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Abstract

This paper defines the (first-order) conflict resolution calculus: an
extension of the resolution calculus inspired by techniques used
in modern SAT-solvers. The resolution inference is restricted to
(first-order) unit-propagation and the calculus is extended with a
mechanism for assuming decision literals and a new inference rule
for clause learning, which is a first-order generalization of the
propositional conflict-driven clause learning (CDCL) procedure.
The calculus is sound (because it can be simulated by natural
deduction) and refutationally complete (because it can simulate
resolution), and these facts are proven in detail here.

Categories and Subject Descriptors F.4.1, 1.2.3 [mathematical
logic, deduction and theorem proving]: proof theory, deduction

Keywords Proof Theory, Resolution, Natural Deduction, SAT,
First-Order Logic, Conflict-Driven Clause Learning

1. Introduction

Modern SAT-solvers are famously efficient for solving the decision
problem of satisfiability of propositional formulas, and we may
wonder whether the ideas used in SAT-solvers could be generalized
to the first-order case. This paper addresses this question from a
purely proof-theoretical perspective.

We briefly recall the first-order resolution calculus (in Section
|Z[), which is the theoretical foundation for many current state-of-
the-art first-order theorem provers (e.g. (Riazanov and Voronkov
2002 |Schultz 2013}, 'Weidenbach et al.|2009)), and the DPLL and
CDCL procedures used by SAT-solvers (in Section @) The main
contribution of this paper (presented in Section [} is the conflict
resolution calculus CR. It extends the first-order resolution calculus
with decision literals and a new inference rule for clause learning
and restricts the resolution rule in order to force it to behave like
unit propagation. As discussed in Subsection 1] a certain sub-
class of CR derivations is isomorphic to the abstract data structure
known as conflict graphs or implication graphs and widely used
to describe the procedures of modern SAT-solvers. Furthermore, as
shown in Section[7] whereas the splitting technique used by modern
first-order provers must either be handled at an extra-logical level
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or lead to an unacceptable increase in proof size if simulated in the
resolution calculus, its simulation by CR’s decisions and clause
learning is lean and straightforward. Therefore, the new CR cal-
culus provides a more adequate proof-theoretical foundation for
procedures currently implemented by SAT-solvers and first-order
provers.

In CR, it becomes evident that decision literals are analogous to
assumptions in natural deduction, whereas clause learning resem-
bles natural deduction’s implication introduction rule. This fact is
crucial for the proof of soundness of CR (shown in Section [6) and
it illustrates an insightful novelty of the calculus: while the reso-
lution inference proposed by Robinson (1960) can be regarded as
a first-order generalization of modus ponens (a.k.a. natural deduc-
tion’s implication elimination) by taking unification into account,
the clause learning rule proposed here (and inspired by the propo-
sitional CDCL technique) can be considered a first-order general-
ization of implication introduction, as it discharges decision literals
in a way that allows for unification.

Any resolution refutation can be translated into a refutation in
the proposed calculus. Therefore, CR’s refutational completeness
follows easily from the refutational completeness of the resolution
calculus (as demonstrated in Section 3).

A main motivation for the development of the conflict resolution
calculus was that it might eventually serve as a theoretical com-
mon ground for existing first-order provers that try to harness or
mimic the power of SAT-solvers (cf. Section [J)) or as a starting
point for the development of new provers, in the same way that the
pure resolution calculus provided the basic foundation for several
generations of automated theorem provers in the last decades. To
achieve this goal, the calculus is presented in a general way, avoid-
ing premature optimizations and refinements, so that future work
may easily build on it and explore various proof search strategies
and implementation techniques.

2. Recalling Resolution

Clauses (denoted c, possibly subscripted) are disjunctions of liter-
als. A literal is either an atom or a negated atom, and an atom is a
n-ary predicate (denoted P or Q) applied to n terms. A term is ei-
ther a constant (denoted a or b), a variable (denoted x, y, v or z) or
an n-ary function (denoted f or g) applied to n terms. Variables in a
clause are assumed to be implicitly universally quantified. A clause
having a single literal is called unit. If £ is a literal, £ denotes its dual
(ie. P = =P and =P = P). The nullary atoms T (verum) and
L (falsum) have special meanings characterized by the following
equations: 'V L =T and I' V T = T. All inference rules operat-
ing on clauses are assumed to be modulo disjunction’s associativity
and commutativity, modulo negation’s involutivity and modulo the
equations for T and L. The empty clause is logically equivalent



to the clause containing only L. Therefore, slightly abusing nota-
tion, it is denoted by _L. Substitutions (denoted by o, possibly sub-
and superscripted) are assumed to implicitly avoid variable capture.
The empty (i.e. identity) substitution is denoted ¢.

The inference rules of the resolution calculus are shown in Fig.
[0l A resolution proof of a clause c from a set of clauses S is a
directed acyclic graph (DAG) where leaves (i.e. input nodes) are
clauses from S, internal nodes are obtained from their parents
through application of the inference rules and the sink node is
the clause c. A resolution refutation of a set of clauses S is a
proof of the empty clause (denoted L) from S. It is assumed
that distinct input clauses do not share variables. Furthermore,
the inference rules implicitly generate fresh symbols for variables,
thereby maintaining the invariant that distinct clauses do not share
variables.

