
ar
X

iv
:1

71
0.

10
30

7v
1

 [
cs

.L
O

]
 2

7
O

ct
 2

01
7

Journal of Automated Reasoning

The James construction and π4(S
3) in homotopy type theory

Guillaume Brunerie

Uploaded: 27th October 2017

Abstract In the first part of this paper we present a formalization in Agda of the James con-

struction in homotopy type theory. We include several fragments of code to show what the

Agda code looks like, and we explain several techniques that we used in the formalization.

In the second part, we use the James construction to give a constructive proof that π4(S
3) is

of the form Z/nZ (but we do not compute the n here).

Keywords homotopy type theory · James construction · Agda · homotopy groups of

spheres

1 Introduction

In this paper we define the James construction in homotopy type theory and we prove that

π4(S
3) is of the form Z/nZ. We have formalized the most technical part (the James con-

struction) in Agda and we present here numerous fragments of codes and remarks on the

formalization1. This article is based on chapter 3 of the author’s PhD thesis ([1]), but the

formalization in Agda of the James construction is new. In [1], we also proved that n is

equal to 2, but this is out of the scope of the present paper.

The general idea of the James construction is that given a type A pointed by ⋆A : A, we

consider the higher inductive type JA generated by the constructors

εJ : JA,

αJ : A → JA → JA,

δJ : (x : JA)→ x =JA αJ(⋆A,x).

This material is based upon work supported by the National Science Foundation under agreement Nos. DMS-

1128155 and CMU 1150129-338510.

Guillaume Brunerie

Institute for Advanced Study, Princeton, NJ, USA

E-mail: guillaume.brunerie@ias.edu

1 The code is available at https://github.com/guillaumebrunerie/JamesConstruction and

has been tested with Agda 2.5.2. The code fragments are generated directly from the source code using

agda --latex and a custom script to extract the relevant parts.

http://arxiv.org/abs/1710.10307v1
https://github.com/guillaumebrunerie/JamesConstruction

2 Guillaume Brunerie

We can see JA as the free monoid on A, where ⋆A is identified with the neutral element. The

function αJ builds sequences of elements of A (εJ corresponding to the empty sequence),

and the function δJ allows us to remove occurences of ⋆A.

This higher inductive type is recursive, given that JA itself appears in the domains of αJ

and δJ , and we would like to turn it into a non-recursive one. So we will define (in section

3) a sequence of types (JnA)n:N together with maps (in : JnA → Jn+1A)n:N such that the type

J∞A, defined as the sequential colimit of (JnA)n:N, is equivalent to JA.

This equivalence between JA and J∞A is interesting because on the one hand we can

show that JA is equivalent to ΩΣA when A is connected (see section 6), and on the other

hand we can study the lower homotopy groups of J∞A (see section 7). Those two facts

together allow us to prove that π4(S
3) is equal to Z/nZ, where n is the Whitehead product

of the generator of π2(S
2) with itself (see sections 8 and 9).

The main technical part of the paper is the proof that JA and J∞A are equivalent. The

idea is simple: we construct two functions going back and forth (in section 4) and we prove

that they are inverse to each other (in section 5). But JA and J∞A having quite different

definitions, it requires careful manipulation of 2-dimensional and 3-dimensional diagrams.

Note that we have formalized only the James construction (sections 3 to 5), as it is the

most technical part. We’re planning to formalize the rest in the future, but it hasn’t been

done at the time of this writing.

This definition of JA and of the (JnA)n:N was suggested to me by André Joyal.

2 Remarks on the formalization

In this section we touch on three topics that are used extensively in the formalization: higher

inductive types using rewrite rules, cubical reasoning and coherence operations.

2.1 Higher inductive types

We start by recalling the definition of homotopy pushouts using higher inductive types (see

for instance chapter 6 of [6]), and we explain how we implemented them in Agda. As is

usual in homotopy type theory, we will call them simply “pushouts”, as this is the only sort

of pushout of types that we can define. Let’s consider three types A, B, C and two functions

f : C → A, g : C → B,

A C B.
f g

Such a diagram is called a span. The pushout of this span is the higher inductive type A⊔C B

generated by the constructors

inl : A → A⊔C B,

inr : B → A⊔C B,

push : (c : C)→ inl(f (c)) =A⊔CB inr(g(c)).

