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Formal Verification of an Executable LTL Model
Checker with Partial Order Reduction?

Julian Brunner and Peter Lammich

Technische Universität München

Abstract. We present a formally verified and executable on-the-fly LTL
model checker that uses ample set partial order reduction. The verification
is done using the proof assistant Isabelle/HOL and covers everything
from the abstract correctness proof down to the generated SML code.
Building on Doron Peled’s paper “Combining Partial Order Reductions
with On-the-Fly Model-Checking”, we formally prove abstract correctness
of ample set partial order reduction. This theorem is independent of
the actual reduction algorithm. We then verify a reduction algorithm
for a simple but expressive fragment of Promela. We use static partial
order reduction, which allows separating the partial order reduction and
the model checking algorithms regarding both the correctness proof and
the implementation. Thus, the Cava model checker that we verified in
previous work can be used as a back end with only minimal changes.
Finally, we generate executable SML code using a stepwise refinement
approach. We test our model checker on some examples, observing the
effectiveness of the partial order reduction algorithm.

1 Introduction

Partial order reduction [25] is an important optimization for model checkers,
enabling them to deal better with models involving concurrency. It allows the
model checker to consider only a subset of all possible interleavings of concurrently
executing operations by identifying equivalences between them. Unfortunately,
partial order reduction is notoriously complex and can easily affect the correctness
of the model checker. For instance, [25] describes a partial order reduction
algorithm and claims that it can simply be used with on-the-fly nested depth-first
search. It was found out later that this compromises correctness due to the
reduction possibly differing between the inner and the outer search [8]. Moreover,
while formalizing the algorithm in [25], we discovered that its correctness proof
uses an invalid lemma (see section 2.2).

There is also the issue of implementation correctness, which is usually ad-
dressed via testing in the context of model checking algorithms. Since testing is
necessarily incomplete, it may lead to incorrect implementations due to missed
corner cases. Furthermore, when using models of realistic size, determining the
correct outcome for a given test input requires the use of a model checker.
? Research supported by DFG grant Cava (Computer Aided Verification of Automata)



Thus, although in widespread use, neither the correctness of partial order
reduction algorithms, nor the correctness of their implementations can be taken
for granted. This is especially problematic since the trust in the correctness of
a single model checker is used to justify the confidence in the correctness of
the many models that it checks. In order to meet the very strict correctness
requirements of model checking algorithms, we implement and formally verify a
partial order reduction algorithm.

In previous work [5], we have presented the Cava model checker, a fully verified
and executable LTL model checker à la Spin. The verification was done with the
proof assistant Isabelle/HOL [24] and covers everything from the correctness of
the algorithms down to the implementation. Due to its LCF-like architecture,
Isabelle/HOL is more trustworthy than a large unverified implementation like
Spin (see section 3.1). This paper now adds the following contributions:

1. Formalization of a fragment of the modeling language Promela
2. Formalization of the static analysis required for partial order reduction
3. Formal abstract correctness proof for ample set partial order reduction
4. Verified implementation and integration into the Cava model checker
5. Development of reusable libraries for automata and trace theory

This results in what we believe to be the first formally verified and exe-
cutable implementation of a partial order reduction algorithm, addressing both
of the issues mentioned earlier. The verification is carried out completely in
Isabelle/HOL, such that the correctness of the model checker only depends on
the correctness of Isabelle/HOL. This integration avoids logical gaps that may
arise when manually composing the results of different verification tools. Most
importantly, we now have a formally verified reference implementation that can
deal with many formerly infeasible models, improving its usefulness for testing
other model checkers.

To the best of our knowledge, there has been only one other attempt at
formalizing partial order reduction [4]. However, it does not cover the reduction
algorithm and is restricted to a specific fairness assumption (see section 2).

The rest of this paper is organized as follows. In section 2, we cover theoretical
aspects of partial order reduction and elaborate on our choice of algorithm. In
section 3, we report on our Isabelle/HOL formalization. In section 4, we compare
the performance of our model checker to that of Spin. Finally, in section 5, we
give conclusions and future research directions.