Proof DAGs are sometimes displayed as a collection of trees
according to the following convention: nodes used as premises
more than once are given names (e.g. ¢, ¢ or £) when they are
used for the first time, and the names are used to refer to the nodes
whenever they are used again. By naming and referring, wide proof
trees can also be broken down in smaller displayable parts.

Example 1. Consider a proof with the following non-tree form:

It can be displayed as the single tree with names and references
below, where the second (rightmost) occurrence of the name ) is
to be understood as a reference to the node named 1 by the first
(leftmost) occurrence of :

C1 C2

C3 'l/} I Cq ’l/} Cs
Ce C7
8

Or it can also be displayed as the following forest, where the two
occurrences of the name 1) in the lower tree are to be understood as
references to the node named 1) in the upper tree:

C1 C2

’L/) 1 Cq
C3 P P Cs5

Ce Cc7
Cs

Given a set of clauses, a resolution prover exhaustively applies
the inference rules, generating more and more clauses. If the initial
clause set is unsatisfiable and a fair clause/rule selection strategy
is used, the empty clause is eventually derived, because resolution
is refutationally complete (Robinson|1960). If the set is satisfiable,
the prover will either never terminate or will terminate in a state
where the set of initial and derived clauses is saturated with respect
to redundancy criteria (i.e. only redundant clauses would still be
derivable) (cf.|Waldmann|2015).

One practical problem in this saturation approach is the vast
number of clauses that are generated. This led to research on re-
finements of the resolution calculus, aiming at restricting the in-
ference rules in order to generate fewer clauses, and on efficient
ways to detect and delete redundant (e.g. subsumed) clauses. These

Resolution:
rve 0'vA r()
(TvVA)o

where o is a unifier of £ and ¢'.

Factoring:

LN NL, VOGN N
(eveyv.. v o

f(o)

where o is a unifier of ¢1, ... ¢, and ¢ = ¢}, o, for any
ke{l,...,n}.

Figure 1. Resolution Calculus

efforts culminated in the superpositiorﬂ calculus (Bachmair and.
Ganzinger| 1990} 1994} |[Waldmann|2015)), which extends the resolu-
tion calculus with a paramodulation rule (Robinson and Wos|1969)
for equality reasoning and refines it with ordering restrictions on
terms and literals.

Another practical problem is that the resolvent of a clause with
n literals and another clause with m literals has n 4+ m — 2 literals.
When iterated, this results in very long clauses and, consequently,
a loss of efficiency. This practical problem has been solved with
a technique known as splitting (Weidenbach|[2001): if the current
set of clauses is S U {I'y V... V I'y} and the sets of variables
Vi of I'; are mutually disjoint, then we can split the long clause
I'1 V...V Ik into its variable-disjoint components and the clause
set into the k sets SU{T"; } (for 1 < ¢ < k). The disjointness of the
sets of variables V; ensures that we can check the unsatisfiability
of each resulting clause set independently: SU{I'1 V...V Ty} is
unsatisfiable iff S U{T'; } is unsatisfiable for every variable-disjoint
component I';.

From a proof-theoretical perspective, splitting resembles the
(B-rule of free-variable tableaux (Beth|/1955; [Weidenbach|[2002).
Therefore, superposition provers that implement splitting (Weiden-
bach et al.| 2009} |Schultz| 2013} |Riazanov and Voronkov|[2002)
can be seen as hybrids combining resolution/superposition and
tableaux. Up to now, however, there has been no single pure proof
system capable of characterizing what is going on inside a modern
state-of-the-art first-order theorem prover. This gap between theory
and practice is something that can be remedied with the adoption
of the CR calculus proposed here (cf. Section [7)).

3. Recalling DPLL and CDCL

In the propositional case, Davis, Logemann and Loveland|1962|had
already noticed that the propositional resolution rule (Davis and
Putnam||1960) “can easily increase the number and the lengths of
the clauses” and proposed to replace it by a form of splitting, which
is, however, different from the later notion of splitting described in
Section [2] Instead of splitting a clause into variable-disjoint com-
ponents, we select a propositional atom P and split the problem in
two subproblems: one where P is assumed to be true and the other
where it is assumed to be false. Nowadays, the so-called DPLL pro-
cedure is presented slightly differently, but equivalently. We decide
to assign the truth value true (or false) to an atom; then, through

I'CR is based on resolution instead of superposition, because superposi-
tion’s ordering-based refinements would restrict unit-propagation and the
selection of decision literals. In SAT-solvers unit-propagation is unrestricted
(because it is very efficient anyway) and the best literal selection strategies
are not based on orderings. By extending unrestricted resolution, CR re-
mains general enough to admit the strategies used by SAT-solvers.



unit propagation, other atoms will be assigned truth values as well.
Repeating this process of decisions and propagations, we will ei-
ther reach an assignment that satisfies all clauses (if the clause set
is satisfiable) or we will reach a conflict where we are to assign both
true and false to an atom. In the latter case, we backtrack some
of our decisions, and try different assignments.

In contrast to saturation-based theorem proving, DPLL-based
sat-solving does not generate any clause at all. But this is, of course,
dependent on the fact that in propositional logic it suffices to con-
sider only two truth-value assignments for each atom. In a naive
adaptation of this idea to first-order logic, on the other hand, we
would need to consider truth-value assignments for each instance
of an atom containing variables. We would need to generate possi-
bly severaﬂinstances.