In particular, we have the square

C B

A A⊔C B

g

f push inr

inl

The James construction and π4(S
3) in homotopy type theory 3

which is commutative, in the sense that it is commutative up to identity paths : the witness

of commutativity push is a pointwise path between the two functions corresponding to the

two compositions of the sides of the square. The idea is that we start with the disjoint sum

A+B, and for every element c of C we add a new path from inl(f (c)) to inr(g(c)).
The induction principle states that, given a dependent type P : A⊔C B → Type, we can

define a function h : (x : A⊔C B)→ P(x) by

h : (x : A⊔C B)→ P(x),

h(inl(a)) := inl∗(a),

h(inr(b)) := inr∗(b),

apdh(push(c)) := push∗(c),

where we have

inl∗ : (a : A)→ P(inl(a)),

inr∗ : (b : B)→ P(inr(b)),

push∗ : (c : C)→ inl∗(f (c)) =P
push(c) inr

∗(g(c)).

We are using here the notion of dependent paths (see [5]): given a type X , a dependent type

P : X → Type, a path p : x = x′ in X and two points u : P(x) and v : P(x′), the type

u =P
p v

represents paths in P going from u to v and lying over p. Given h : (x : X) → Q(x) and

q : x =X x′, the term apdh(q) is the application of h to q, which is a dependent path in Q,

over q, and from h(x) to h(x′).
We are using the same type theory as in [6], in particular we take the first two equalities

(defining h(inl(a)) and h(inr(b))) to be judgmental equalities whereas the equality between

apdh(push(c)) and push∗(c) is only taken as a propositional equality.

In the formalization, higher inductive types are implemented using rewrite rules, which

is an experimental feature of Agda allowing the user to add (almost) arbitrary reduction rules

to the type theory, see [2]. It gives a cleaner implementation of higher inductive types than

what was used so far in both Agda and Coq (Dan Licata’s trick), as it doesn’t rely on declar-

ing a fake inductive type and inconsistent axioms and then trusting the hiding mechanism

to only export the part which is consistent. Here we simply postulate (i.e. introduce axioms

for) the type, the constructors, the elimination rule and the reduction rules, and then we tell

Agda to treat the reduction rules for points as judgmental equalities.

The corresponding Agda code is shown in fragment 1. Here are some explanations to

help with the understanding:

– The variables i, j and k are universe levels (they are declared at the top of the file, not

shown here) and lsucc and lmax are operations of universe levels. Agda has explicit uni-

verse polymorphism and no cumulativity, which is why we need three different universe

levels in order to have the most general notion of pushout.

– The type Span is defined as a record type with fields A, B, C, f and g. In order to construct

a span, we use the syntax span A B C f g (because we declared span as the constructor),

and given a span d, the command open Span d brings the components A, B, C, f and g of

d into scope.

– We use the notion of anonymous module (modules named "_"): the idea is simply to

factor out common arguments of several definitions.

4 Guillaume Brunerie

– We use the notation u == v for the identity type u = v, idp for the identity path (also

known as reflexivity), and u == v [P ↓ p] for u =P
p v. Dependent paths are implemented

by induction on p, which means that the type u =P
idpx

v is equal to the type u =P(x) v by

definition.

– The rewriting mechanism works as follows. First Agda has to be started with the option

--rewriting (not shown here) to enable it. Then we declare the rewriting relation using

the pragma {-# BUILTIN REWRITE _ 7→_ #-}, see fragment 2. Finally, we declare individual

rewrite rules using {-# REWRITE rew #-}.

– The reduction rule push-βd’ is primed simply because we usually want its arguments inl*,

inr* and push* to be implicit. We define push-βd afterwards with those arguments made

implicit (not shown here). Moreover, the d at the end is there because we will also need

the non-dependent reduction rule push-β, which has a slightly different type.

record Span : Type (lsucc (lmax (lmax i j) k)) where
constructor span
field

A : Type i
B : Type j
C : Type k
f : C → A
g : C → B

postulate
Pushout : Span → Type (lmax (lmax i j) k)

module _ {d : Span} where

open Span d

postulate
inl : A → Pushout d
inr : B → Pushout d
push : (c : C) → inl (f c) == inr (g c)

module _ {l} {P : Pushout d → Type l}
(inl* : (a : A) → P (inl a))
(inr* : (b : B) → P (inr b))
(push* : (c : C) → inl* (f c) == inr* (g c) [P ↓ push c]) where

postulate
Pushout-elim : (x : Pushout d) → P x
inl-β : (a : A) → (Pushout-elim (inl a) 7→ inl* a)
inr-β : (b : B) → (Pushout-elim (inr b) 7→ inr* b)
{-# REWRITE inl-β #-}
{-# REWRITE inr-β #-}
push-βd’ : (c : C) → (apd Pushout-elim (push c) == push* c)

