
Noname manuscript No.
(will be inserted by the editor)

The Matrix Reproved
(Verification Pearl)

Martin Clochard · Léon Gondelman ·
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Abstract In this paper we describe a complete solution for the first challenge of
the VerifyThis 2016 competition held at the 18th ETAPS Forum. We present the
proof of two variants for the multiplication of matrices: a naive version using three
nested loops and Strassen’s algorithm. The proofs are conducted using the Why3

platform for deductive program verification and automated theorem provers to
discharge proof obligations. In order to specify and prove the two multiplication
algorithms, we develop a new Why3 theory of matrices. In order to prove the matrix
identities on which Strassen’s algorithm is based, we apply the proof by reflection
methodology, which we implement using ghost state.To our knowledge, this is the
first time such a methodology is used under an auto-active setting.

1 Introduction

In this paper we describe a complete solution for the first challenge of the Veri-
fyThis 2016 competition1 using the Why3 platform for deductive verification.

As it was asked in the original challenge, we prove the correctness of two
different implementations of matrix multiplication, and prove that multiplication is
associative. First, we specify and prove a naive algorithm which runs in cubic time,
then the more efficient Strassen’s algorithm. To our knowledge, this is the first
proof of Strassen’s algorithm for matrices of arbitrary size in a program verification
environment based on automated theorem provers.

To make our solutions both concise and generic, we devise in Why3 an axiomatic
theory for matrices and show various algebraic properties for their arithmetic op-
erations, in particular multiplication distributivity over addition and associativity
(which was asked in the challenge second task). Our full development is available
online2.

Lab. de Recherche en Informatique, Univ. Paris-Sud, CNRS, Orsay, F-91405 · INRIA, Univer-
sité Paris-Saclay, Palaiseau F-91893

1 http://etaps2016.verifythis.org/
2 http://toccata.lri.fr/gallery/verifythis_2016_matrix_multiplication.en.html
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It turns out that proving Strassen’s algorithm seems to be too challenging
for automated theorem provers due to their incapacity to perform reasoning on
algebraic matrix identities. To overcome this obstacle, we devise an algebraic ex-
pression simplifier in order to conduct proof by reflection.

This paper is organized as follows. Section 2 briefly presents Why3. Section 3
describes our solution for naive matrix multiplication. Then, section 4 presents
our solution for the second task and introduces our axiomatic matrix theory. We
specify and prove Strassen’s algorithm in sections 5 and 6. Section 7 presents proof
statistics about our development. We discuss related work in section 8.

2 Why3 in a Nutshell

The Why3 platform proposes a set of tools allowing the user to implement, formally
specify, and prove programs. It comes with a programming language, WhyML [8],
an ML dialect with some restrictions in order to get simpler proof obligations.
This language offers some features commonly found in functional languages, like
pattern-matching, algebraic types, and polymorphism, but also imperative con-
structions, like records with mutable fields and exceptions. Programs written in
WhyML can be annotated with contracts, that is, pre- and postconditions. The
code itself can be annotated, for instance, to express loop invariants or to justify
termination of loops and recursive functions. It is also possible to add intermedi-
ate assertions in the code to ease automatic proofs. The WhyML language features
ghost code [7], which is used only for specification and proof purposes and can be
removed with no observable modification in the program’s execution. The system
uses the annotations to generate proof obligations thanks to a weakest precondition
calculus.

Why3 uses external provers to discharge proof obligations, either automatic
theorem provers (ATP) or interactive proof assistants such as Coq, Isabelle, and
PVS. The system also allows the user to manually apply logical transformations to
proof obligations before they are sent to provers, in order to make proofs easier.

The logic used to write formal specifications is an extension of first-order logic
with rank-1 polymorphic types, algebraic types, (co-)inductive predicates and re-
cursive definitions [6], as well as a limited form of higher-order logic [4]. This logic
is used to write theories for the purpose of modeling the behavior of programs.
The Why3 standard library is formed of many such logic theories, in particular for
integer and floating point arithmetic, sets, and sequences.

The entire standard library, numerous verified examples, as well as a more
detailed presentation of Why3 and WhyML are available on the project web site,
http://why3.lri.fr.

3 Naive Matrix Multiplication

The VerifyThis 2016 first challenge starts with a proposal to verify a naive imple-
mentation of the multiplication of two matrices using three nested loops, though
using a non-standard order for indices.

http://why3.lri.fr
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Consider the following pseudocode algorithm, which is naive implementa-
tion of matrix multiplication. For simplicity we assume that the matrices are
square.

int[][] matrixMultiply(int[][] A, int[][] B) {

int n = A.length;

// initialise C

int[][] C = new int[n][n];

for (int i = 0; i < n; i++) {

for (int k = 0; k < n; k++) {

for (int j = 0; j < n; j++) {

C[i][j] += A[i][k] * B[k][j];

}

}

}

return C;

}

Tasks.

1. Provide a specification to describe the behaviour of this algorithm, and
prove that it correctly implements its specification.

2. Show that matrix multiplication is associative, i.e., the order in which
matrices are multiplied can be disregarded: A(BC) = (AB)C. To show
this, you should write a program that performs the two different compu-
tations, and then prove that the result of the two computations is always
the same.