2 Theory

Figure 1 illustrates the basics of partial order reduction. In regular model checking,
the system automaton ‘S’ is derived from the system and used as input for the
model checker together with the formula ‘ϕ’. The model checker then determines if
the system automaton satisfies the property expressed by the formula (L S ⊆ L ϕ).
When using partial order reduction, a reduction algorithm obtains a reduced
system automaton ‘R’ from the system instead, which fulfills certain reduction
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conditions. These conditions imply stuttering equivalence between the language
of the system automaton and that of the reduced system automaton (L S ≈ L R).
Since properties expressed by next-free LTL formulae are stuttering-invariant
[26], using the reduced system automaton instead of the system automaton when
model checking yields the same result (L S ⊆ L ϕ ⇐⇒ L R ⊆ L ϕ).

system

system
automaton S

L S ⊆ L ϕ

reduced system
automaton R

L R ⊆ L ϕ

formula ϕ
reduction
conditions

L S ≈ L R

model
checking

reduction

model
checking

abstract
correctness

Fig. 1: Partial Order Reduction Overview. A reduction algorithm obtains the
reduced system automaton ‘R’, which is then used as an input of the model
checker instead of the system automaton ‘S’. The reduction algorithm guarantees
that the reduced system automaton fulfills certain reduction conditions, from
which one can prove stuttering equivalence between the two languages. This
implies that the result of the model checker is not affected by the reduction.

Note that this is a very abstract description of partial order reduction. In
actual implementations, the reduced system automaton may be represented
implicitly, and the reduction algorithm may be merged with the model checking
algorithm. However, this view allows us to identify the three major tasks involved
in developing a verified implementation of partial order reduction:

1. Reduction algorithm correctness: The automaton produced by the reduction
algorithm fulfills the reduction conditions.

2. Abstract correctness: If an automaton fulfills the reduction conditions, its
language is stuttering equivalent to that of the system automaton.

3. Implementation and verification of the reduction algorithm.

Unlike our formalization, [4] only covers the second task. This means there is
no input language, no static analysis, no reduction algorithm, no implementation,
and no executable model checker. Furthermore, it only covers the case where
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a certain fairness assumption is met, which simplifies the abstract correctness
proof. In absence of other formalization attempts, we believe that our work is a
significant contribution over the existing body of research.

2.1 Reduction Conditions

Both the reduction algorithm and the abstract correctness are built around the
reduction conditions, making them the main object of interest when dealing with
partial order reduction. We chose to implement an algorithm based on the ample
set method and chose the reduction conditions accordingly. Let ‘en q’ be the set
of enabled actions at state ‘q’ of the system automaton (enabled set). Let ‘ren q’
be the set of enabled actions at state ‘q’ of the reduced system automaton (ample
set) Let ‘ex a q’ be the successor of state ‘q’ after executing action ‘a’ (‘ex’ is
called execution function). This way, ‘(en, ex)’ represents the system automaton,
while ‘(ren, ex)’ represents the reduced system automaton. The set of finite words
executable at state ‘q’ of the system automaton ‘words q’ is defined in terms of
‘en’ and ‘ex’. For a more detailed description of the system definitions, see section
3.4. With these prerequisites, we define the following reduction conditions:

subset ∀ q. ren q ⊆ en q
nonempty ∀ q. ren q ⊂ en q =⇒ ren q 6= {}
independent ∃ independence relation I. ∀ q w. ren q ⊂ en q =⇒

w ∈ words q =⇒ ren q ∩ set w = {} =⇒ I (ren q)(set w)
wellfounded ∃well-founded relation R. ∀ q a. ren q ⊂ en q =⇒

a ∈ ren q =⇒ R (ex a q) q
invisible ∀ q. ren q ⊂ en q =⇒ ren q ⊆ invisible

Condition subset states that the reduced system automaton is a subautomaton
of the system automaton and is usually not stated explicitly in the literature.
Condition nonempty states that the reduction algorithm must not omit all of
the actions at any state. Condition independent requires that all the actions
that are executed after reaching some state but before an action from the ample
set at this state are independent of all the actions in this ample set. Condition
wellfounded requires that every cycle in the system automaton contains at least
one state where no reduction is performed. Condition invisible states that when
a proper reduction takes place, the ample set cannot contain any actions that are
visible to the formula. Conditions nonempty, independent, and wellfounded
correspond to conditions C0, C1, and C2 in [4, pages 268, 269], while condition
invisible corresponds to condition C3′ in [25, page 50]. Note that even though
the reduction conditions are similar, our formalization is not based on [4].