Code fragment 1 The definition of pushouts

When P is constant, we obtain the non-dependent elimination rule Pushout-rec, see frag-

ment 3. The function ↓-cst-in turns a homogeneous path into a dependent path in the constant

fibration, and the function apd=cst-in turns an equality apd f p == ↓-cst-in q into the equality

ap f p == q, where f is a non-dependent function.

The James construction and π4(S
3) in homotopy type theory 5

postulate
_ 7→_ : ∀ {i} {A : Type i} → A → A → Type i

{-# BUILTIN REWRITE _ 7→_ #-}

Code fragment 2 The type of rewrite rules

Pushout-rec : ∀ {l} {D : Type l}
(inl* : A → D)
(inr* : B → D)
(push* : (c : C) → inl* (f c) == inr* (g c))
→ Pushout d → D

Pushout-rec inl* inr* push* = Pushout-elim inl* inr* (λ c → ↓-cst-in (push* c))

push-β : ∀ {l} {D : Type l}
{inl* : A → D}
{inr* : B → D}
{push* : (c : C) → inl* (f c) == inr* (g c)}
→ (c : C) → ap (Pushout-rec inl* inr* push*) (push c) == push* c

push-β c = apd=cst-in (push-βd c)

Code fragment 3 The non-dependent elimination rule and the associated reduction rule

We use the same scheme for all higher inductive types. For JA, the induction principle

states that given a dependent type P : JA → Type, a function f : (x : JA) → P(x) can be

defined by

f : (x : JA)→ P(x),

f (εJ) := ε∗
J ,

f (αJ(a,x)) := α∗
J (a,x, f (x)),

apd f (δJ(x)) := δ ∗
J (x, f (x)),

where we have

ε∗
J : P(εJ),

α∗
J : (a : A)(x : JA)→ P(x)→ P(αJ(a,x)),

δ ∗
J : (x : JA)(y : P(x))→ y =P

δJ(x)
α∗

J (⋆A,x,y).

Note that f is used recursively in f (αJ(a,x)) and in apd f (δJ(x)), because JA is a recursive

higher inductive type. The code is shown in fragment 4.

2.2 Cubical reasoning

In various places, we use cubical reasoning as in [5]. The main idea is that a dependent path

in an identity type

u =
λx. f (x)=g(x)
p v

6 Guillaume Brunerie

postulate
JA : Type i
εJ : JA
αJ : A → JA → JA
δJ : (x : JA) → x == αJ ⋆A x

module _ {l} {P : JA → Type l}
(εJ* : P εJ)
(αJ* : (a : A) (x : JA) → P x → P (αJ a x))
(δJ* : (x : JA) (y : P x) → y == αJ* ⋆A x y [P ↓ (δJ x)]) where

postulate
JA-elim : (x : JA) → P x
εJ-β : JA-elim εJ 7→ εJ*
αJ-β : (a : A) (x : JA) → JA-elim (αJ a x) 7→ αJ* a x (JA-elim x)
{-# REWRITE εJ-β #-}
{-# REWRITE αJ-β #-}
δJ-βd’ : (x : JA) → apd JA-elim (δJ x) == δJ* x (JA-elim x)

Code fragment 4 The definition of JA

should be seen as a square

f (x) f (x′)

g(x) g(x′)

ap f (p)

u v

apg(p)

In the formalization, the type of such squares is written Square u (ap f p) (ap g p) v, i.e. we

give the sides in the order left/top/bottom/right. We use this idea in several situations. One is

when defining a function of type (x : X)→ f (x) =Y g(x) where X is a higher inductive type.

If we use the elimination rule for X , for the path constructors we will need to construct a

dependent path in the dependent type λx. f (x) =Y g(x), i.e. a square in Y . Another situation

is when we want to apply a function h : (x : X) → f (x) =Y g(x) to a path p : x = x′ in X .