In practice, it has been found that it is, nevertheless, beneficial
to generate some clauses when backtracking from conflicts. For
example, suppose that the backtracking DPPL procedure decided to
assign true to P and (), and this led to a conflict. It is then forced
to backtrack these decisions and try other decisions. Without clause
learning, it could happen that, after assigning truth values to other
atoms, it would again consider the possibility of assigning true to
P and Q, even though it is clear (from the previous conflict) that P
and @ cannot be both true, independently of later assignments to
other atoms. To prevent this from happening, we can generate and
add the clause =P V —(Q to the set of clauses. Then, whenever
the procedure retries assigning, for instance, true to P it will
immediately conclude (by unit propagation) that false should
be assigned to ). This idea is known as conflict-driven clause
learning.

The procedure up to a conflict can be understood as the con-
struction of a directed graph. Nodes are literals which have been
assigned true. A decision literal (i.e. a literal with truth value as-
signed by decision) has no incoming edge. A propagated literal
(i.e. a literal with truth value assigned by unit propagation) ¢ has
incoming edges (¢;,¢) for 0 < i < niff the clause 1 V...V £, V£
was the clause used by unit propagation to assign a truth value to
£. A conflict is indicated by the simultaneous presence of any lit-
eral and its dual in the graph. When a conflict is detected, the graph
can be analyzed to determine clauses that should be learned. Vari-
ous conflict analysis algorithms exist (Marques-Silva and Sakallah
1996} Marques-Silva et al.|2008). The conceptually simplest one
recommends learning a clause that is a disjunction of the negations
of the decision literals. More sophisticated algorithms (Zhang et
al.|2001) are capable of learning stronger clauses. An important
benefit of conflict-driven clause learning is that redundant (i.e. sub-
sumed) clauses are never derived.

The learned clause can be derived by a sequence of resolution
steps using the clauses corresponding to the edges in the graph as
premises. When this is done, a SAT-solver is capable of outputting
a propositional resolution refutation for an unsatisfiable clause set
(Biere|[2008). However, most developers of SAT-solvers consider
the overhead (in both proving time and memory consumption)
of doing so unacceptable, especially when advanced techniques
for minimizing learned clauses are used. Instead, they prefer to
generate proof certificates in the DRUP or DRAT formats (Wetzler,
Heule and Hunt Jr.||2014), which record clauses that have been
learned, but do not inform which premises are needed to derive
them. A consequence of this lack of information is that checking a
DRUP/DRAT certificate or converting it to a resolution refutation
(using the DRAT-Trim tool) can take as long as solving the problem
in the first place.

2 By Herbrand’s theorem, a finite number of instances would suffice in the
case of an unsatisfiable clause set.

Example 2. Consider the clause set {P V Q, PV —=Q, —P V
Q, =P V =Q}. Deciding P and propagating units results in the
conflict graph at the left side below. We backtrack and learn the
unit clause =P, whose propagation leads to the conflict graph in
the right side below. Since this last conflict does not depend on any
decision literal, no backtracking is possible, and we may conclude
that the clause set is unsatisfiable.

The resolution proof extracted from the first conflict graph is:

ﬁP\/Q ﬁP\/ﬁQ
-PV-P
-P

The resolution proof extracted from the second conflict graph is:

PVQ PV -Q
PV P
P -P
I

4. The Conflict Resolution Calculus

As we have seen in the previous two sections, both propositional
and first-order automated deduction have progressed (in different
ways) much beyond their historical common roots in resolution.
Techniques such as splitting, conflict graphs and conflict-driven
clause learning are not so easily explained in terms of a pure reso-
Iution calculus. There is a growing gap between the current state-
of-the-art in automated deduction and its original proof-theoretical
foundation. In this section, we propose the CR calculus, which
modifies the first-order resolution calculus by incorporating ideas
from SAT-solving, in an attempt to reduce not only the gap be-
tween automated deduction and proof theory but also between the
first-order and the propositional cases.

As in resolution, a CR derivation is a directed acyclic graph
where nodes are clauses and internal nodes are obtained from their
parents by one of the inference rules shown in Fig. |2} The conflict
rule is just a restriction of the resolution rule. The unit-propagating
resolutionf’| rule is essentially a sequence of applications of the
resolution rule where the left premises must always be unit clauses;
the conclusion clause must be unit as well, and its literal is called a
propagated literal.

The main innovation lies in the conflict-driven clause learning
rule. The literals within brackets are the decision literals that have
been assumed. The superscript index ¢ indicates that this assump-
tion is discharged by the cl inference with index i. It is not required
that a cl inference discharge all decision literals above it. Some de-
cision literals may be left undischarged, to be discharged by future
cl inferences. The vertical dots denote any derivation of L using
the decision literals, input clauses and previously derived clauses.
The conclusion clause of this rule is the learned clause. In contrast
to the propositional case, the learned clause must be a disjunction
of negations of instances of the discharged decision literals, be-
cause variables occurring in the discharged decision literals may
be instantiated by unifications performed during the proof. Since

3 This rule is also known as unit-resulting resolution (McCharen, Overbeek
and Wos|[1976; McCune||2006). Here we use the name unit-propagating
resolution instead in order to make the connection with the technique of
unit-propagation more explicit.



Unit-Propagating Resolution:
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where o is a unifier of {5 and ¢}, forallk € {1,...,n}.
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Conflict:
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where o is a unifier of {5, and ¢}, forallk € {1,...,n}.

Conflict-Driven Clause Learning:
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where cr;-“ (for1 <k <mand1 < j < my)is the composition
of all substitutions used on the j-th path from ¢j, to L.