2.2 Reduction Algorithm

These conditions are very abstract, so there are still many choices to be made with
respect to the actual reduction algorithm. We originally planned to verify dynamic
partial order reduction with on-the-fly model checking [25], but soon encountered
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difficulties. Dynamic partial order reduction detects cycles during the emptiness
check in order to ensure condition wellfounded. This tight integration with the
emptiness check has led to bugs in the past [8]. When used with on-the-fly model
checking, this integration also extends to the product construction, effectively
turning the whole system into one monolithic algorithm. It also introduces a
mismatch since an algorithm that conceptually works on a system automaton
is now used with a product automaton, requiring complicated reasoning. And
indeed, during our effort of formalizing the proof given in [25], we discovered a
counterexample for one of the lemmata used in this proof. This counterexample is
based on the fact that, when exploring the product automaton, different instances
of the system automaton appearing in the product automaton may be reduced
differently. A more detailed description can be found in [3, section 8.4]. Note that
this, while refuting the lemma, does not necessarily invalidate the correctness
theorem, only the proof thereof. However, despite investing a significant amount
of time, we were unable to find an alternative proof as it seems that the reasoning
required is more complex than anticipated in the original paper.

We chose to implement a static partial order reduction [9] algorithm instead,
which avoids these problems of the dynamic approach. It ensures condition
wellfounded by performing some static analysis initially, identifying a set of
sticky edges which breaks every cycle in the control flow graph. Static partial
order reduction is much more modular, making it possible to verify the reduction
algorithm independently of the product construction and the emptiness check.
This way, we were able to simply add the reduction algorithm as a preprocessing
step to the existing Cava model checker, enabling reuse of existing optimizations.

The reduction algorithm itself is similar to the one used in Spin [7]. The
basic idea is to take the set of enabled actions of each process in the state as a
candidate for an ample set. For each candidate, an over-approximation of the
reduction conditions is tested. If no candidate satisfies the conditions, the state
is fully expanded, that is, no reduction is performed.

For instance, our approximation checks that, in order to be used as an ample
set, the actions of a process must be independent of all actions of other processes.
Moreover, it is checked that no additional action of this process can be enabled
as a consequence of executing actions of other processes. Thus, only independent
actions of other processes can be executed before an action of the ample set,
which implies condition independent.

3 Formalization

Our formalization contains all three of the tasks outlined in section 2. The
implementation was integrated into the Cava model checker, which was published
previously [5, 6]. Since then, various features have been added to this model
checker. For instance, it now supports using Promela as an input language
[22]. Furthermore, the library for automata has been updated [13] and a new
framework for depth-first search algorithms has been formalized [16]. Also, an
alternative algorithm for deciding language emptiness of Büchi automata based
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on Gabow’s strongly-connected components algorithm has been implemented
[14]. However, the focus of this paper is on the implementation and verification
of the partial order reduction algorithm.

In this section, we give some technical background regarding the tools that were
used as well as a high-level overview of the formalization. We also describe certain
noteworthy aspects of the formalization in isolated detail. The full formalization
is available at https://cava.in.tum.de/CAVA_POR.

3.1 Isabelle/HOL

Isabelle/HOL [24, 23] is a proof assistant based on Higher-Order Logic (HOL),
which can be thought of as a combination of functional programming and logic.
Formalizations done in Isabelle/HOL are trustworthy for two reasons. Firstly,
Isabelle’s LCF architecture guarantees that all proofs are checked using a very
small logical core which is rarely modified but tested extensively over time. This
reduces the trusted code base to a minimum. Secondly, bugs in the core rarely
lead to accidentally proving false propositions. Bugs that have large effects are
easily caught, while the limited applicability of bugs with small effects is unlikely
to coincide with a logical mistake in the large-scale structure of the proof.

Isabelle/HOL notation resembles standard mathematical notation with just a
few differences. For instance, as in functional programming, functions are usually
curried in HOL. This means that instead of ‘f :: A×B → C’ with application
syntax ‘f(x, y)’, we have ‘f :: A→ B → C’ with application syntax ‘f x y’.

3.2 Refinement Framework

When developing formally verified algorithms, there is a trade-off between the
efficiency of the algorithm and the efficiency of the proof: For complex algorithms,
a direct proof of an efficient implementation tends to get unmanageable, as
implementation details obfuscate the main ideas of the proof. A standard approach
to this problem is stepwise refinement [1], which modularizes the correctness
proof: One starts with an abstract version of the algorithm and then refines it in
correctness preserving steps to the concrete, efficient version. A refinement step
may reduce the nondeterminism of a program, replace abstract mathematical
specifications by concrete algorithms, and replace abstract datatypes by their
implementations. For example, selection of an arbitrary element from a set may
be refined to getting the head of a list. This approach separates the correctness
proof of the algorithm, which focuses on the main algorithmic ideas, from the
correctness proof of the implementation, where the proof of each refinement
step focuses on a specific implementation detail, not caring about the overall
correctness property.