Using apd we obtain a dependent path in the dependent type above, so it makes sense to see

it as the following square (called the naturality square of h on p)

f (x) f (x′)

g(x) g(x′)

ap f (p)

h(x) h(x′)

apg(p)

There are similar results for cubes. In particular, a dependent path in a square type can

be seen as a cube, and similarly for a dependent square in a path type.

2.3 Coherence operations

We often have to compose together paths, squares, 2-dimensional paths, and so on, in a wide

variety of ways. Even though all such compositions can in theory be written using only a

The James construction and π4(S
3) in homotopy type theory 7

small number of elementary operations, it is not always convenient to write them in such a

way. We found that it is often better to define ad-hoc operations on the fly. For instance, in

section 4 we need to define the composition of the following diagram, where ν and η are

squares filling their respective part of the diagram and vw= is a 2-dimensional path between

vw and v ·w−1.

a b

b c

d e f

p

p r
idp

ν

s

v

vw

t

vw=

w

u
η

7−→

a b

d f

p

p · s−1 result r ·u−1

vw

The key is to notice that the diagram is “contractible”, and that it is possible to write the

list of the arguments in a particular order reflecting this contractibility. More precisely, the

arguments are introduced in pairs (x : X) (y : Y) where Y is either an identity type with x as

exactly one of the endpoints, or a square type with x as one of the sides (and not appearing

in the other sides). We can then repeatedly apply the J rule (or a similar rule for squares)

until the list of arguments is exhausted, and we finally return the identity square.

We implemented a mechanism making it relatively easy to define such coherence oper-

ations in Agda. A coherence operation is defined by encapsulating its type in the Coh type

constructor, and is defined using the path-induction term. See fragment 5 for an application

of this principle to our example.

coh : {A : Type i} {a : A} →
Coh ({b : A} (p : a == b)

{d : A} {s : d == b}
{c : A} {r : b == c}
{f : A} {u : f == c}
{e : A} {t : e == c}
{w : f == e} (ν : Square w idp t u)
{v : d == e} (α : Square v s t r)
{vw : d == f} (vw= : vw == v • ! w)
→ Square (p • ! s) p vw (r • ! u))

coh = path-induction

Code fragment 5 Exemple of coherence operation

This is implemented in Agda using instance arguments (the equivalent of type classes

in Coq or Haskell), see fragment 6 for a simplified implementation. The type constructor

Coh is a dummy record type which is used to make the instance arguments machinery work.

We then define the Paulin–Mohring rule J, acting on terms in Coh, and the identity path

under Coh. Both J and idp-Coh are declared under the instance keyword, which means that

8 Guillaume Brunerie

whenever Agda is looking for an element of type Coh during instance resolution, it will

automatically (and recursively) try both J and idp-Coh. The term path-induction then tells

Agda to use the instance resolution mechanism to try to solve the goal. For instance, in the

term composition, Agda is looking for something of type

Coh ({b : A} (p : a == b) {c : A} (q : b == c) → a == c)

It turns out that J fits assuming you have something of type

Coh ({c : A} (q : a == c) → a == c)

Again, J fits assuming you have something of type

Coh (a == a)

And in this case, idp-Coh fits, so we are done. Therefore, the term path-induction simply

reduces to J (J idp-Coh). For more complicated coherence operations, there might be several

J-like operators to be used, for instance if the path is reversed, or if we’re dealing with

squares, or if the arguments are implicit, but the user only has to type path-induction and

instance resolution will automatically find the sequence of J-like operators to apply. The

resulting coherence operation can be turned into an actual function using the & function, as

is shown in pq.

This mechanism can also be used to do inductions on homotopies (point-wise equality

between functions) or on equivalences (using the univalence axiom), for instance, by adding

the appropriate J-like operators.

record Coh {i} (A : Type i) : Type i where
field & : A

open Coh public

instance
J : ∀ {i j} {A : Type i} {a : A} {B : (a’ : A) → a == a’ → Type j}
→ Coh (B a idp)
→ Coh ({a’ : A} (p : a == a’) → B a’ p)

