 4 &{} 6 &{} 1 &{} 7 &{} 11 &{} 10 &{} 2 &{} 3 \\ 4 &{} 7 &{} 10 &{} 3 &{} 9 &{} 1 &{} 2 &{} 5 &{} 8 &{} 0 &{} 6 &{} 11 \\ 5 &{} 4 &{} 2 &{} 3 &{} 1 &{} 0 &{} 11 &{} 6 &{} 8 &{} 9 &{} 10 &{} 7 \\ 5 &{} 1 &{} 8 &{} 0 &{} 3 &{} 11 &{} 4 &{} 6 &{} 9 &{} 2 &{} 10 &{} 7 \\ 0 &{} 10 &{} 5 &{} 9 &{} 3 &{} 6 &{} 8 &{} 4 &{} 7 &{} 1 &{} 2 &{} 11 \end{array} \right) \end{aligned}$$
$$\begin{aligned} {(13):} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 0 &{} 11 &{} 9 &{} 10 &{} 8 &{} 4 &{} 2 &{} 5 &{} 3 &{} 1 &{} 6 &{} 7 &{} 12 \\ 12 &{} 1 &{} 2 &{} 10 &{} 4 &{} 3 &{} 6 &{} 7 &{} 0 &{} 9 &{} 8 &{} 11 &{} 5 \\ 1 &{} 8 &{} 2 &{} 0 &{} 9 &{} 6 &{} 4 &{} 7 &{} 3 &{} 5 &{} 10 &{} 12 &{} 11 \\ 7 &{} 1 &{} 6 &{} 3 &{} 2 &{} 10 &{} 11 &{} 8 &{} 4 &{} 9 &{} 12 &{} 0 &{} 5 \\ 5 &{} 12 &{} 2 &{} 1 &{} 4 &{} 9 &{} 10 &{} 6 &{} 8 &{} 7 &{} 0 &{} 11 &{} 3 \\ 9 &{} 10 &{} 12 &{} 4 &{} 11 &{} 5 &{} 2 &{} 7 &{} 3 &{} 6 &{} 1 &{} 0 &{} 8 \\ 11 &{} 1 &{} 2 &{} 7 &{} 12 &{} 5 &{} 6 &{} 3 &{} 9 &{} 10 &{} 4 &{} 8 &{} 0 \\ 1 &{} 6 &{} 9 &{} 11 &{} 10 &{} 5 &{} 4 &{} 7 &{} 0 &{} 12 &{} 8 &{} 2 &{} 3 \\ 12 &{} 5 &{} 11 &{} 7 &{} 4 &{} 6 &{} 10 &{} 1 &{} 8 &{} 2 &{} 9 &{} 3 &{} 0 \\ 4 &{} 6 &{} 10 &{} 3 &{} 0 &{} 5 &{} 11 &{} 8 &{} 12 &{} 9 &{} 2 &{} 1 &{} 7 \\ 4 &{} 7 &{} 2 &{} 1 &{} 9 &{} 8 &{} 0 &{} 6 &{} 12 &{} 3 &{} 10 &{} 11 &{} 5 \\ 12 &{} 1 &{} 5 &{} 10 &{} 0 &{} 2 &{} 9 &{} 6 &{} 8 &{} 3 &{} 4 &{} 11 &{} 7 \\ 0 &{} 9 &{} 6 &{} 11 &{} 5 &{} 10 &{} 3 &{} 7 &{} 8 &{} 2 &{} 4 &{} 1 &{} 12 \end{array} \right) \end{aligned}$$
$$\begin{aligned} {(15):} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 0 &{} 11 &{} 12 &{} 4 &{} 5 &{} 13 &{} 10 &{} 3 &{} 6 &{} 1 &{} 7 &{} 2 &{} 9 &{} 8 &{} 14 \\ 14 &{} 1 &{} 12 &{} 11 &{} 2 &{} 7 &{} 4 &{} 10 &{} 8 &{} 0 &{} 3 &{} 6 &{} 5 &{} 13 &{} 9 \\ 10 &{} 7 &{} 2 &{} 3 &{} 5 &{} 6 &{} 14 &{} 0 &{} 13 &{} 1 &{} 8 &{} 4 &{} 12 &{} 9 &{} 11 \\ 1 &{} 4 &{} 13 &{} 3 &{} 2 &{} 9 &{} 14 &{} 10 &{} 8 &{} 12 &{} 6 &{} 11 &{} 0 &{} 7 &{} 5 \\ 2 &{} 13 &{} 0 &{} 14 &{} 4 &{} 6 &{} 3 &{} 5 &{} 7 &{} 8 &{} 10 &{} 1 &{} 9 &{} 11 &{} 12 \\ 14 &{} 4 &{} 3 &{} 2 &{} 11 &{} 5 &{} 10 &{} 8 &{} 1 &{} 9 &{} 6 &{} 12 &{} 7 &{} 13 &{} 0 \\ 7 &{} 13 &{} 5 &{} 3 &{} 12 &{} 14 &{} 6 &{} 10 &{} 8 &{} 0 &{} 1 &{} 4 &{} 11 &{} 9 &{} 2 \\ 10 &{} 8 &{} 9 &{} 0 &{} 12 &{} 3 &{} 5 &{} 7 &{} 2 &{} 1 &{} 6 &{} 14 &{} 4 &{} 13 &{} 11 \\ 13 &{} 9 &{} 10 &{} 2 &{} 3 &{} 5 &{} 6 &{} 7 &{} 8 &{} 12 &{} 14 &{} 11 &{} 4 &{} 0 &{} 1 \\ 12 &{} 3 &{} 10 &{} 13 &{} 7 &{} 5 &{} 1 &{} 2 &{} 8 &{} 9 &{} 14 &{} 4 &{} 11 &{} 0 &{} 6 \\ 0 &{} 9 &{} 13 &{} 14 &{} 4 &{} 5 &{} 11 &{} 12 &{} 1 &{} 8 &{} 10 &{} 6 &{} 3 &{} 7 &{} 2 \\ 10 &{} 7 &{} 6 &{} 3 &{} 8 &{} 14 &{} 5 &{} 9 &{} 13 &{} 12 &{} 1 &{} 11 &{} 4 &{} 0 &{} 2 \\ 7 &{} 3 &{} 2 &{} 6 &{} 11 &{} 5 &{} 0 &{} 8 &{} 9 &{} 10 &{} 4 &{} 14 &{} 12 &{} 1 &{} 13 \\ 5 &{} 1 &{} 6 &{} 14 &{} 8 &{} 0 &{} 10 &{} 9 &{} 4 &{} 12 &{} 11 &{} 2 &{} 7 &{} 13 &{} 3 \\ 0 &{} 12 &{} 2 &{} 13 &{} 11 &{} 8 &{} 6 &{} 5 &{} 9 &{} 10 &{} 4 &{} 3 &{} 7 &{} 1 &{} 14 \end{array} \right) \end{aligned}$$
$$\begin{aligned} {(19):} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 0&{} 17&{} 2&{} 3&{} 4&{} 5&{} 6&{} 7&{} 8&{} 1&{} 10&{} 11&{} 12&{} 13&{} 14&{} 15&{} 16&{} 9&{} 18 \\ 9&{} 1&{} 16&{} 15&{} 14&{} 13&{} 12&{} 11&{} 10&{} 18&{} 8&{} 7&{} 6&{} 5&{} 4&{} 3&{} 2&{} 17&{} 0 \\ 0&{} 17&{} 2&{} 4&{} 5&{} 6&{} 3&{} 8&{} 9&{} 10&{} 7&{} 12&{} 13&{} 14&{} 15&{} 11&{} 16&{} 1&{} 18 \\ 18&{} 1&{} 16&{} 3&{} 13&{} 12&{} 11&{} 10&{} 9&{} 8&{} 7&{} 6&{} 5&{} 4&{} 2&{} 15&{} 14&{} 17&{} 0 \\ 0&{} 17&{} 16&{} 15&{} 4&{} 11&{} 10&{} 9&{} 8&{} 7&{} 6&{} 5&{} 3&{} 2&{} 14&{} 12&{} 13&{} 1&{} 18 \\ 18&{} 1&{} 16&{} 14&{} 10&{} 5&{} 12&{} 2&{} 3&{} 4&{} 7&{} 6&{} 8&{} 13&{} 9&{} 11&{} 15&{} 17&{} 0 \\ 0&{} 17&{} 16&{} 15&{} 13&{} 8&{} 6&{} 7&{} 2&{} 9&{} 4&{} 5&{} 12&{} 3&{} 10&{} 11&{} 14&{} 1&{} 18 \\ 18&{} 1&{} 16&{} 14&{} 8&{} 5&{} 12&{} 7&{} 3&{} 10&{} 2&{} 11&{} 6&{} 4&{} 9&{} 13&{} 15&{} 17&{} 0 \\ 18&{} 1&{} 14&{} 15&{} 11&{} 2&{} 4&{} 6&{} 8&{} 5&{} 10&{} 7&{} 13&{} 3&{} 9&{} 12&{} 16&{} 17&{} 0 \\ 18&{} 17&{} 16&{} 14&{} 13&{} 3&{} 11&{} 12&{} 10&{} 9&{} 8&{} 6&{} 7&{} 15&{} 5&{} 4&{} 2&{} 1&{} 0 \\ 0&{} 17&{} 2&{} 6&{} 9&{} 15&{} 5&{} 11&{} 8&{} 13&{} 