Figure 2. The Conflict Resolution Calculus CR

the derivation of L need not be tree-like, we may need to consider
several instances of each decision literal.

A CR derivation is a CR proof iff all its decision literals have
been discharged. A CR refutation is a CR proof of L.

Resolution’s factoring rule can be simulated by a sequence
of decisions, one unit-propagation, one conflict and one conflict-
driven clause learning. In this way, we can prove the following
lemma.

Lemma 1. Resolution’s factoring rule is admissible in CR.

Proof. Let ¢’ be a CR derivationof £1 V... V£, VI V...V £,
and consider constructing ¢ by applying the factoring inference to
the conclusion of ¢’, as shown below:
: ‘;0/
élv...vzn\}é’lv...van
(veyv...ve)o

f(o)

This is admissible because, instead of using the factoring inference,
we could have used a sequence of CR inferences, as shown in

Fig.[3]

O

The simulation of factoring depends on a sufficient degree of
freedom in the choice of decision literals. We must be allowed (as
indeed we are in CR) to assume a decision literal (¢) that is the dual
of an instance of all ¢; (for 1 < i < n).

Example 3. Consider the following clause set:

{P(z)v@Q, P(y)V-Q, =P(a) vV Q, =P(b) V -Q}

It admits the CR refutation shown in Fig. 4] A shorter refutation
would be possible if we had taken, for instance, ) as a decision
literal. But taking P(x) as a decision literal instead, as done in the
refutation in Fig.[d] we can see how conflict driven clause learning

behaves in the first-order case, when decision literals can contain
variables, that can be instantiated during the process of propaga-
tion. In one path from ' to L just above the cl' inference, the
unification performed by the unit-propagating resolution inference
instantiates « with a, whereas in the other path x is instantiated with
b. Therefore, the cl' inference learns the clause ~P(a) V —P(b),
which is the disjunction of the negations of all the instances of the
decision literal P(x). This is in contrast with (and a generaliza-
tion of) the propositional case, where instances did not need to be
considered.

As in the propositional case, the decisions and unit propagations
can be represented graphically:

__,,@ e _®

4.1 An Isomorphism between Conflict Graphs and
Single-Conflict Sub-Derivations in Conflict Resolution

By comparing the conflict graphs and CR derivations in Example 3]
it is noticeable that there is a straightforward isomorphism between
conflict graphs and CR sub-derivations with a single conflict infer-
ence. Every decision literal in a conflict graph appears as a decision
literal in the corresponding CR derivation. Every propagated literal
in the conflict graph appears as a propagated literal derived by a
unit-propagating resolution inference, and the clause associated to
the incoming edges of the propagated literal is exactly the non-unit
clause used as the rightmost premise of the unit-propagating infer-
ence. Finally, the conflict in the conflict graph is a conflict inference
in the corresponding CR derivation.

In contrast, the correspondence between resolution derivations
and conflict graphs is imperfect. As illustrated in Example [2] we
have a map from conflict graphs to resolution derivations; however,
this map is not an isomorphism, simply because it is not even sur-
jective. Furthermore, there is a mismatch between the conflict graph
operations (i.e. decisions, propagations and conflict) and the oper-
ations of the resolution calculus (i.e. the resolution and factoring
inference rules). In other words, no map from conflict graphs to res-
olution derivations could be an isomorphism, because the algebraic
structure cannot be preserved. From this algebraic point of view, we
may conjecture that the popular belief that (propositional) resolu-
tion is the underlying proof system of modern SAT-solvers (which
actually implement the CDCL procedure based on conflict graphs)
is mistaken. We also speculate that the mismatch is the theoretical
explanation for the overhead experienced in the transformation of
conflict graphs to resolution derivations (as discussed in the end of
Section[3). Perhaps a calculus such as CR, that enjoys a better cor-
respondence to conflict graphs, could enable proof production with
less overhead.

5. Refutational Completeness

A proof system P is refutationally complete iff any unsatisfiable
clause set has a refutation in P. Instead of proving refutational
completeness for CR directly, we will prove it indirectly, showing
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Figure 3. Simulation of a Factoring Inference in CR
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Figure 4. CR Refutation for the clause set from Example

that CR can simulate another refutationally complete proof system.
A proof system P simulates another proof system Q iff there is a
map transforming any Q-derivation of ¢ from S to P-derivation of
¢ from S.

This indirect approach to proving completeness can be traced
back at least to Gentzen’s work (1935), who applied it to his
natural deduction and sequent calculi. In our case, the target proof
system for the simulation is resolution, and the key idea of the
simulation is that every resolution step that is not a unit-propagating
resolution inference can be simulated by several decisions, two
unit-propagating resolution inferences, one conflict inference and
one conflict-driven clause learning inference.

Theorem 1. CR linearly simulates Resolution.