3. [Optional, if time permits] In the literature, there exist many proposals
for more efficient matrix multiplication algorithms. Strassen’s algorithm
was one of the first. The key idea of the algorithm is to use a recursive al-
gorithm that reduces the number of multiplications on submatrices (from
8 to 7), see Strassen algorithm on wikipedia for an explanation. A rela-
tively clean Java implementation (and Python and C++) can be found
here. Prove that the naive algorithm above has the same behaviour as
Strassen’s algorithm. Proving it for a restricted case, like a 2 × 2 ma-
trix should be straightforward, the challenge is to prove it for arbitrary
matrices with size 2n.

Fig. 1 The original text of the first challenge.

https://en.wikipedia.org/wiki/Strassen_algorithm
https://martin-thoma.com/strassen-algorithm-in-python-java-cpp/
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The original text of the first challenge is given in the Fig. 1. We first write the
WhyML equivalent of the challenge code for the multiplication of two matrices a

and b3:

let mult_naive (a b: matrix int) : matrix int

= let rs = make a.rows b.columns 0 in

for i = 0 to a.rows - 1 do

for k = 0 to b.rows - 1 do

for j = 0 to b.columns - 1 do

set rs i j (get rs i j + get a i k * get b k j)

done;

done;

done;

rs

We use matrices as provided in the Why3 standard library. Those implement two-
dimensional arrays. Operations get and set have the usual semantics, and make

carries out creation and initialization. Such matrices are represented by the fol-
lowing type:

type matrix ’a

model { rows: int; columns: int; mutable elts: map int (map int ’a) }

val rows (a: matrix ’a) : int ensures { result = a.rows }

val columns (a: matrix ’a) : int ensures { result = a.columns }

Here, the keyword model indicates that matrix is an abstract type, whose fields can
only be accessed in specifications. The keyword mutable indicates that the content
of elts can be modified. As the dimensions should be accessible in programs as
well, we use abstract accessors to get them. Note that in Why3 the notation a.f is
syntactic sugar for (f a). Let us now specify the multiplication procedure:

let mult_naive (a b: matrix int) : matrix int

requires { a.columns = b.rows }

ensures { result.rows = a.rows ∧ result.columns = b.columns }

ensures { matrix_product result a b }

The predicate matrix_product mimicks the mathematical definition of matrix
product

(AB)ij =
m−1∑
k=0

AikBkj

which we translate into WhyML as follows:

function mul_atom (a b: matrix int) (i j: int) : int → int =

λk. a.elts[i][k] * b.elts[k][j]

predicate matrix_product (m a b: matrix int) =

∀i j. 0 ≤ i < m.rows → 0 ≤ j < m.columns →
m.elts[i][j] = sum 0 a.columns (mul_atom a b i j)

3 For simplicity, the original task assumes that the matrices are square. Our implementation
deals more generally with rectangular matrices.

http://why3.lri.fr/stdlib/matrix.html
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In order to define this predicate concisely, we use the higher-order function sum

from Why3 standard library. Given a function f: int → int, this function returns
the sum of f n for n ranging between a and b, as specified by the following axioms:

function sum (a b: int) (f: int → int) : int

axiom sum_def1: ∀f a b. b ≤ a → sum a b f = 0

axiom sum_def2: ∀f a b. a < b →
sum a b f = sum a (b - 1) f + f (b - 1)

To prove that mult_naive meets its specification, we give suitable loop invariants.
There are two kinds of invariant per loop. The first kind is the frame invariant,
which describes the part of the matrix that is left unchanged. The second one
describes the contents of cells affected by the loop. To reason about the state just
before the execution enters the two inner loops, we also add labels ’M and ’I for
the middle one and the innermost one respectively. We then refer to the state of
matrix rs when the program is at point ’M by the notation (at rs ’M).

For instance, in the annotated code below, the invariants of the innermost loop
describe that its effect consists in writing a partial sum into cells 0 to j-1 of the
i-th row, leaving other cells unchanged.

for i = 0 to a.rows - 1 do

invariant { ∀i0 j0. 0 ≤ i0 < i ∧ 0 ≤ j0 < b.columns →
rs.elts[i0][j0] = sum 0 a.columns (mul_atom a b i0 j0) }

invariant { ∀i0 j0. i ≤ i0 < a.rows ∧ 0 ≤ j0 < b.columns →
rs.elts[i0][j0] = 0 }

’M:

for k = 0 to b.rows - 1 do

invariant { ∀i0 j0. 0 ≤ i0 < a.rows ∧ 0 ≤ j0 < b.columns ∧
i0 6= i → rs.elts[i0][j0] = (at rs ’M).elts[i0][j0] }

invariant { ∀j0. 0 ≤ j0 < b.columns →
rs.elts[i][j0] = sum 0 k (mul_atom a b i j0) }

’I:

for j = 0 to b.columns - 1 do

invariant { ∀i0 j0. 0 ≤ i0 < a.rows ∧
0 ≤ j0 < b.columns ∧ (i0 6= i ∨ j0 ≥ j) →
rs.elts[i0][j0] = (at rs ’I).elts[i0][j0] }

invariant { ∀j0. 0 ≤ j0 < j →
rs.elts[i][j0] = sum 0 (k+1) (mul_atom a b i j0) }

set rs i j (get rs i j + get a i k * get b k j)

done;

done;

done;

With the annotations above all the generated verification conditions are discharged
in a fraction of second using the Alt-Ergo SMT solver.