10&{} 12&{} 14&{} 16&{} 7&{} 3&{} 4&{} 1&{} 18 \\ 18&{} 1&{} 3&{} 5&{} 9&{} 14&{} 12&{} 7&{} 16&{} 8&{} 15&{} 11&{} 6&{} 13&{} 10&{} 4&{} 2&{} 17&{} 0 \\ 0&{} 17&{} 4&{} 7&{} 8&{} 15&{} 6&{} 13&{} 14&{} 9&{} 16&{} 11&{} 12&{} 10&{} 5&{} 3&{} 2&{} 1&{} 18 \\ 18&{} 1&{} 3&{} 7&{} 9&{} 5&{} 10&{} 12&{} 11&{} 14&{} 15&{} 16&{} 6&{} 13&{} 8&{} 4&{} 2&{} 17&{} 0 \\ 0&{} 17&{} 5&{} 6&{} 4&{} 16&{} 15&{} 13&{} 12&{} 11&{} 10&{} 9&{} 8&{} 7&{} 14&{} 3&{} 2&{} 1&{} 18 \\ 18&{} 1&{} 4&{} 3&{} 16&{} 14&{} 13&{} 12&{} 11&{} 10&{} 9&{} 8&{} 7&{} 6&{} 5&{} 15&{} 2&{} 17&{} 0 \\ 0&{} 17&{} 2&{} 7&{} 3&{} 4&{} 5&{} 6&{} 11&{} 8&{} 9&{} 10&{} 15&{} 12&{} 13&{} 14&{} 16&{} 1&{} 18 \\ 18&{} 1&{} 16&{} 15&{} 14&{} 13&{} 12&{} 11&{} 10&{} 0&{} 8&{} 7&{} 6&{} 5&{} 4&{} 3&{} 2&{} 17&{} 9 \\ 0&{} 9&{} 2&{} 3&{} 4&{} 5&{} 6&{} 7&{} 8&{} 17&{} 10&{} 11&{} 12&{} 13&{} 14&{} 15&{} 16&{} 1&{} 18 \end{array} \right) \end{aligned}$$
$$\begin{aligned} {(23):} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 0&{} 11&{} 13&{} 8&{} 9&{} 14&{} 10&{} 12&{} 19&{} 3&{} 4&{} 21&{} 6&{} 15&{} 18&{} 20&{} 17&{} 2&{} 7&{} 5&{} 16&{} 1&{} 22 \\ 22&{} 1&{} 15&{} 13&{} 16&{} 9&{} 4&{} 10&{} 2&{} 20&{} 5&{} 0&{} 7&{} 6&{} 17&{} 12&{} 19&{} 14&{} 3&{} 8&{} 18&{} 21&{} 11 \\ 17&{} 13&{} 2&{} 11&{} 15&{} 10&{} 9&{} 14&{} 0&{} 22&{} 6&{} 19&{} 5&{} 4&{} 16&{} 1&{} 18&{} 12&{} 21&{} 3&{} 20&{} 8&{} 7 \\ 16&{} 4&{} 20&{} 3&{} 0&{} 6&{} 17&{} 9&{} 1&{} 21&{} 7&{} 2&{} 18&{} 5&{} 15&{} 14&{} 22&{} 10&{} 12&{} 19&{} 11&{} 13&{} 8 \\ 19&{} 10&{} 9&{} 14&{} 4&{} 11&{} 13&{} 8&{} 15&{} 7&{} 2&{} 17&{} 1&{} 0&{} 20&{} 3&{} 21&{} 5&{} 18&{} 6&{} 22&{} 12&{} 16 \\ 15&{} 2&{} 21&{} 9&{} 18&{} 5&{} 0&{} 13&{} 6&{} 16&{} 3&{} 4&{} 22&{} 1&{} 19&{} 8&{} 20&{} 17&{} 11&{} 14&{} 7&{} 10&{} 12 \\ 20&{} 9&{} 0&{} 10&{} 19&{} 13&{} 6&{} 11&{} 4&{} 18&{} 1&{} 15&{} 3&{} 2&{} 21&{} 7&{} 16&{} 8&{} 22&{} 12&{} 17&{} 14&{} 5 \\ 18&{} 19&{} 4&{} 1&{} 21&{} 2&{} 16&{} 7&{} 5&{} 17&{} 22&{} 6&{} 20&{} 3&{} 0&{} 15&{} 11&{} 13&{} 8&{} 10&{} 12&{} 9&{} 14 \\ 7&{} 16&{} 18&{} 17&{} 22&{} 21&{} 20&{} 19&{} 8&{} 9&{} 10&{} 12&{} 11&{} 13&{} 14&{} 2&{} 