Proof. Let 1) be a Resolution derivation of a clause ¢ from a set of
clauses S. We show that there is a CR derivation ¢ of ¢ from S,
proceeding by induction:

e Base Case: 1 is just a single node c. In this case, ¢ is just the
single node c as well.

e Induction Case 1: 1) ends with a factoring inference p. In this
case, let 1)’ be the subderivation whose conclusion ¢’ is the
premise of p. By induction hypothesis, there is a CR deriva-
tion ¢’ of ¢’ from S. And then ¢ can be constructed as the CR
derivation of ¢ from S obtained from ¢’ by applying the admis-
sible factoring inference rule to its conclusion in the same way
as p in ) or by simulating factoring as shown in Fig. [3| In any
case, the conclusion of ¢ is c, as desired.

e Induction Case 2: 1 ends with a resolution inference. In this
case, 1 is of the following form:

§¢1 §¢2
LNV Nl VL OO N,
(V.. VL NVOV.. V) o

r(o)

By induction hypothesis, we have a CR derivation ¢ of {1 V
...V, VL from S and a CR derivation 2 of £/ £ V...V £,
from S. Then a CR derivation p of (41 V... VL, VIV ...V
£,,) o can be constructed as shown in Fig.

The simulation is linear both in length (i.e. number of infer-
ences) and size (i.e. number of literals). If 1) has n resolutions
and m factorings, then ¢ has n clause learning inferences, n con-
flicts, 2 unit propagations and m factorings. Hence, length(p) =
2n+m+2 € O(n +m) = O(length(p)). If ¢ has n' literals
occurring in conclusions of resolution inferences and m’ literals
occurring in conclusions of factoring inferences, then ¢ has n’ log-
ical symbols occurring in conclusions of clause learning inferences,
2n logical symbols occurring in premises of conflict inferences, n’
literals occurring as decision literals for unit propagations and m’
literals. Hence, size(p) = 2n’ + 3n + m/'. Since every resolution
inference in 1) has at least one literal in its conclusion, except for
the last one deriving the empty clause, 3n < 3n’ + 1. Therefore,
size(p) € O(5n’ + 1+ m') and thus size(p) € O(size(v))). O

Corollary 1. CR is refutationally complete.

Proof. Let C be an unsatisfiable clause set. As resolution is a refu-
tationally complete calculus (Robinson||1960), there is a resolution
refutation ¢ of C. By Theorem [I] v can be transformed to a CR
refutation ¢ of C. O
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Figure 5. Simulation of a Resolution Inference in CR

A mere restriction of resolution to unit-propagating resolution
would result in a refutationally incomplete calculus. The unsatisfi-
able clause sets from Examples@]and@ for instance, would not be
refutable. By incorporating decision literals, as well as the conflict
rule and the conflict-driven clause learning rule, we regain refuta-
tional completeness.

The fact that we need two unit-propagating resolution infer-
ences, one conflict and one conflict-driven clause learning to simu-
late a single resolution inference (as shown in Fig.[5) may lead us to
think that CR is more bureaucratic and more inefficient than resolu-
tion. However, efficiency of proof search is not directly correlated
with proof length. The efficiency of CR is a consequence of the
fact that much fewer clauses are generated by unit-propagating res-
olution than by unrestricted resolution and the clause sizes are re-
duced through decisions and propagations. Moreover, in any case,
any resolution proof search, as well as any resolution proof, can be
simulated in the CR calculus with only a (small) linear increase in
length.

6. Soundness

To prove soundness, we exploit the key observation that deci-
sion literals resemble natural deduction’s assumptions and conflict-
driven clause learning resembles implication/negation introduc-
tion. Therefore, natural deduction is an excellent candidate for
proving soundness indirectly, again by simulation. However, typ-
ical natural deduction rules operate on general formulas, which are
not necessarily in clause form, and this makes a direct simulation
technically difficult. In order to overcome this challenge, we define
an intermediary clausal natural deduction calculus (abbreviated as
CND) with inference rules that operate on clauses, as shown in
Fig.[6]

The clausal natural deduction calculus CND can be simulated
by any standard non-clausal natural deduction calculus extended
with a classical rule for double negation eliminatimﬂ The key idea
is to use the well-known classical equivalence AVB = (-A — B)
(where A is an abbreviation for A — 1), in order to transform
the clauses in a CND proof into formulas containing only implica-
tion, which are therefore suitable for a minimal non-clausal natural
deduction calculus. When transforming a CND proof into a stan-
dard non-clausal natural deduction proof, sequences of implication
introduction/elimination rules may have to be added to the natural
deduction proof, in order to reorder literals (because associativity
and commutativity of disjunction is implicitly taken into account by
CND’s inference rules, but must be handled explicitly in a standard
natural deduction calculus). The classical rule of double negation
elimination is needed in order to handle the involutivity of classi-
cal negation, which is implicit in CN]ﬂ A more detailed proof of
this simulation is omitted because it would be tedious and space-

4 An example of such a natural deduction calculus is shown in the appendix

SCND is a calculus for classical logic: the law of excluded middle can
be easily derived with a single application of implication introduction.
Interestingly, its classicality is implicit in the use of involutive negation and
the equivalence involving disjunctions and implications.

Implication Elimination (Modus Ponens):

LIve

Implication Introduction:

[
R
vt !

Universal Quantification Elimination:
1)

T'o Ve

Universal Quantification Introduction:

M{zi\oa, ..., zn\an}
r Vi

«ay, must be a distinct eigen-variable:
it should occur neither in I nor in any undischarged assumption.

Figure 6. The Clausal Natural Deduction Calculus CND

Negation Elimination:
L 4
L L

1

Negation Introduction:

Figure 7. CND’s Admissible Rules for Negation

consuming. Soundness of CND is a corollary of the simulation,
since natural deduction is sound.

Remembering that all clausal rules are assumed to be modulo
negation’s involutivity and modulo the neutrality of L w.r.t. dis-
junction, the rules for negation introduction and elimination shown
in Fig. [/| are admissible in CND, since they are just special cases
of, respectively, implication introduction and elimination, when
I' = L. We are now ready to prove the following theorem.