& (J d) idp = & d

idp-Coh : ∀ {i} {A : Type i} {a : A} → Coh (a == a)
& idp-Coh = idp

path-induction : ∀ {i} {A : Type i} {{a : A}} → A
path-induction {{a}} = a

composition : ∀ {i} {A : Type i} {a : A}
→ Coh ({b : A} (p : a == b) {c : A} (q : b == c) → a == c)

composition = path-induction

postulate
A : Type0

a b c : A
p : a == b
q : b == c

pq : a == c
pq = & composition p q

Code fragment 6 The path-induction mechanism

The James construction and π4(S
3) in homotopy type theory 9

Note that there is a strong similarity between coherence operations as described here and

operations in a Grothendieck ∞-groupoid, the main difference being that we allow squares

and other shapes, whereas in a Grothendieck ∞-groupoid everything is strictly globular.

In particular, all operations in a Grothendieck ∞-groupoid are coherence operations as de-

scribed here.

3 Definition of the types (JnA) and J∞A

We can now start working on the James construction. In this section we will define the types

(JnA) and J∞A. The intuition is that if JA is the free monoid on A, then JnA is the “subset”

of JA consisting of elements of length at most n. But this is only an intuition, as there is no

notion of “subset” which would apply here, and there is no notion of length for the elements

of JA either, so we need to give a new definition.

The types (JnA) are defined by induction on n, together with three functions

in : JnA → Jn+1A,

αn : A× JnA → Jn+1A,

βn : (x : JnA)→ αn(⋆A,x) =Jn+1A in(x),

as follows.

– J0A is the unit type, whose unique element is called ε ,

– J1A := A, i0(ε) := ⋆A, α0(a,ε) := a and β0(ε) := idp⋆A
,

– Jn+2A, in+1, αn+1 and βn+1 := push◦ inr are defined by the pushout diagram

(A× JnA)⊔JnA Jn+1A Jn+1A

A× Jn+1A Jn+2A

g

f in+1

αn+1

p

(1)

where the pushout at the top-left of the diagram is defined by the maps x 7→ (⋆A,x) and

in, and the maps f and g are defined by

f (inl(a,x)) := (a, in(x)), g(inl(a,x)) := αn(a,x),

f (inr(y)) := (⋆A,y), g(inr(y)) := y,

ap f (push(x)) := idp, apg(push(x)) := βn(x).

We could also have started the definition with J−1A being the empty type, and then it would

follow that J1A is equivalent to A, but we’ve decided to start at J0A so that we don’t need

to introduce negative numbers. Moreover, the data of in and βn forms a contractible type, as

βn asserts that in is equal to something else. Therefore, we could define Jn+2A as a higher

inductive type using only αn, by simply substituting αn(⋆A,x) for in(x) wherever needed.

We decided to introduce in and βn because defining Jn+2A as a pushout will be very helpful

in order to get the connectivity results of section 7.

The Agda definition of the JnA, in, αn and βn is given in fragment 7. It is a set of

mutually recursive definitions, which is written in Agda by placing the type signatures of

all the functions before their definitions. We write J n for JnA (the type A being a global

argument), JS n for Jn+1A (we need to define it separately in order to pass the termination

checker), ι n x for in(x), α n a x for αn(a,x) and β n x for βn(x).

10 Guillaume Brunerie

J : N → Type i
JS : N → Type i
ι : (n : N) → J n → JS n
α : (n : N) → A → J n → JS n
β : (n : N) (x : J n) → α n ⋆A x == ι n x

data J0 : Type i where
ε : J0

J 0 = J0
J (S n) = JS n

JS 0 = A
JS (S n) = Pushout (span (A × JS n) (JS n) X f g) module JS where

X : Type i
X = Pushout (span (A × J n) (JS n) (J n) (λ x → (⋆A , x)) (ι n))

f : X → A × JS n
f = Pushout-rec (λ {(a , x) → (a , ι n x)}) (λ y → (⋆A , y)) (λ x → idp)

g : X → JS n
g = Pushout-rec (λ {(a , x) → α n a x}) (λ y → y) (β n)

ι 0 ε = ⋆A
ι (S n) x = inr x

α 0 a ε = a
α (S n) a x = inl (a , x)

β 0 ε = idp
β (S n) x = push (inr x)

Code fragment 7 The definition of JnA, in, αn and βn

Note that Jn+2A is defined by giving in+1, αn+1, βn+1, and the two functions

γn : (a : A)(x : JnA)→ αn+1(a, in(x)) =Jn+2A in+1(αn(a,x)),

γn(a,x) := push(inl(a,x))

and

ηn : (x : JnA)→

• •

• •

idp

γn(⋆A,x) βn+1(in(x))

apin+1
(βn(x))

which is the naturality square of push on push(x).