4 From Multiplication Associativity to a Matrix Theory

The next task was to show that matrix multiplication is associative. More pre-
cisely, participants were asked to write a program that performs the two different

http://why3.lri.fr/stdlib/int.html#sum_349
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((AB)C)ij =
∑
k

(
∑̀

Ai`B`k)Ckj (unfold definition of matrix product)

=
∑
k

∑̀
Ai`B`kCkj (linearity of sum operator)

=
∑̀∑

k
Ai`B`kCkj (Fubini’s principle)

=
∑̀

Ai`
∑
k
B`kCkj (linearity of sum operator)

= (A(BC))ij (fold definition of matrix product)

Fig. 2 Proof sketch for matrix multiplication associativity.

computations (AB)C and A(BC), and then to prove the corresponding results to
be always the same. In our case, this corresponds to proving the following program:

let assoc_proof (a b c: matrix int) : unit

requires { a.columns = b.rows ∧ b.columns = c.rows }

= let ab_c = mult_naive (mult_naive a b) c in

let a_bc = mult_naive a (mult_naive b c) in

assert { ab_c.rows = a_bc.rows ∧ ab_c.columns = a_bc.columns ∧
∀i j. 0 ≤ i < ab_c.rows ∧ 0 ≤ j < ab_c.columns →
ab_c.elts[i][j] = a_bc.elts[i][j] }

The proof of associativity relies essentially on the linearity of the sum operator
and Fubini’s principle according to which, given a finite sum indexed by i and j,
we have

∑
i,j ai,j =

∑
i(
∑

j ai,j) =
∑

j(
∑

i ai,j). Figure 2 shows a proof sketch
for the multiplication associativity using mathematical notations. Let us illustrate
how we establish the linearity of the sum (Fubini’s principle is done in a similar
way). First we define a higher-order function smulf:

function smulf (l: int) (f: int → int) : int → int = λx. l * f x

Then we prove the linearity using a lemma function:

let rec lemma sum_mult (a b l: int) (f: int → int) : unit

ensures { sum a b ( smulf l f) = l * sum a b f }

variant { b - a }

= if b > a then sum_mult a (b-1) l f

The fact that we define the lemma as a recursive function, instead of stating it as
a logical predicate, allows us to do two important things. First, we simulate the
induction hypothesis via a recursive call, which is useful since the ATPs usually
do not support reasoning by induction. Second, writing a lemma as a program
function allows us to call it with convenient arguments later, which is equivalent
to giving an explicit lemma instance.

Notice that the lemma is given an explicit variant clause. Indeed, when one
writes a lemma function, Why3 verifies that it is effect-free and terminating. In the
definition above, the termination is ensured by a measure b - a which decreases
at each recursive call and will stay non-negative.

Now, a possible way to complete the second task would be to show the asso-
ciativity directly for the multiplication implemented by the naive algorithm from
task one. However, such a solution would be ad hoc: each time we implement the
matrix multiplication differently, the associativity must be reproved.
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To make our solution more general, we opt for a different solution which con-
sists roughly of two steps. First, we provide an axiomatized theory of matrices
where we prove that matrix product, as a mathematical operation, is associative.
Second, we create a model function from program matrices to their logical repre-
sentation in our theory. Finally, we show that from the model perspective naive
multiplication implements the mathematical product. When all this is done, we
have the associativity of naive multiplication for free.

We split our matrix axiomatization into two modules. The first module intro-
duces a new abstract type and declares the following functions

type mat ’a

function rows (mat ’a) : int

function cols (mat ’a) : int

function get (mat ’a) int int : ’a

function set (mat ’a) int int ’a : mat ’a

function create (r c: int) (f: int → int → ’a) : mat ’a

and adds a set of axioms that describes their behavior. We add the create function
to build new matrices by comprehension. For instance, the axiom

axiom create_get:

∀r c: int, f: int → int → ’a, i j: int.

0 ≤ i < r → 0 ≤ j < c → get (create r c f) i j = f i j

describes the content of each cell of the matrix (create r c f) in terms of the ini-
tialization function f. Additionally, we have an extensionality axiom that expresses
that matrices are defined by their content.

predicate (==) (m1 m2: mat ’a) =

m1.rows = m2.rows && m1.cols = m2.cols &&

∀i j: int. 0 ≤ i < m1.rows → 0 ≤ j < m1.cols →
get m1 i j = get m2 i j

axiom extensionality:

∀m1 m2: mat ’a. m1 == m2 → m1 = m2

It is worth pointing out that we can define most useful operations on matrices
using the create function. For instance, we define the update function set as:

function set (m:mat ’a) (x y:int) (z:’a) : mat ’a =

create m.rows m.cols

(λx0 y0. if x0 = x && y0 = y then z else get m x0 y0)

That is, instead of adding axioms on the behavior of set function with respect to
the cols, rows, and get functions, these elementary properties are stated as lemmas
which are then proved automatically, thus diminishing the number of axioms on
which our theory relies.

The second module defines arithmetic operations over integer matrices as
straightforward instances of create, and exports various proved lemmas about
their algebraic properties, including associativity and distributivity. Although we
are looking for associativity, the other properties are expected in such a theory,
and we will use some of them in later sections. A typical proof amounts to writing
the following:
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function mul_atom (a b: mat int) (i j: int) : int → int =

λk. get a i k * get b k j

function mul (a b: mat int) : mat int =

create a.rows b.cols b (λi j. sum 0 a.cols (mul_atom a b i j))

let lemma mul_assoc_get (a b c: mat int) (i j: int) : unit

requires { a.cols = b.rows ∧ b.cols = c.rows }

requires { 0 ≤ i < a.rows ∧ 0 ≤ j < c.cols }

ensures { get (mul (mul a b) c) i j = get (mul a (mul b c)) i j }

= ...

lemma mul_assoc: ∀a b c. a.cols = b.rows → b.cols = c.rows →
mul a (mul b c) = mul (mul a b) c

by mul a (mul b c) == mul (mul a b) c

The by [3] connective in the last line instruments the lemma with a logical cut
for its proof, to show the desired instance of extensionality, which follows by the
auxiliary lemma function mul_assoc_get.