Theorem 2. CND simulates CR.



Proof. Given a CR derivation v of a clause ¢ from a set of clauses
S, we must construct a CND derivation ¢ of ¢ from S (modulo
variable renaming). We first expand ) into a tree-like proof v’: for
each clause ¢’ with several children ¢, . .., c, (Where n > 1), we
create n copies ¢!, ..., c" of ¢ and use each  (forl < k < n)
as a parent for ci. The variables in each copy are renamed to fresh
variables and all substitutions in the proof are updated accordingly,
in order to maintain the property that distinct clauses in 7’ do
not share variables (cf. Section [2). Now that v is tree-like, we
may compute its global substitution o* (i.e. the composition (in
topological order) of all the substitutions used in the proo:

We now do a recursive top-down traversal of v’ and for each
subderivation 1 deriving a clause ¢’ from S with decision literals
[€1], ..., [€n], we construct a corresponding subderivation & deriv-
ing ¢ o* from S with assumptions [¢1 o*],. .., [(n o]:

® Base Case 1: m has just a leaf node containing a decision literal
[€]. In this case, & is the leaf node containing the assumption
[£o].
® Base Case 2: n has just a leaf node containing a clause I". In
this case, & is:
r
To*
® Induction Case I: 1 ends with a unit-propagating resolution
inference, as shown below:

VE

L R
4 cee Uy OV NV
lo

By induction hypothesis, there are CND derivations &1, ..., &,
&' of, respectively, £1 o*, ..., £n o, () V... VO,V L) 0. We
then construct £ by applying implication elimination n times,
as shown below:

u(o)

551 ifl
tio* (Vv ..vENE) o
— p— E
: 7 /
» (£2v...vén\/£)a_>E
fn.o*

_>
Lo E

e Induction Case 2: n ends with a conflict inference. This case
is analogous to the case above. But, instead of n implication
elimination inferences, a single negation elimination inference
suffices.

e Induction Case 3: n ends with a conflict-driven clause learning
inference. In this case, the corresponding subproof in 1) used to
have the following form:

(1] [bn]™

(0%7"'10—71711) (U’{Lv"‘7o-?n,n)

1
(trot V...V lboh YV ..V (lrol V...V ol )

cl

But due to the expansion to a tree, the subproof 7 in 1’ has
the form shown below, where there is a copy [¢7] of a decision

6 Since we assume that distinct clauses in 1)’ do not share variables and v’ is
tree-like, we do not need to worry about variable clashes in the composition
of all substitutions. The topological order is needed because a variable x
introduced by a substitution o1 may be in the domain of another substitution
o2 occurring below 1. In this case, the topologically ordered composition
is o102 (i.e. apply first o1 and then o2).

literal [¢] for every path j that existed from [¢;] to L in ¢). The
copies have fresh variables, but are identical modulo variable
renaming. For every k and j, the substitution o}, is essentially

identical to ai, except for the fact that different variable names
are used.

G G [ea)in ez
ol Lo, ot L o
i

i

—_— ’ —_— ’ —_— ! —_— Cl
(ol V.. NGoh )V . NV Crot V. N o)
By induction hypothesis, there is a derivation ¢’ with the form:

R I GE S B TS N A

uE
And then a derivation £ can be constructed by applying the
implication introduction rule as many times k as there are as-

sumptions [£1 o*], ..., [{7" ¢*],... . fn o*],. .., [f2" o*] to
be discharged, as depicted below:
[f% 0'*}1 [[fnnn o.*]k:
— —}. o

(Cro* V.. .VIa*) V.V (Eho* V..V o*)
Since o* is the composition of all substitutions in %', including

3 -/
every oy, , we have that o] 0™ = o*. Therefore, the conclusion
of ¢ is identical to:

(Lot v.. . Vhoh V...V ot V.. Nl ) o

At the end of the top-down traversal, we have a CND proof ¢ of
c o™ from S. Since o* is the global substitution of all substitutions
used in 1" and v’ derives k, we have that ¢ 0* = c. Therefore, ¢
is a CND proof of ¢ from S, as desired. O

Example 4. To illustrate the transformation of CR derivations into
CND derivations used in the proof of Theorem [2] Fig. [§]shows the
CND derivation obtained by transforming the CR derivation shown
in Fig.[4]

Corollary 2. CR is sound.

Proof. Let ¢ be an arbitrary CR proof of ¢ from S. Then, by
Theorem [2] there is a CND proof of ¢ from S. Since the natural
deduction calculus CND is sound, c is entailed by S. Therefore,
CR is sound. O

7. Simulation of Splitting

Suppose that a prover refutes the set of clauses SU{I'1 V... VI }
(where the sets of variables V; of I'; are mutually disjoint), by
splitting it into the & sets S U {I";} (for 1 < ¢ < k) and finding a
Resolution refutation 1); for each set SU{I'; }. One way to combine
these proofs into a single resolution refutation of SU{I'1 V... VI, }
would be to use the following recursive method:

e For i = 1: construct ¢] by replacing every leaf occurrence
of I'y in 91 by I'y V... V I'y, propagating the added literals
downwards and factoring the added literals when possible; then
1)} is not a refutation, but a derivation of I's V... V T'.
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where 5 is a reference to a copy of ©s.

