Skip to main content
Log in

The Flow of ODEs: Formalization of Variational Equation and Poincaré Map

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

Formal analysis of ordinary differential equations (ODEs) and dynamical systems requires a solid formalization of the underlying theory. The formalization needs to be at the correct level of abstraction, in order to avoid drowning in tedious reasoning about technical details. The flow of an ODE, i.e., the solution depending on initial conditions, and a dedicated type of bounded linear functions yield suitable abstractions. The dedicated type integrates well with the type-class based analysis in Isabelle/HOL and we prove advanced properties of the flow, most notably, differentiable dependence on initial conditions via the variational equation. Moreover, we formalize the notion of first return or Poincaré map and prove its differentiability. We provide rigorous numerical algorithm to solve the variational equation and compute the Poincaré map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. This means that f does not depend on t. This restriction makes the presentation clearer. Many of our results are also formalized for non-autonomous ODEs. Moreover, for a large class of ODEs, a reduction to the autonomous case is possible.

References

  1. Boldo, S., Clément, F., Faissole, F., Martin, V., Mayero, M.: A Coq formal proof of the Lax–Milgram theorem. In: Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, ACM, pp. 79–89 (2017)

  2. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Wave equation numerical resolution: a comprehensive mechanized proof of a C program. J. Autom. Reason. 50(4), 423–456 (2013). https://doi.org/10.1007/s10817-012-9255-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Boldo, S., Lelay, C., Melquiond, G.: Coquelicot: a user-friendly library of real analysis for Coq. Math. Comput. Sci. 9(1), 41–62 (2015). https://doi.org/10.1007/s11786-014-0181-1

    Article  MathSciNet  MATH  Google Scholar 

  4. Boldo, S., Lelay, C., Melquiond, G.: Formalization of real analysis: a survey of proof assistants and libraries. Math. Struct. Comput. Sci. 26(7), 1196–1233 (2016). https://doi.org/10.1017/S0960129514000437

    Article  MathSciNet  MATH  Google Scholar 

  5. Fleuriot, J.D., Paulson, L.C.: Mechanizing nonstandard real analysis. LMS J. Comput. Math. 3, 140–190 (2000). https://doi.org/10.1112/S1461157000000267

    Article  MathSciNet  MATH  Google Scholar 

  6. Gouezel, S.: Ergodic theory. Archive of formal proofs. Formal Proof Development. http://isa-afp.org/entries/Ergodic_Theory.shtml (2015)

  7. Gouezel, S.: Lp spaces. Archive of formal proofs. Formal Proof Development. http://isa-afp.org/entries/Lp.shtml (2016)

  8. Haftmann, F.: Code generation from specifications in higher-order logic. Dissertation, Technische Universität München, München (2009)

  9. Harrison, J.: A HOL theory of Euclidean space. In: J. Hurd, T. Melham (eds.) 18th International Conference on Theorem Proving in Higher Order Logics, TPHOLs, LNCS, vol. 3603, pp. 114–129 (2005)

  10. Harrison, J.: The HOL light theory of Euclidean space. J. Autom. Reason. 50(2), 173–190 (2013). https://doi.org/10.1007/s10817-012-9250-9

    Article  MathSciNet  MATH  Google Scholar 

  11. Hirsch, M.W., Smale, S., Devaney, R.L.: Differential Equations, Dynamical Systems, and an Introduction to Chaos. Elsevier, New York (2013)

    MATH  Google Scholar 

  12. Hölzl, J., Immler, F., Huffman, B.: Type classes and filters for mathematical analysis in Isabelle/HOL. In: International Conference on Interactive Theorem Proving, Springer, pp. 279–294 (2013)

  13. Huffman, B., Kunčar, O.: Lifting and transfer: a modular design for quotients in Isabelle/HOL. In: International Conference on Certified Programs and Proofs, Springer, pp. 131–146 (2013)

  14. Immler, F.: Formally verified computation of enclosures of solutions of ordinary differential equations. In: Badger, J., Rozier, K. (eds.) NASA Formal Methods, LNCS, vol. 8430, pp. 113–127. Springer, Berlin (2014)

    Chapter  Google Scholar 

  15. Immler, F.: A verified algorithm for geometric zonotope/hyperplane intersection. In: Proceedings of the 2015 Conference on Certified Programs and Proofs, CPP ’15, ACM, New York, NY, USA, pp. 129–136 (2015)

  16. Immler, F.: Verified reachability analysis of continuous systems. In: Baier, C., Tinelli, C. (eds.) Tools and Algorithms for the Construction and Analysis of Systems, vol. 9035, pp. 37–51. Springer, Berlin (2015). https://doi.org/10.1007/978-3-662-46681-0_3

    Google Scholar 

  17. Immler, F., Hölzl, J.: Numerical analysis of ordinary differential equations in Isabelle/HOL. In: Beringer, L., Felty, A. (eds.) Interactive Theorem Proving, LNCS, vol. 7406, pp. 377–392. Springer, Berlin (2012)

    Chapter  Google Scholar 

  18. Immler, F., Hölzl, J.: Ordinary differential equations. Archive of Formal Proofs. Formal Proof Development (2017). http://isa-afp.org/entries/Ordinary_Differential_Equations.html

  19. Immler, F., Traut, C.: The flow of ODEs. In: International Conference on Interactive Theorem Proving, Springer, pp. 184–199 (2016)

  20. Lelay, C., Melquiond, G.: Différentiabilité et intégrabilité en Coq. application à la formule de d’Alembert. In: JFLA—Journées Francophone des Langages Applicatifs, 2012. Carnac, France (2012). https://hal.inria.fr/hal-00642206

  21. Maggesi, M.: A formalization of metric spaces in HOL light. J. Autom. Reason. (2017). 10.1007/s10817-017-9412-x

  22. Makarov, E., Spitters, B.: The Picard algorithm for ordinary differential equations in Coq. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) Interactive Theorem Proving, LNCS, vol. 7998, pp. 463–468. Springer, Berlin (2013)

    Chapter  Google Scholar 

  23. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  24. Perko, L.: Differential Equations and Dynamical Systems. Springer, Berlin (2001). https://doi.org/10.1007/978-1-4613-0003-8

    Book  MATH  Google Scholar 

  25. Robinson, C.: Dynamical Systems, Stability, Symbolic Dynamics, and Chaos. CRC Press, Boca Raton (1999). https://doi.org/10.1007/978-1-4613-0003-8

  26. Tucker, W.: A rigorous ODE solver and Smale’s 14th problem. Found. Comput. Math. 2(1), 53–117 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Dr. Martin Brokate for supervising part of this work as an “interdisciplinary project”. Johannes Hölzl’s suggestions related to filters were very helpful. We would also like to thank the anonymous reviewers for all their suggestions and comments. Part of this work was supported by DFG RTG 1480 and DFG NI 491/16-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Immler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Immler, F., Traut, C. The Flow of ODEs: Formalization of Variational Equation and Poincaré Map. J Autom Reasoning 62, 215–236 (2019). https://doi.org/10.1007/s10817-018-9449-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-018-9449-5

Keywords

Navigation