To prove this auxiliary lemma, we first define a parameterized version of sum

to account for functions depending on two integers:

function sumf (a b: int) (f: int → int → int) : int → int =

λx. sum a b (f x)

More precisely, we apply sumf operator exactly twice, for each of the two functions
ft1 and ft2 defined below:

function ft1 (a b c: mat int) (i j: int) : int → int → int =

λk. smulf (get c k j) (mul_atom a b i k)

function ft2 (a b c: mat int) (i j: int) : int → int → int =

λk. smulf (get a i k) (mul_atom b c k j)

With these definitions and sum_mult lemma function, we can deduce that functions
λk.mul_atom (mul a b) c i j k and λk.sumf 0 (cols a) (ft1 a b c i j k) give
the same result for any k such that 0 ≤ k < cols b. Similarly, the functions
λk.mul_atom a (mul b c) i j k and λk.sumf 0 (cols b) (ft2 a b c i j k) give
the same result for any k such that 0 ≤ k < cols a. However, what we need ex-
actly is the equality between the sums that use these functions. To achieve this,
we define a ghost function sum_ext

let ghost sum_ext (a b: int) (f g: int → int) : unit

requires { ∀i. a ≤ i < b → f i = g i }

ensures { sum a b f = sum a b g }

= ()

which we apply then twice in the proof of mul_assoc_get:

let ft1 = ft1 a b c i j in

let ft2 = ft2 a b c i j in

sum_ext 0 (cols b) (mul_atom (mul a b) c i j) (sumf 0 (cols a) ft1);

fubini ft1 ft2 0 (cols b) 0 (cols a);

sum_ext 0 (cols a) (mul_atom a (mul b c) i j) (sumf 0 (cols b) ft2);
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As one can see, the proof of this auxiliary lemma follows the sketch given in
Fig. 2. However, the folding/unfolding of definition of matrix product require some
attention to get it right in an actual proof, in particular due to the use of higher
order in sum operator.

Once we have formalized the matrix theory and proved associativity, it remains
to connect it to the implementation with a model function:

function mdl (m: matrix ’a) : mat ’a =

create m.rows m.columns (get m)

Then, we change the specification of mult_naive to use the model. This turns the
postcondition into result.mdl = mul a.mdl b.mdl. The proof of this new specifi-
cation is immediate and makes the second task trivial.

5 Strassen’s Algorithm

The last part in the VerifyThis challenge was to verify Strassen’s algorithm for
square matrices with power-of-two size. We prove a more general implementation
that performs dynamic padding to handle matrices of any size, including rectan-
gular matrices.

The principle behind Strassen’s Algorithm is to use 2×2 block multiplication re-
cursively, using a scheme that performs seven sub-multiplications instead of eight.
More precisely, it first partitions both input matrices A and B and output matrix
M in 4 equal-sized matrices.

A =

[
A1,1 A1,2

A2,1 A2,2

]
B =

[
B1,1 B1,2

B2,1 B2,2

]
M =

[
M1,1 M1,2

M2,1 M2,2

]

Then, it computes the four components of M using additions and subtractions of
seven intermediate matrices

M1,1 = X1 +X4 −X5 +X7 M2,1 = X2 +X4

M1,2 = X3 +X5 M2,2 = X1 −X2 +X3 +X6

where matrices Xi are computed using additions, subtractions, and only seven
multiplications:

X1 = (A1,1 +A2,2) (B1,1 +B2,2) X2 = (A2,1 +A2,2) B1,1

X3 = A1,1 (B1,2 −B2,2) X4 = A2,2 (B2,1 −B1,1)
X5 = (A1,1 +A1,2) B2,2 X6 = (A2,1 −A1,1) (B1,1 +B1,2)
X7 = (A1,2 −A2,2) (B2,1 +B2,2)

When matrices have odd sizes, this recursive scheme cannot be applied. This is
typically solved by peeling or zero-padding, either statically or dynamically to
recover an even size.
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5.1 Implementation

Our code of Strassen’s algorithm is given in Fig. 3. We use a dynamic padding
solution to cope with matrices with at least one odd dimension. That is, we add a
zero row and/or a zero column to recover even dimensions, process the augmented
matrices by a recursive call, and then we extract the relevant sub-matrix from the
result.

When the size gets below an arbitrary cutoff, we use a naive matrix multiplica-
tion. As we could take any positive cutoff, we prove the algorithm independently
of the concrete value.

The code in Fig. 3 uses the following simple matrix routines:

– matrix addition (add) and subtraction (sub).
– matrix block-to-block copy (blit).
– sub-matrix extraction (block).
– zero padding to adapt to a larger size (padding).

We verify implementations of those operations as part of our Why3 development.
We do not detail their proof as it is completely standard.

5.2 Specification and Proof

We give the same specification for Strassen’s algorithm as for naive multiplica-
tion. As for the proof, let us first focus on the correctness of Strassen’s recursive
scheme. We break down that proof in two parts. First, we prove that the usual
2×2 block decomposition of matrix product is correct. Then, we prove that the
efficient computation scheme that uses seven multiplication indeed computes that
block decomposition. That second part boils down to checking four matrix identi-
ties, which we will cover in details in Section 6.