Figure 8. CND Refutation Simulating the CR Refutation from Fig.

e For i from 2 to k: construct t;,; by replacing every leaf
occurrence of I';41 in ¢; 41 by the subproof W) deriving I'; 41 V
...V I'y; as before, propagate the added literals downwards
and factor them when possible, so that 1);,, is a proof of
Ligo V... VI, ift +1 <k, or L, otherwise.

However, this method is undesirable, because it requires a substan-
tial modification of the component proofs ;. The modified sub-
proofs are larger (because of all the additional literals), and this
may hinder readability of the proof by humans and reduce the effi-
ciency of automatic proof checking.

A pragmatic approach is to disregard the attempt to output a
single refutation for the original problem and simply output all
the separate proofs for the split problems instead. Keeping track
of all splittings is important, particularly in the more general case
where splitting is done recursively (i.e. where each set S U {T';}
can be split further). This seems to be the approach taken by most
automated theorem provers. Splittings performed during the proof
search are recorded in the proof file in an extra-logical way, which
may even violate informal semantic requirements of the TPTP
proof forma

In CR, splitting can be simulated in such a way that the refu-
tations for the split sub-problems can be combined without the
drawbacks that are incurred when this is done in Resolution. Sup-
pose that ¢; are derivations of S U {I';}. Then a refutation ¢ of
SU{Tl1 V...V I} can be constructed by combining all the ;
(for 1 < ¢ < k) using the following recursive method:

e Fori = 1: construct ¢} by replacing every leaf occurrence of
T'1 in 1 by the following subproof (where £} , . . . , £} are duals
of the literals in I';):

123 P Ve N 1 3 L
I

[6pk]F Tiv...VIy

u(e)

Then construct ¢} by adding a conflict-driven clause learning
to the bottom of ¢7:

7TPTP’s general proof format (Sutcliffe|2009) requires that the conclusion
of an inference rule be a logical consequence of its premises. This limitation
prevents an easy representation of natural deduction’s implication introduc-
tion rule, tableaux’s (3 rule or splitting. CR’s conflict-driven clause learning
is also affected by this limitation.

e For i from 2 to k: construct ¢} by replacing every leaf occur-
rence of I'; in ¢; by the following subproof:

Pi-1
1 .
T cl’

The desired refutation ¢ of S U {I'y V...V I';} is taken to be
Ph-
This method of simulating splitting in CR requires no internal
modification of the proofs ¢;: the modified proofs ¢} (2 < i < k)
are just ¢; with a few cl inferences on top. Hence, there is no loss
in readability, and the only overhead for automatic proof checking
is caused by the extra need to check the additional cl inferences. If
the leaf clause I'; occurs only oncﬂ a single cl inference suffices,
in fact. Therefore, the increase in proof size and the overhead for
proof checking are negligible.

The simulation described here shows that splitting can be seen
as a macro-rule that performs, for a variable-disjoint component
I';, batch decisions assuming the duals of all literals not in I';. The
first-order mechanism of decisions and conflict-drive clause learn-
ing provided by CR is, however, more general, because it allows
splitting even when the components are not variable-disjoint.

8. CR with Sequent Notation

The proof of CR’s soundness in Section [6] demonstrates that there
is a lot in common between CR and natural deduction. In the
same way that natural deduction can be presented with a sequent
notation, in which assumptions are listed in the antecedent of the
sequent (i.e. at the left side of the turnstile symbol), CR can also be
presented with a sequent notation, with decision literals kept at the
antecedent. This is shown in Fig.[9]

With the sequent notation, it is easier to state the inference rule
for conflict-driven clause learning. All the substitutions that should
be applied to the literals whose duals will be part of the learned
clause have already been applied to the literals in the antecedent.
There is no need to look at the substitutions that have been used in
the paths above. On the other hand, the presentation with sequent

8 It may be reused many times, since ; does not need to be tree-like.
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where cr;-“ (for1 <k <mand1 < j < my)is the composition
of all substitutions used on the j-th path from ¢, to L.

Figure 9. CR with Sequent Notation

notation is much more redundant and bureaucratic. Whereas in the
standard presentation, the use of decision literals is a powerful way
to reduce the size of clauses (as in the simulation of splitting), this
beneficial effect is lost in the presentation with the sequent notation,
because the decision literals are carried along in the antecedents.

For example, if we have the clause —¢; V ... V —=f, V /,
then assuming the duals of the first n literals and resolving them
with the clause through unit-propagation would result in the unit
clause ¢ in the standard presentation. With sequent notation, on
the other hand, we would obtain ¢4, ...,¢, F ¢. While this may
be conceptually convenient, because it reminds us explicitly that
the unit clause £ holds only under the assumptions #1, . .., ¢,, we
have no reduction in size if we also count the antecedent’s size. In
fact, because the proof may be a non-tree-like DAG, and decision
literals may be instantiated by different substitutions along different
paths of the DAG, several instances of the decision literal will
accumulate in the antecedent. The number of instances may be in
the worst case exponential in the height of the derivation. That is
one reason why the standard presentation, where the dependence
of £ on assumptions and the substitutions used to instantiate the
decision literals remain implicit in the derivation, is preferable.
This is particularly important during proof search, in which not all
inferences are useful and we do not want to apply substitutions and
accumulate copies of literals unnecessarily along the derivation.
We should do that only when a conflict, warranting conflict-driven
clause learning, is reached.