In Isabelle/HOL, stepwise refinement is supported by the Refinement Frame-
work [11, 17] and the Isabelle Collection Framework [10, 15]. The former framework
implements a refinement calculus [1] based on a nondeterminism monad [27], and
the latter provides a library of verified efficient data structures. Both frameworks
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come with tool support to simplify their usage for algorithm development and to
automate canonical tasks such as verification condition generation.

3.3 Basics

The most basic concept needed for nearly all parts of the formalization is that of
sequences. With HOL being very similar to functional programming languages
like SML or Haskell, the standard library already includes extensive support for
finite sequences via the type ‘α list = Nil | Cons α (α list)’. For infinite sequences,
the type ‘α word’ is used, which is simply a type synonym for ‘N→ α’.

We also use the library Coinductive [18] which formalizes lazy lists using
codatatypes [2]. It provides the type ‘α llist’, which models both finite and
infinite sequences. This is useful for selecting subsequences of infinite lists that
can be either finite or infinite. Reasoning about selections and indices of lazy
lists required us to significantly extend the library Coinductive.

Another important component needed for partial order reduction is stuttering
equivalence and the proof that next-free LTL formulae can only express stuttering-
invariant properties. The library Stuttering Equivalence [20] is used for both.

3.4 Systems

Model checkers usually represent systems using the type ‘(state× state) set’.
Reasoning about partial order reduction requires transitions to be labeled with
actions, suggesting the type ‘(state× action× state) set’. However, this type
allows multiple successor states to be reached given a state and an action, making
the type a bad fit for the deterministic action model of partial order reduction.
This leads to unnecessary wellformedness conditions, inaccessible successor states,
and overspecified path predicates. We thus chose the following representation of
the system automaton which was already referred to in section 2.1:

en :: state→ action set (1a)
ex :: action→ state→ state (1b)

init :: state set (1c)

Here, ‘en’ is the set of enabled actions at a state (enabled set), ‘ex’ is the function
that, given an action, maps each state to its successor state (execution function),
and ‘init’ is the set of initial states.

This representation allows paths to be introduced in a straightforward way
via the inductively defined set ‘words :: state→ action list set’:

[] ∈ words p (2a)
a ∈ en p =⇒ w ∈ words (ex a p) =⇒ a#w ∈ words p (2b)

Inductive definitions in Isabelle/HOL specify the smallest sets that satisfy the
given rules. Equivalently, they specify the sets containing those elements whose
membership can be derived using the given rules. These rules can be declared
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as safe introduction rules, so that whenever Isabelle/HOL encounters proof
obligations of the form ‘[] ∈ words p’ or ‘a#w ∈ words p’, it can automatically
split them into simpler goals or discharge them completely.

We prove an additional rule for the append operator on lists:

u ∈ words p =⇒ v ∈ words (fold ex u p) =⇒ u@ v ∈ words p (3)

Note how ‘fold’ lifts the execution function ‘ex :: action → state → state’ from
single actions to sequences of actions ‘fold ex :: action list→ state→ state’. Also
note how this rule generalizes rule 2b.

Together, rules 2a, 2b, and 3 form a set of introduction rules that break
down most goals automatically. For instance, the goal ‘u@ a# v ∈ words p’ gets
transformed into three subgoals:

u ∈ words p (4a)
a ∈ en (fold ex u p) (4b)
v ∈ words (ex a (fold ex u p)) (4c)

This automates proofs significantly, in some cases shortening proofs comprised of
50 to 100 lines to one-liners. We have proven many more rules about this system
formalization, making it a useful addition to the CAVA automata library.

3.5 Trace Theory

Partial order reduction introduces the concept of independent actions, which can
be executed in any order without changing the result or enabling or disabling
each other. Trace theory [19] lifts this notion of commutable items to that of
equivalent sequences, which is needed in the abstract correctness proof.

Finite sequences are equivalent if they differ by a finite number of commuta-
tions of independent actions. This concept is then extended to infinite sequences
[25, page 41]. This definition by case distinction makes lazy lists difficult to use,
so we decided to work with separate types and definitions for finite and infinite
sequences.