In order to prove block decomposition, we introduce a dedicated module where
sub-matrix extraction is defined by comprehension. It extracts a rectangle from a
matrix, given the low corner at coordinates r, c and with dimensions dr, dc:

function block (a: mat int) (r dr c dc: int) : mat int =

create dr dc (λ i j. get a (r+i) (c+j))

The module essentially proves two lemmas about relations between sub-matrix
extraction and product, which are illustrated as in Fig. 4. One expresses sub-
matrices of the product as products of sub-matrices, while the other decomposes
products into sums of sub-matrices products. We then expect to obtain the desired
block decomposition by two successive partitioning steps, but there is a catch. Our
implementation extracts directly the 4 sub-matrices in one step instead of two.
We bridge the gap by reducing successive sub-matrix extraction to single ones. In
practice, we do this by proving the following lemma:
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constant cut_off : int

axiom cut_off_positive : cut_off > 0

let rec strassen (a b: matrix int) : matrix int

= let (rw, md, cl) = (a.rows, a.columns, b.columns) in

if rw ≤ cut_off || md ≤ cut_off || cl ≤ cut_off

then mul_naive a b else

let (qr, rr) = (div rw 2, mod rw 2) in

let (qm, rm) = (div md 2, mod md 2) in

let (qc, rc) = (div cl 2, mod cl 2) in

if rr 6= 0 || rm 6= 0 || rc 6= 0 then begin (* Padding *)

let (rw’, md’, cl’) = (rw + rr, md + rm, cl + rc) in

let ap = padding a rw’ md’ in

let bp = padding b md’ cl’ in

let m = strassen ap bp in

block m 0 rw 0 cl

end else begin (* regular Strassen multiplication *)

let (m11, m12, m21, m22) =

let a11 = block e a 0 qr 0 qm in

let a12 = block e a 0 qr qm qm in

let a21 = block e a qr qr 0 qm in

let a22 = block e a qr qr qm qm in

let b11 = block e b 0 qm 0 qc in

let b12 = block e b 0 qm qc qc in

let b21 = block e b qm qm 0 qc in

let b22 = block e b qm qm qc qc in

let x1 = strassen (add e a11 a22) (add e b11 b22) in

let x2 = strassen (add e a21 a22) b11 in

let x3 = strassen a11 (sub e b12 b22) in

let x4 = strassen a22 (sub e b21 b11) in

let x5 = strassen (add e a11 a12) b22 in

let x6 = strassen (sub e a21 a11) (add e b11 b12) in

let x7 = strassen (sub e a12 a22) (add e b21 b22) in

let m11 = add e (sub e (add e x1 x4) x5) x7 in

let m12 = add e x3 x5 in

let m21 = add e x2 x4 in

let m22 = add e (add e (sub e x1 x2) x3) x6 in

(m11, m12, m21, m22) in

let res = make a.rows b.columns 0 in

blit m11 res 0 0 qr 0 0 qc;

blit m12 res 0 0 qr 0 qc qc;

blit m21 res 0 qr qr 0 0 qc;

blit m22 res 0 qr qr 0 qc qc;

res

end

Fig. 3 Strassen’s algorithm implementation.
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Fig. 4 Relations between sub-matrices and product.

let lemma double_block

(a: matrix int) (r1 dr1 c1 dc1 r2 dr2 c2 dc2: int) : unit

requires { 0 ≤ r1 ≤ r1 + dr1 ≤ a.mdl.rows }

requires { 0 ≤ c1 ≤ c1 + dc1 ≤ a.mdl.cols }

requires { 0 ≤ r2 ≤ r2 + dr2 ≤ dr1 }

requires { 0 ≤ c2 ≤ c2 + dc2 ≤ dc1 }

ensures { block (block a.mdl r1 dr1 c1 dc1) r2 dr2 c2 dc2 =

block a.mdl (r1+r2) dr2 (c1+c2) dc2 }

= assert { block (block a.mdl r1 dr1 c1 dc1) r2 dr2 c2 dc2 ==

block a.mdl (r1+r2) dr2 (c1+c2) dc2 }

This is sufficient to prove the algebraic relations between the partition of the prod-
uct and the partitions of the input matrices. Also, note that we can readily reuse
the same proof scheme for padding correctness. Indeed, it amounts to checking that
the block we extract from the product of padded matrices is the right one. This
follows immediately from the relevant block decomposition of the matrix product.

Finally, there is only one non-trivial remaining part: termination. It is non-
trivial because our padding scheme increases the matrices dimensions. This does
not cause any problem, because the next step will halve it. We prove termination
by introducing an extra ghost argument flag that identifies which matrices do not
require padding:

let rec strassen (a b: matrix int) (ghost flag: int) : matrix int

requires { 0 ≤ flag }

requires { flag = 0 →
a.mdl.cols = 1 ∨ a.mdl.cols = 1 ∨ b.mdl.cols = 1 ∨
(even a.mdl.rows ∧ even a.mdl.cols ∧ even b.mdl.cols) }

variant { (* lexicographic order *)

a.mdl.rows + a.mdl.cols + b.mdl.cols + 3 * flag, flag }

We distinguish two situations in which padding is not required: either one of the
matrices is a vector, in which case our implementation calls the naive multipli-
cation algorithm; or the matrices dimensions are all even. The variant clause in-
troduces a lexicographic order to prove termination of recursive calls. This should
be understood as follows: in the case padding is applied it is the flag value that
will serve as decreasing measure. We add 3 * flag to account for the possibility
of augmenting all the matrices dimensions by one, keeping the value of the first
measure unchanged between the recursive calls. In the regular case (Strassen’s
recursive scheme can be applied), matrices dimensions are halved, which leaves
enough room to account for padding being applied again.
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6 Proving Validity of Matrix Identities by Reflection