3&{} 0&{} 1&{} 4&{} 5&{} 15&{} 6 \\ 4&{} 5&{} 6&{} 7&{} 2&{} 3&{} 1&{} 22&{} 14&{} 9&{} 12&{} 11&{} 10&{} 13&{} 8&{} 21&{} 0&{} 20&{} 19&{} 16&{} 15&{} 18&{} 17 \\ 6&{} 7&{} 5&{} 18&{} 1&{} 22&{} 3&{} 20&{} 11&{} 13&{} 10&{} 14&{} 12&{} 8&{} 9&{} 19&{} 2&{} 21&{} 0&{} 17&{} 4&{} 16&{} 15 \\ 22&{} 21&{} 20&{} 19&{} 18&{} 17&{} 16&{} 15&{} 9&{} 14&{} 12&{} 11&{} 10&{} 8&{} 13&{} 7&{} 6&{} 5&{} 4&{} 3&{} 2&{} 1&{} 0 \\ 2&{} 3&{} 1&{} 22&{} 6&{} 7&{} 5&{} 18&{} 13&{} 14&{} 10&{} 8&{} 12&{} 9&{} 11&{} 17&{} 4&{} 16&{} 15&{} 21&{} 0&{} 20&{} 19 \\ 5&{} 18&{} 7&{} 16&{} 3&{} 20&{} 22&{} 21&{} 14&{} 9&{} 12&{} 11&{} 10&{} 13&{} 8&{} 0&{} 1&{} 19&{} 2&{} 15&{} 6&{} 17&{} 4 \\ 3&{} 20&{} 22&{} 21&{} 7&{} 16&{} 18&{} 17&{} 8&{} 9&{} 11&{} 10&{} 12&{} 13&{} 14&{} 4&{} 5&{} 15&{} 6&{} 0&{} 1&{} 19&{} 2 \\ 14&{} 17&{} 12&{} 5&{} 8&{} 0&{} 11&{} 7&{} 18&{} 4&{} 21&{} 16&{} 19&{} 20&{} 1&{} 15&{} 6&{} 3&{} 13&{} 22&{} 10&{} 2&{} 9 \\ 9&{} 14&{} 10&{} 12&{} 13&{} 8&{} 6&{} 15&{} 17&{} 5&{} 0&{} 7&{} 2&{} 19&{} 22&{} 11&{} 16&{} 1&{} 20&{} 18&{} 21&{} 4&{} 3 \\ 12&{} 6&{} 16&{} 0&{} 11&{} 5&{} 19&{} 1&{} 7&{} 15&{} 20&{} 18&{} 21&{} 22&{} 2&{} 13&{} 8&{} 17&{} 4&{} 9&{} 14&{} 3&{} 10 \\ 10&{} 12&{} 14&{} 15&{} 4&{} 17&{} 8&{} 2&{} 16&{} 6&{} 19&{} 5&{} 0&{} 21&{} 3&{} 22&{} 13&{} 11&{} 18&{} 1&{} 9&{} 7&{} 20 \\ 8&{} 15&{} 11&{} 3&{} 12&{} 1&{} 21&{} 4&{} 22&{} 0&{} 16&{} 20&{} 17&{} 18&{} 6&{} 9&{} 14&{} 7&{} 10&{} 19&{} 2&{} 5&{} 13 \\ 13&{} 8&{} 2&{} 19&{} 10&{} 12&{} 14&{} 0&{} 21&{} 1&{} 15&{} 3&{} 4&{} 17&{} 7&{} 5&{} 9&{} 22&{} 16&{} 11&{} 20&{} 6&{} 18 \\ 11&{} 1&{} 17&{} 6&{} 20&{} 15&{} 2&{} 5&{} 3&{} 19&{} 18&{} 22&{} 16&{} 7&{} 4&{} 10&{} 12&{} 9&{} 14&{} 13&{} 8&{} 21&{} 0 \\ 0&{} 21&{} 8&{} 4&{} 14&{} 19&{} 12&{} 3&{} 20&{} 2&{} 17&{} 1&{} 15&{} 16&{} 5&{} 18&{} 10&{} 6&{} 9&{} 7&{} 13&{} 11&{} 22 \end{array} \right) \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H. An Experiment with Satisfiability Modulo SAT. J Autom Reasoning 56, 143–154 (2016). https://doi.org/10.1007/s10817-015-9354-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-015-9354-0

Keywords

Navigation