We could also have defined Jn+2A directly as a higher inductive type with constructors

in+1, αn+1, βn+1, γn and ηn. But in section 7 we will use the fact that it is defined using

pushouts, so instead we simply prove that Jn+2A satisfies the elimination rule corresponding

to those five constructors. This will be very useful when defining functions out of Jn+2A. The

code is shown in fragment 8. Note that we need to use a dependent square over ηn(x), given

that ηn(x) is a square. The function ↓-ap-in turns a dependent path in P◦ in over βn(x) into

a dependent path in P over apin
(βn(x)), and the function ↓-ap-in-coh is a coherence related

The James construction and π4(S
3) in homotopy type theory 11

module _ {l} (n : N) {P : JS (S n) → Type l}
(ι* : (x : JS n) → P (ι (S n) x))
(α* : (a : A) (x : JS n) → P (α (S n) a x))
(β* : (x : JS n) → α* ⋆A x == ι* x [P ↓ β (S n) x])
(γ* : (a : A) (x : J n) → α* a (ι n x) == ι* (α n a x) [P ↓ γ n a x])
(η* : (x : J n) → SquareOver P (η n x) (γ* ⋆A x)

idp
(↓-ap-in P inr (apd ι* (β n x)))
(β* (ι n x)))

where

JSS-elim : (x : JS (S n)) → P x
JSS-elim = Pushout-elim (uncurry α*) ι* JSS-elim-push where

JSS-elim-push : (x : JS.X n) → uncurry α* (JS.f n x) == ι* (JS.g n x) [P ↓ push x]
JSS-elim-push = Pushout-elim (uncurry γ*) β*

(λ x → ↓-PathOver-from-square
(adapt-SquareOver

(↓-ap-in-coh P (uncurry α*)) (↓-ap-in-coh P ι*)
(η* x)))

Code fragment 8 The elimination rule of Jn+2A

to ↓-ap-in. The important thing to see is that we use twice the elimination rule for pushouts,

and that we put ι∗, α∗, β ∗, γ∗ and η∗ in the five branches, which is what we should expect.

We now define J∞A as the colimit of the family (JnA)n:N along the maps (in)n:N, which

means that J∞A is the higher inductive type generated by the two constructors

in : (n : N)→ JnA → J∞A,

push : (n : N)(x : JnA)→ inn(x) =J∞A inn+1(in(x)).

The induction principle for J∞A states that given a dependent type P : J∞A → Type, a func-

tion f : (x : J∞A)→ P(x) can be defined by

f : (x : J∞A)→ P(x),

f (inn(x)) := in∗n(x),

apd f (pushn(x)) := push∗n(x),

where we have

in∗n : (x : JnA)→ P(inn(x)),

push∗n : (x : JnA)→ in∗n(x) =
P
pushn(x)

in∗n+1(in(x)).

It is implemented is the same way as for pushouts and JA, and the corresponding code is

shown in fragment 9. Note that we’re using the notations in∞ n x for inn(x) and push∞ n x for

pushn(x), because in is a reserved keyword in Agda and push is already used for pushouts.

12 Guillaume Brunerie

postulate
J∞A : Type i
in∞ : (n : N) (x : J n) → J∞A
push∞ : (n : N) (x : J n) → in∞ n x == in∞ (S n) (ι n x)

module _ {l} {P : J∞A → Type l}
(in∞* : (n : N) (x : J n) → P (in∞ n x))
(push∞* : (n : N) (x : J n) → in∞* n x == in∞* (S n) (ι n x) [P ↓ (push∞ n x)]) where

postulate
J∞A-elim : (x : J∞A) → P x
in∞-β : (n : N) (x : J n) → J∞A-elim (in∞ n x) 7→ in∞* n x
{-# REWRITE in∞-β #-}
push∞-βd’ : (n : N) (x : J n) → apd J∞A-elim (push∞ n x) == push∞* n x

Code fragment 9 The definition of J∞A

4 The two functions

We recall that JA is the higher inductive type with constructors

εJ : JA,

αJ : A → JA → JA,

δJ : (x : JA)→ x =JA αJ(⋆A,x).