Once we get rid of block matrix multiplication, proving validity of matrix identities
turns out to be the major difficulty. Indeed, Strassen’s algorithm relies on identities
such as

A1,1B1,2 +A1,2B2,2 = A1,1(B1,2 −B2,2) + (A1,1 +A1,2)B2,2

which are obvious for humans, but turn out to be quite a trouble for ATPs.
A possible explanation may be that ATPs do not identify algebraic properties

of matrices as such and handle them as any other quantified axioms. This suggests
that they create a considerable number of useless instances of these axioms before
finding the relevant ones. Moreover, those axioms have dimension constraints that
must be derived for each instance. This makes the situation even worse, as for
example the dimensions for the matrix AB must be derived from those of A and
B by using yet another lemma.

One possible solution to bridge this gap is “assertion forcing”, i.e. adding as-
sertions about intermediate identities until the sub-problems are small enough to
be handled by ATPs. However, after trying to go this way, we found that even the
identity above (the easiest one) requires an unreasonable number of explicit steps.

Without support of automated provers, making use of an interactive one (typ-
ically Coq) would be a standard choice. If the interactive prover has support for
proving ring-like identities, then it would suffice to embed our matrix theory inside
the prover’s ring framework. However, we were curious to see if we could embed
some kind of similar ring support inside Why3 itself. That leads us to the tech-
nique known as proof by reflection [2]. The methodology we follow is actually very
similar to the one presented by Bertot and Castéran [1, chapter 16].

6.1 Proof by Reflection Recipe

The proof by reflection approach essentially amounts to running a decision proce-
dure within the logic of the proof environment. Reader can find some illustrative
examples in Coq Reference Manual [11, Chapter 25]. In our case, it is more specif-
ically a canonicalization procedure for matrix expressions. We use it to prove
identities simply by comparing canonical forms. As it happens, we cannot define
such procedures directly on the algebraic objects as we cannot analyze the struc-
ture of the matrix expressions. So the first step is to replace the expressions by
abstract syntax trees, which are more convenient for computation.

More precisely, we create a symbolic model for expressions, taking into account
the expression structure. This symbolic model comes with a companion interpreta-
tion J·K translating them to algebraic objects. We also need some kind of reflection
mechanism to turn the expressions e into symbolic objects ê such that JêK = e.
Figure 5 summarizes this process schematically.

6.2 Computation Transformation

Running the canonicalization procedure requires computation support within the
logic of the proof environment. In Why3, we get it from the compute transforma-
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Expressions e1, e2 Symbolic models ê1, ê2

VALID Canonical forms e1, e2

reflect

canonicalize

check e1 = e2 syntactically

Fig. 5 Proof by reflection.

tion. It is a logical transformation that we manually apply to selected verification
conditions before sending them to ATPs.

The computation transformation performs rewriting on formulas up to normal
form, based on a user-supplied rewriting system. We select which identities are
used as rewrite rules by tagging axioms with "rewrite" labels. We can also select
definitions as rewrite rules by marking the symbols with meta declarations. For
example, the following declarations add axiom fact_rule and f’s definition as
rewrite rule.

axiom fact_rule :

"rewrite" ∀n. fact n = if n ≤ 0 then 1 else n * fact (n-1)

function f (x: ’a) : ’a = x

meta rewrite_def function f

We typically use labeling in conjunction with an introduction transformation
to locally add rewrite rules. This is extremely useful in postconditions as it creates
logical objects whose structure can be exploited by computation:

ensures { "rewrite" result = fact arg }

By default, the set of rewrite rules also includes computation of built-in sym-
bols, like integer arithmetic, Boolean operators and pattern-matching on algebraic
datatypes. This means that based on the rules above the following goal is reduced
by compute to true:

goal G: fact 4 = f 24 ∧ fact (fact 3) = 720 ∧ ∀x:’a. f (f x) = x

6.3 Representation of Expressions and Normalization Procedure

We choose to represent matrix expressions by a cascade of symbolic operators
+̂, ×̂, . . . maintaining expressions in canonical form. In other words, we represent
an expression (a + b) × c as (â+̂b̂)×̂ĉ. Moreover, the canonicalization procedure
boils down to the computation of symbolic operators.

In order to represent canonical forms for expressions, we use a list of monomials.
Monomials themselves consist of products of variables with explicit signs. These
products are represented by lists of variables. We consider that an expression is in
canonical form if the monomials are sorted and there are no opposite monomials
in the expression. To ease cancellation, we choose the monomial order so that
opposite monomials are consecutive.
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type var = int

type mono = { m_prod: list var; m_pos: bool; }

type expr = { e_body: list mono; e_rows: int; e_cols: int; }

As the canonicalization procedure efficiency is not our prime concern here,
writing the symbolic operators is a simple programming exercise. Nevertheless,
we need to prove them correct. More precisely, we need commutation theorems
to replace regular operations by symbolic ones. Those theorems typically have
the shape Jê1+̂ê2K = Jê1K + Jê2K for an interpretation function J·K. Note that we
do not need to prove that our operators maintain the canonical form as well.
Indeed, failing to meet this criterion does not endanger the procedure’s soundness.
Hence the only invariants we maintain on symbolic expressions are the mandatory
dimension constraints between variables.