Formalizing the necessary parts of trace theory took significant effort due to
the large number of theorems. There are also some theorems that look simple
but are difficult to prove, for instance:

w1 ≡I w2 ⇐⇒ u@w1 @ v ≡I u@w2 @ v (5)

The left to right direction can be proven via rule induction on the transitive
structure of ‘≡I ’. Doing the same for the right to left direction results in an
unprovable induction step. It was necessary to prove the following lemmata:

w1 ≡I w2 =⇒ remove1 c w1 ≡I remove1 c w2 (6a)
u@w1 ≡I u@w2 =⇒ w1 ≡I w2 (6b)

w1 ≡I w2 =⇒ rev w1 ≡I rev w2 (6c)
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Here, ‘remove1 c w’ removes the first occurrence of ‘c’ from the sequence ‘w’,
and ‘rev w’ reverses the sequence ‘w’. Lemma 6a uses ‘remove1’ to avoid the fact
that rule induction does not work with modified assumptions. We use lemma 6a
to prove lemma 6b via reverse induction on the sequence ‘u’. Lemma 6c is proven
via rule induction and with lemma 6b, it completes the proof of theorem 5.

We also had to define some concepts specific to partial order reduction. For
instance, the predicate specifying that the first occurrence of a symbol in a
sequence is independent of all symbols before it. In the end, the formalization of
the relevant aspects of trace theory required about as much proof text as the
formalization of the abstract correctness proof itself.

3.6 Abstract Correctness

Assume that ‘S’ is a system automaton and ‘R’ is a reduced system automaton
such that the reduction conditions introduced in section 2.1 hold. Then, the
abstract correctness theorem states that the languages of ‘S’ and ‘R’ are stuttering
equivalent:

L S ≈ L R (7)

The proof of this theorem required about 1000 lines of formal proof text and
dozens of lemmata. Its structure is similar to that of the informal proof [25] and
we will thus not repeat it here.

However, we present the formalization of a lemma [25, Theorem 3.11] in detail
and highlight the differences between the formal and the informal proof:

lemma reduction_word :
assumes ”q ∈ reachable” ”v ∈ wordsS q”

obtains u w

where
”w ∈ wordsR q”

”v ≡I u” ”u �I w”

”lproject visible (inf_llist u)= lproject visible (inf_llist w) ”

Note that we do not present the formal definitions of all the constants used in
this theorem. Informally, the theorem states that, given an infinite sequence ‘v’
in the system automaton, it is possible to find a corresponding sequence ‘w’ in
the reduced system automaton. The theorem also implies the existence of an
intermediate sequence ‘u’, which is needed since ‘w’ may contain actions that
are not in ‘v’.

The proof consists of two parts. In the first part, we construct an arbitrarily
long but finite sequence in the reduced system automaton by transcribing longer
and longer prefixes of the infinite sequence in the system automaton. In order to
do so, we inductively define a predicate that describes a valid state during this
construction process where a prefix of the sequence in the system automaton has
already been processed. This predicate specifies that the state of the construction
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where both the sequence in the system automaton and the one in the reduced
system automaton are empty is valid. It also specifies how one can extend
a valid construction state by adding a step in the system automaton and a
sequence of corresponding steps in the reduced system automaton. At each point
of the construction, we can then prove that some invariants hold and that the
construction can be extended. Proving these invariants and the extension property
required a lot of effort as the informal proof only provided a rough sketch of
the argument. The formal proof constitutes both a certificate of the theorem’s
correctness as well as a detailed documentation of the reasoning used to prove it.

The second part of the proof consists of using the first part to show that there
exists an infinite sequence with the required properties in the reduced system
automaton. While this step is almost completely skipped in the informal proof, the
formal one forces us to consider it rigorously. For instance, the first part supplies
a theorem which guarantees that for any number of steps that were already taken,
another step can be taken, extending the sequence in the process. Intuitively,
such a theorem can be applied “infinitely often” to obtain an infinite sequence,
but this is not logically sound. Performing a step like this in a formal proof
requires precise reasoning and in our case the use of Hilbert’s epsilon operator.
We believe that this is not a flaw of formal logic or the particular instance we are
using. Instead, we think that situations like this point to areas where it became
customary to use sloppy reasoning in informal proofs, possibly leading to mistakes
or overlooked side conditions. For instance, it is often not made clear in which
way variables depend on each other or what guarantees that an infinite sequence
can actually be constructed from a set of finite sequences. Formal proofs point
out required side conditions like the fact that the infinite concatenation of these
finite sequences needs to be infinite. It also brought attention to the fact that
many concepts need to be defined on both finite and infinite sequences and that
they need to correspond to each other in a specific way.