In this section we define the two maps between JA and J∞A. The idea is to mimic the struc-

ture present in JA in J∞A, and vice versa, so we first define equivalents of γn, ηn, inn and

pushn in JA, and then equivalents of εJ , αJ , δJ , and of γJ and ηJ (defined below) in J∞A.

Structure on JA We define the map γJ , where we simply apply δJ twice, by

γJ : (a : A)(x : JA)→ αJ(a,αJ(⋆A,x)) = αJ(⋆A,αJ(a,x)),

γJ(a,x) := (apαJ(a,−) (δJ(x)))
−1 ·δJ(αJ(a,x)),

and the map

ηJ : (x : JA)→ γJ(⋆A,x) = idp

using naturality of δJ on δJ(x), see diagram 10.

x αJ(⋆A,x)

αJ(⋆A,x) αJ(⋆A,αJ(⋆A,x))

δJ(x)

δJ(x)

δJ(αJ(⋆A,x))

apαJ (⋆A ,−)(δJ(x))

Diagram 10 Naturality square of δJ on δJ(x)

The formalization of γJ and ηJ is shown in fragment 11. We will define γ∞ and η∞ in the

same way, which is why we wrote it for a general type X equipped with functions α and δ .

The James construction and π4(S
3) in homotopy type theory 13

The coherence operation shows that given a square where the left and top sides are the same,

then the inverse of the bottom side composed with the right side is equal to the identity path,

which is what we need when defining ηJ .

module _ {i} {X : Type i} (α : A → X → X) (δ : (x : X) → x == α ⋆A x) where

γ-ify : (a : A) (x : X) → α a (α ⋆A x) == α ⋆A (α a x)
γ-ify a x = ! (ap (α a) (δ x)) • δ (α a x)

η-ify : (x : X) → γ-ify ⋆A x == idp
η-ify = λ x → & coh (natural-square δ (δ x) (ap-idf (δ x)) idp) module ηIfy where

coh : Coh ({A : Type i} {a b : A} {p : a == b}
{c : A} {q r : b == c} (sq : Square p p q r)
→ ! q • r == idp)

coh = path-induction

γJ : (a : A) (x : JA) → αJ a (αJ ⋆A x) == αJ ⋆A (αJ a x)
γJ = γ-ify αJ δJ

ηJ : (x : JA) → γJ ⋆A x == idp
ηJ = η-ify αJ δJ

Code fragment 11 The definition of γJ and ηJ

We now define (inJ
n) and (pushJ

n) by

inJ
n : JnA → JA, pushJ

n : (x : JnA)→ inJ
n(x) = inJ

n+1(in(x)),

inJ
0(ε) := εJ , pushJ

n(x) := δJ(in
J
n(x)).

inJ
1(a) := αJ(a,εJ),

inJ
n+2(in+1(x)) := αJ(⋆A, in

J
n+1(x)),

inJ
n+2(αn+1(a,x)) := αJ(a, in

J
n+1(x)),

apinJ
n+2

(βn+1(x)) := idp,

apinJ
n+2

(γn(a,x)) := γJ(a, in
J
n(x)),

ap2
inJ

n+2
(ηn(x)) := ηJ(in

J
n(x)),

Note that for inJ
n+2 we’re using the new (non-dependent) elimination rule for Jn+2A men-

tioned earlier. While this definition looks simple a priori, it doesn’t quite type-check. In

particular, the type of the term apinJ
n+2

(γn(a,x)) is

inJ
n+2(αn+1(a, in(x))) = inJ

n+2(in+1(αn(a,x))),

whereas the type of γJ(a, in
J
n(x)) is

αJ(a,αJ(⋆A, in
J
n(x))) = αJ(⋆A,αJ(a, in

J
n(x))).

Looking at the definitions above, the outer inJ
n+2 reduce, but then we need the following

reduction rules:

inJ
n+1(in(x)) = αJ(⋆A, in

J
n(x)),

inJ
n+1(αn(a,x)) = αJ(a, in

J
n(x)).

14 Guillaume Brunerie

The idea is that we have defined inJ
n+1(in(x)) separately for 0 and n+ 1, and we need to

make sure that the two are compatible (and similarly for αn(x)). It is easy to see that those

equalities both hold definitionally when n is either 0 or of the form S n, but that does not

imply that they hold definitionally for an arbitrary n.