We define the interpretation function on expressions as follows:

function lm_mdl_simp

(f: int → mat int) (r c: int) (l: list mono) : mat int =

match l with

| Nil → zero r c

| Cons x Nil → m_mdl f x

| Cons x q → add (lm_mdl_simp f r c q) (m_mdl f x)

end

meta rewrite_def function lm_mdl_simp

function e_mdl (f: int → mat int) (e: expr) : mat int =

lm_mdl_simp f e.e_rows e.e_cols e.e_body

meta rewrite_def function e_mdl

The parameter f corresponds to the environment, mapping variables to ma-
trices, while the functions m_mdl and l_vld correspond to similarly-defined sym-
bols for monomials. Note that lm_mdl_simp does not produce the zero whenever
possible, which may seem a useless simplification. We carry it out because the
interpretation function is also used to turn back symbolic expressions to regular
ones, which we want to be as small as possible. However, this does not change the
actual interpretation, so we use a more practical non-simplifying variant lm_mdl

for proofs.

We define dimension constraints for symbolic expressions in a similar way,
i.e. we enforce that variable dimensions match inside products. We also have to
enforce that products are non-empty, as matrix unit does not exist except for
square matrices. The following predicate defines the constraints for monomials,
and is readily extended to full expressions:

predicate l_vld (f: int → mat int) (r c: int) (l: list int) =

match l with

| Nil → false

| Cons x Nil → (f c).rows = r ∧ (f x).cols = c

| Cons x q → (f x).rows = r ∧ l_vld f (f x).cols c q

end

Finally, we prove the commutation theorems by embedding them within ghost
procedures whose structure is identical to the corresponding operator implemen-
tation. The contracts of those procedures correspond exactly to the commutation
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theorem. We can then recover the theorems by straightforward lemma functions,
though ghost procedures suffice for our purposes as we explain later.

For example, symbolic multiplication is implemented by fully distributing all
monomials on the left side over the right side. Addition is carried out by function
lm_merge, a variation of sorted list merging. This fragment is implemented and
proved as follows:

function lm_distribute (l1 l2: list mono) : list mono =

match l1 with

| Nil → Nil

| Cons x q → lm_merge Nil (m_distribute x l2) (lm_distribute q l2)

end

meta rewrite_def function lm_distribute

let rec ghost lm_distribute_ok (f: int → mat int) (r k c: int)

(l1 l2: list mono) : list mono

requires { r ≥ 0 ∧ k ≥ 0 ∧ c ≥ 0 }

requires { lm_vld f r k l1 ∧ lm_vld f k c l2 }

ensures { result = lm_distribute l1 l2 ∧ lm_vld f r c result }

ensures { lm_mdl f r c result =

mul (lm_mdl f r k l1) (lm_mdl f k c l2) }

variant { l1 }

= match l1 with

| Nil → Nil

| Cons x q →
lm_merge_ok f r c Nil (m_distribute_ok f r k c x l2)

(lm_distribute_ok f r k c q l2)

end

The correctness of the symbolic operators is a straightforward consequence of
the algebraic properties provided by our matrix theory (distributivity for the one
above).

6.4 Reflecting Expressions through Ghost Tagging

In order to use our canonicalization procedure, we need to reflect matrix expres-
sions as symbolic expressions. Unfortunately, there are currently no evident way
to carry out such replacement in a fully automatic manner in Why3. But note
that we already built the result of all the involved expressions either as part of
the implementation, or as part of the block decomposition proof. We can then
build their symbolic counterparts automatically at the same time. In practice, we
achieve that by tagging each matrix with a correlated ghost symbolic expression.
As those tags are ghost, they do not incur any extra runtime cost.

type with_symb = { phy : matrix int;

ghost sym : expr; (* reflection *) }

predicate with_symb_vld (env:env) (ws:with_symb) =

e_vld env.ev_f ws.sym ∧ (* dimension constraints *)

e_mdl env.ev_f ws.sym = ws.phy.mdl ∧ (* same model *)

ws.sym.e_rows = ws.phy.mdl.rows ∧ (* same dimensions *)

ws.sym.e_cols = ws.sym.mdl.cols
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We then perform paired construction using straightforward tagging combina-
tors, each arithmetic operation being naturally paired with its symbolic counter-
part. Their proof follows by calling the ghost procedures corresponding to the
commutation theorems.

The only subtleties arise in the case of variables. As we should have precisely
one variable per block, we pair their introduction with the block extraction oper-
ators. However, this must change the environment. In order to account for such
changes, we use a mutable environment, containing the variable map and a symbol
generator. This also enforces that we always generate a fresh variable.

type env = { mutable ev_f: int → mat int; mutable ev_c: int; }

function extends

(f: int → mat int) (c: int) (v: mat int) : int → mat int =

λn. if n 6= c then f n else v

meta rewrite_def function extends

let block_ws (ghost env:env) (a:matrix int) (r dr c dc: int) : with_symb

requires { 0 ≤ r ≤ r + dr ≤ a.mdl.F.rows }

requires { 0 ≤ c ≤ c + dc ≤ a.mdl.F.cols }

ensures { let rm = result.phy.mdl in

rm = block a.mdl r dr c dc ∧ rm.rows = dr ∧ rm.cols = dc }

ensures { "rewrite"

result.sym = symb_mat result.phy.mdl (old env.ev_c) }

ensures { "rewrite"

env.ev_f = old (extends env.ev_f env.ev_c result.phy.mdl) }

ensures { "rewrite" env.ev_c = old env.ev_c + 1 }

ensures { with_symb_vld env result }

We use "rewrite" labels to register the field definitions as rewrite rules, so
that they are correctly unfolded during computation. Note that although muta-
bility makes variable generation easy, it has the unfortunate pitfall of breaking
the representation invariants with_symb_vld. We recover them when necessary us-
ing the computation transformation to break the invariant as a conjunction of
immediate dimension constraints.