As mentioned in sections 3.3, 3.4, and 3.5, a large amount of foundational
work was required in order to formally prove the abstract correctness theorem.

3.7 The SM Language

In order to implement an executable reduction algorithm, we require a concrete
modeling language. We use a simple fragment of Promela that is expressive
enough to model interesting examples. We call this fragment the SM language.

A program in this language consists of a set of processes, each of which is
described using a guarded command language. Each process has a set of local
variables and communication between processes is modeled via global variables.
A configuration of the system consists of a valuation of the global variables
and a list of process configurations, where a process configuration consists of a
command and a valuation of the local variables. The main Promela feature not
supported by SM is channels, which can be emulated by global variables.

We specify a structural operational semantics that establishes a control flow
graph where the nodes are commands and the edges are labeled with local actions.
A local action can be a guarded assignment, a test, or the skip action. Each local
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action is assigned an enabledness check and an effect function on the local and
global variables.

The system semantics describes a step relation between configurations by
nondeterministically picking a process from a configuration, following an edge in
the control flow graph from the process’ command that is labeled with an enabled
local action, and applying the effect of the local action to the local and global
state. To ensure that all runs of the system are infinite, we apply a stuttering
extension, that is, if there is no process with an enabled action, the system may
take a step that does not change the configuration.

Since we want to use the SM language in an LTL model checker, we need to
define atomic propositions and their connection to the system states. In our case,
atomic propositions are simply expressions in the SM language that contain only
global variables. Then, we define the interpretation function to map each state
to the set of expressions that evaluate to true in this state.

We define the language of a program as the set of infinite sequences of sets of
atomic propositions that correspond to infinite runs of the program:

L :: program→ exp set word set (8)

We define a global action to consist of a process id and a control flow graph
edge. The process id is the position of the associated process in the list of all
processes. A global action is enabled if the associated process exists, the control
flow graph edge is consistent with the current command of the associated process,
and the corresponding local action is enabled. Execution of a global action
transforms the state of the associated process and the global variables according
to the corresponding local action.

3.8 Reduction Algorithm

Next, we define a function that selects an ample set for a configuration. Similar
to Spin, candidates for ample sets are the sets of enabled actions of each process.
We make a rather crude approximation and allow a nonempty set of enabled
actions of a process as an ample set, if (1) there is no statically enabled action
of the process that reads or writes global variables, and (2) none of the enabled
actions corresponds to a sticky edge in the control flow graph. Here, (1) is a
simple way of guaranteeing condition independent (see section 2.1), and (2) is
the condition imposed by static partial order reduction (see section 2.2).

We implemented and verified an algorithm based on depth-first search which
computes the set of sticky edges before the actual model checking phase. This
algorithm starts with the set of edges labeled with actions containing global
variables and extends it to a feedback arc set on the control flow graphs of the
processes. For this task, we used the Depth-First Search Framework [16], which
simplifies the implementation and verification of efficient DFS-based algorithms.

We define the reduced system automaton based on this ample function and
prove that all of the reduction conditions from section 2.1 are fulfilled. This allows
us to invoke the abstract correctness theorem to obtain stuttering equivalence
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between the language of the system automaton and that of the reduced system
automaton. Together with the assumption that the formula is next-free, this
implies that using the reduced system automaton for model checking instead of
the system automaton does not change the result.

3.9 Integration

We refine the ample function, the execution function, and the interpretation
function to efficiently executable implementations. Among other steps, this
includes compilation of the model to a more efficient representation. Finally,
instantiating the generic infrastructure of the Cava model checker yields an
executable LTL model checker ‘cava’ which uses the reduced system automaton.
Obtaining the main theorem of our development is then merely a matter of
combining the correctness theorem of the Cava model checker with that of
abstract partial order reduction:

case cava S ϕ of SAT⇒ L S ⊆ L ϕ | UNSAT⇒ L S 6⊆ L ϕ (9)

This theorem states that the function ‘cava’ decides whether or not the sequences
of atomic propositions admitted by runs of the program satisfy the LTL formula.
The meaning of this statement only depends on the abstract semantics of the SM
language (term ‘L S’) and the abstract semantics of LTL formulae (term ‘L ϕ’).
All other parts of the formalization, including partial order reduction, LTL model
checking, and refinement towards efficiently executable definitions, are covered
by this machine-checked correctness theorem. Note that we also formalized a
version of the model checker that provides a counterexample in case the program
does not satisfy the formula.