9. Related Work

The seminal work of Baumgartner and Tinelli (2003} [2014) defin-
ing the Model Evolution (ME) procedure was probably the first lift-
ing of DPLL to the first-order case. It was later extended with a
lemma learning rule (Baumgartner, Fuchs and Tinelli|2006), while
retaining a traditional DPLL flavor (distinct from the conflict graph
approach). In model evolution, decision literals do not contain stan-
dard variables, but parameters, which are variables with special se-
mantics and behavior in the case of backtracking and clause learn-
ing. CR may be considered simpler, because it does not introduce
the notion of parameter; however, in contrast to model evolution,
for CR the problem of interpreting decision literals as a model has
not been investigated yet.

More recently, Alagi and Weidenbach (2015) proposed the
Non-Redundant Clause Learning (NRCL) procedure generalizing
CDCL to the Bernays-Schonfinkel fragment of first-order logic.
They introduce the notion of blocked decisions and clauses, which
restricts the decisions that can be made and thus allows them to
prove that the learned clause is non-redundant (whereas in CR they
might not be). They also introduce the notion of constrained lit-
erals, which allow more compact representation of the model. In
CR, such optimizations and restrictions are intentionally avoided,
in favor of a simple calculus focused on the core aspects of general-
izing decisions and conflict-driven clause learning to fu/! first-order
logic.

Bonacina, Fuhrbach and Sofronie-Stokkermans (2015) give a
preview of a yet unpublished first-order Semantically-Guided Goal
Sensitive (SGGS) procedure inspired by CDCL. As they observe,
there is a symmetry between positive and negative literals in the
propositional case (i.e. in the sense that when a decision literal ¢ is
false, £ is true) which appears to be lost in the first-order case (i.e.
because when / is false, we cannot conclude that ? is true; we can
only conclude that ¢ ¢ is true for some o). One of the main chal-
lenges in lifting conflict-driven clause learning to first-order lies
precisely in computing and dealing with the substitution o when
a decision literal ¢ leads to a conflict and a clause containing ¢ o
must be learned. Instead of addressing this challenge, they circum-
vent it by introducing the notion of uniform falsity, according to
which ¢ must be true when ¢ is uniformly false. With this notion,
clause learning is still essentially propositional and it is not trig-
gered at every conflict (in the standard non-uniform sense of con-
flict). For instance, a conflict between R(x) and ~R(b) does not
lead to clause learning but must be repaired by revising R(x) to
x # b R(x) instead.

The variety of approaches attempting to generalize CDCL to
first-order logic shows that this is not a trivial task. The most prag-
matically successful approaches so far have harnessed the power of
SAT-solvers in first-order (or even higher-order) logic not by gener-
alizing their underlying procedures but simply by employing them
as black-boxes inside a theorem prover (Korovin|[2008; [Voronkov
2014; Brown|2012).

10. Conclusion

The development of the Conflict Resolution calculus CR was ini-
tially motivated by the recent success of CDCL and by the desire
to generalize its main ideas to first-order logic. However, CR can
also be seen as the convergence of two ideas that actually precede
CDCL by several decades. The first one is the assumption mecha-
nism introduced by Gentzen (1935) in his natural deduction cal-
culus. The second one is Robinson’s generalization of the reso-
lution rule to first-order logic through unification (1960). CR ex-
tends resolution as natural deduction extends Hilbert-style proof
systems: decision literals are essentially assumptions, and conflict
driven clause learning corresponds to (several applications of) nat-



ural deduction’s implication introduction rule. And whereas Robin-
son used unification to generalize resolution, CR uses unification
to generalize conflict-driven clause learning.

From a historical perspective, what we are seeing today is sim-
ilar to what happened between 1960 and 1965. In 1960, Davis and
Putnam|defined the propositional resolution rule, which can be re-
garded as an efficient machine-oriented variant of modus ponens
(implication elimination). The first-order case was then handled
by grounding/instantiating the first-order problem and using the
propositional resolution rule. In 1965, |Robinsonfs direct general-
ization of the resolution rule to the first-order case enabled a break-
through in first-order automated theorem proving. Nowadays, we
have a powerful propositional conflict driven clause learning rule,
which can be regarded as an efficient machine-oriented variant of
implication introduction. The first-order case is being handled by
essentially grounding/instantiating the problem in various ways and
using the propositional rule. If history repeats itself, we might see
another breakthrough when clause learning is directly lifted to the
first-order case through unification, as done in the CR calculus pro-
posed here.

A well-defined proof system is just a first step towards the de-
velopment of a proof search procedure that could be implemented
as an efficient theorem prover. There is much more to the effi-
ciency of a modern SAT-solver than just the ideas of decision lit-
erals, conflict-driven clause learning and unit-propagation. SAT-
solvers use restarts, strategies for selecting decision literals and
data-structures that allow efficient unit-propagation, fast conflict
graph analysis and fast backtracking. Adapting these proof search
strategies and implementation techniques to the Conflict Resolu-
tion calculus CR is beyond the scope of this paper, but is a crucial
direction for future work.
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Appendix - A Standard Non-Clausal Classical
Natural Deduction Calculus

A standard natural deduction calculus for minimal quantified logic
extended with a classical rule for double negation elimination is

shown in Fig.[T0]

Implication Elimination (Modus Ponens):
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Implication Introduction:
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Double Negation Elimination:

A= 1)y—>1
A _\_\E

Figure 10. A Non-Clausal Natural Deduction Calculus
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