In practice, to prove e1 = e2 we proceed as follow:

– build e1 and e2 using the tagging combinators. In our case this boils down to
replacing arithmetic operators as we already build these expressions for other
purposes.

– write the assertion e_mdl env.ev_f e1.sym = e_mdl env.ev_f e2.sym.
– use the compute transformation on the associated proof obligation. If the matrix

identity is correct this reduces the above assertion to true.

Note that the above methodology implies that we build the matrices Ai,1B1,j +
Ai,2B2,j using our tagging combinators as well, which would lead to a total of 15
sub-multiplication instead of 7. However, those extra operations are only used for
specification purposes, so we perform them in ghost code to avoid the execution
penalty.

7 Proof Statistics

Our Why3 development is divided into five different .mlw files:
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file lines of specification lines of code
matrices.mlw 236 0
matrices ring simp.mlw 396 0
naive.mlw 20 12
strassen.mlw 188 179
sum extended.mlw 38 0
total 878 191

Table 1 Experimental results.

prover # VCs proved average time (sec) # VCs proved only by this prover
CVC4 (1.4) 413 0.45 0
Alt-Ergo (1.30) 465 0.28 45
Z3 (4.4.1) 399 0.86 3

Table 2 Experimental results solvers.

– sum_extended.mlw, where we define and prove some extra properties of sum-
mation operator with respect to the Why3 standard library;

– matrices.mlw, containing our axiomatic theory of matrices;
– matrices_ring_simp.mlw, where we define the proof by reflection machinery;
– naive.mlw, in which we prove the naive multiplication algorithm;
– strassen.mlw, in which we prove Strassen’s algorithm and its matrix sub-

routines (such as matrix addition).

Table 1 shows the distribution of specification among these five files. We ob-
serve that we needed a lot of specification to actually prove Strassen’s algorithm as
the specification ratio is about 4.6 (specification/code). However, most of the spec-
ification corresponds to a proof library for matrix algebra. Taking this out, we see
that the part dedicated to Strassen’s algorithm is reasonable, with a specification
ratio of about 1.

After using the compute transformation, all the generated verification condi-
tions (VCs) are automatically discharged using a combination of Alt-Ergo, CVC4,
and Z3 SMT solvers. The proof by reflection setup generated a total of 11 goals
requiring computation. Table 2 summarizes the contribution of each prover to our
development.

8 Related Work

There are other works in the literature that tackle the proof of matrix multipli-
cation algorithm similar to Strassen’s. The closest to our work is that of Dénès et

al. [5]. They propose a refinement-based mechanism to specify and prove efficient
algebraic algorithms in the Coq proof assistant. The authors report on the use
of the Coq’s ring tactic to ease the proof of Winograd’s algorithm (a variant of
Strassen’s with fewer additions and subtractions), a similar approach to our proof
by reflection. To cope with the case of odd-sized matrices they implement dynamic
peeling to remove extra rows or columns. However the use of Coq ring tactic limits
this work to square matrices while our works tackle any rectangle ones.

Another work close to ours is a proof of Strassen’s Algorithm in the Archives
in Formal Proofs [12]. Their implementation tackles rectangular matrices of any
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work proof size for Strassen’s algorithm
Dénès and al. 210
Thiemann and al. 250
Our work 200

Table 3 Proof size comparison

dimensions as well, using dynamic peeling. They prove matrix identities using
Isabelle’s built-in simplification mechanism directly on the matrix terms.

Strassen algorithm is proved as well in the ACL2 system [9]. The use of ACL2
with suitable rewriting rules and proper ring structure allows a high degree of
automation in the proof process. However, they use an ad hoc definition of matrices
whose sizes can only be powers of 2.

Srivastava et al. propose a technique for the synthesis of imperative programs [10]
where synthesis is regarded as a verification problem. Verification tools are then
used with a two-folded purpose: to synthesize programs and their correctness proof.
One case study presented for this technique is multiplication for 2×2 integer ma-
trices, for which the authors have been able to synthesize the cascade of arithmetic
operations corresponding to Strassen’s recursive scheme.

We compare the proof size for several developments in table 3. We only take
into account the part devoted to Strassen’s algorithm alone, as matrix primitives
and properties are typically scattered among much larger libraries. We observe
that the size of the core proof does not vary much.

9 Conclusion

We presented our solution for the first challenge of the VerifyThis 2016 competi-
tion. While presenting our solutions in detail, we took the opportunity to illustrate
some interesting features of Why3, among which are higher-order functions in logic,
lemma functions, ghost code, and proof obligation transformations. It would be
interesting to see whether the proof by reflection methodology we use in this work
can be helpful for verification of some other case studies, especially in a context
which favors ATPs.

When these cases become larger, we would be inevitably confronted with per-
formance issues related to the internal decision procedure. Since the soundness of
such a procedure is necessary to use it within the reflection framework, we would
be as well confronted to show the soundness of more efficient decision procedures.

Another direction would be to replace ghost tagging with even more automatic
reflection procedures. To this end, we plan to investigate the possibility of using a
dedicated module Why3 transformation to carry out the reflection phase.
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