Finally, Isabelle/HOL can generate Standard ML code from the definition of
the function ‘cava’. This code then constitutes a formally verified and executable
LTL model checker. A snapshot of this formalization can be found at https:
//cava.in.tum.de/CAVA_POR.

We conclude with some statistics about the formalization, which took about
15 man-months and resulted in about 13k lines of theory text being added to the
model checker. This includes both definitions and proofs and splits up into 6k
lines for abstract partial order reduction and 7k lines for the SM language and
the associated program analysis. The size of the whole codebase of the model
checker and its libraries is about 140k lines of theory text.

4 Evaluation

We perform some basic sanity checks using two systems that admit no reduction
and complete sequentialization, respectively. As a practical example, we implement
a distributed mutual exclusion algorithm called Mulog [21] using the supported
Promela fragment. The property used for testing states that at most one process
can be in the critical section at any point in time. We perform model checking
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Example Processes States Spin States Spin* States Cava States Cava*
Mulog 1 27 27 52 52
Mulog 2 2,674 2,004 5,538 4,284
Mulog 3 2,376,180 1,171,578 5,205,376 2,779,218

Fig. 2: Reduction effectiveness. Shown are the number of states that were
explored during model checking using both the Cava and the Spin model
checkers. The starred variants indicate where partial order reduction was used.

using both the Cava and the Spin model checkers, both with and without partial
order reduction. Figure 2 shows the reduction effectiveness for this algorithm.

Both the Cava and the Spin model checker show a significant reduction in
the number of states. The reduction factors are comparable (roughly 1.3 for two
processes and roughly 2 for three processes). The Spin model checker explores
fewer states in total (roughly factor 2) and has shorter execution times (roughly
factor 400) than the Cava model checker.

We would like to emphasize that in this paper, it is not our goal to compete
with Spin in absolute terms. Instead, our focus is on providing a verified and
executable reference implementation of partial order reduction. The Spin model
checker employs various other optimizations and compilation to C code, while
the Cava model checker interprets the semantics of the modeling language. Thus,
little insight can be gained by directly comparing execution time and memory
consumption. Incorporating these optimizations is orthogonal to partial order
reduction and we consider this subject of further research. Due to the modular
architecture of the Cava model checker, doing so will not make this contribution
obsolete. At this point, it will also be possible to perform a more comprehensive
evaluation with multiple example algorithms.

5 Conclusion

Formal verification is sometimes downplayed as “careful documentation of known
theorems” or “filling in obvious details in proofs”. In practice, formal verification
usually involves extensive modeling as well as abstraction, generalization, and
simplification of the theory. What may seem like trivial completion of the informal
proof often involves bridging large gaps and proving omitted corner cases.

In this project, we discovered an issue with the correctness proof given in
[25] (see section 2.2). This demonstrates both the need for and the usefulness
of formal verification. More importantly, we developed a formally verified and
executable LTL model checker with partial order reduction. As the verification
is machine-checked and covers everything from the abstract algorithm to the
generated SML code, this is a very strong correctness guarantee. Our model
checker is fast enough to serve as a reference implementation for other model
checkers on models of realistic size. This constitutes a much-needed source of
trust given the widespread use of partial order reduction together with its history
of issues. The formalization can further serve as a detailed description of the
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theory of partial order reduction and its correctness proof, which is useful since
nontrivial gaps were bridged in the proof. We also developed a significant amount
of foundational theories that can be reused in other projects dealing with similar
concepts. Finally, our work demonstrates that large systems can now be verified
using proof assistants via modularization and reuse of existing theories.

Future work consists of extending the SM language to make it more practical,
with the ultimate goal of supporting most or all of the features of Promela. It is
also possible to find smaller sets of sticky actions by incorporating heuristics about
variable increments/decrements [9]. Another way to improve reduction consists
of using additional static analysis to find larger independence relations. Finally,
there is still room for improvement concerning the implementation, especially
via the use of imperative data structures [12].
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