Therefore, in the formalization we use propositional equalities inJS-ι and inJS-α that we

prove together with the rest, and in the definition of apinJ
n+2

(γn(a,x)) we need to explic-

itly compose γJ(a, in
J
n(x)) with those equalities. For apinJ

n+2
(ηn(x)) we also need a similar

equality corresponding to βn(x). The code is shown in fragment 12.

inJ : (n : N) → J n → JA
inJS : (n : N) → J (S n) → JA

inJS-ι : (n : N) (x : J n) → inJS n (ι n x) == αJ ⋆A (inJ n x)
inJS-α : (n : N) (a : A) (x : J n) → inJS n (α n a x) == αJ a (inJ n x)
inJS-β : (n : N) (x : J n) → Square (ap (inJS n) (β n x)) (inJS-α n ⋆A x) (inJS-ι n x) idp

inJ 0 ε = εJ
inJ (S n) x = inJS n x

inJS 0 a = αJ a εJ
inJS (S n) = JSS-rec n ι* α* β* γ* η* module InJS where

ι* : JS n → JA
ι* x = αJ ⋆A (inJS n x)

α* : A → JS n → JA
α* a x = αJ a (inJS n x)

β* : (x : JS n) → α* ⋆A x == ι* x
β* x = idp

γ* : (a : A) (x : J n) → α* a (ι n x) == ι* (α n a x)
γ* a x = ap (αJ a) (inJS-ι n x) • γJ a (inJ n x) • ! (ap (αJ ⋆A) (inJS-α n a x))

η* : (x : J n) → Square (γ* ⋆A x) idp (ap (αJ ⋆A ◦ inJS n) (β n x)) (β* (ι n x))
η* x = & coh (ηJ (inJ n x))

(ap-square (αJ ⋆A) (inJS-β n x))
(ap-◦ (αJ ⋆A) (inJS n) _) module η* where

coh : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {r : c == b}
{q : b == b} (q= : q == idp) {t : c == a} (sq : Square t r p idp)
{t’ : c == a} (t= : t’ == t)

→ Square (p • q • ! r) idp t’ idp)
coh = path-induction

inJS-ι 0 ε = idp
inJS-ι (S n) x = idp

inJS-α 0 a ε = idp
inJS-α (S n) a x = idp

inJS-β 0 ε = ids
inJS-β (S n) x = horiz-degen-square (push-β _)

pushJ : (n : N) (x : J n) → inJ n x == inJ (S n) (ι n x)
pushJ n x = δJ (inJ n x) • ! (inJS-ι n x)

Code fragment 12 The definition of inJ
n and pushJ

n

The James construction and π4(S
3) in homotopy type theory 15

Structure on J∞A The equivalent of εJ is the term ε∞ := in0(ε) of type J∞A. We then define

the action of A on J∞A as follows. In order to multiply by a : A an element of the form inn(x),
we use αn, and then we use γn to show that it is compatible with in.

α∞ : A → J∞A → J∞A,

α∞(a, inn(x)) := inn+1(αn(a,x)),

apα∞(a,−) (pushn(x)) := pushn+1(αn(a,x)) ·apinn+2
(γn(a,x))

−1.

The equivalent of δJ is δ∞ defined by

δ∞ : (x : J∞A)→ x = α∞(⋆A,x),

δ∞(inn(x)) := pushn(x) ·apinn+1
(βn(x))

−1,

apdδ∞
(pushn(x)) := δ pushn

∞ (x),

where δ
pushn
∞ (x) is the composition of diagram 14, where the lower right triangle is filled

using ηn(x) and the pentagon in the middle is filled using the naturality square of pushn+1

on βn(x). The corresponding code is shown in fragment 13.

We finally define

γ∞ : (a : A)(x : J∞A)→ α∞(a,α∞(⋆A,x)) = α∞(⋆A,α∞(a,x)),

η∞ : (x : J∞A)→ γ∞(⋆A,x) = idp

in the same way as we defined γJ and ηJ , but using α∞ and δ∞ instead of αJ and δJ .

In the case of γ∞(a, inn(x)) we note that

γ∞(a, inn(x)) = apα∞(a,−)(δ∞(inn(x)))
−1 ·δ∞(α∞(a, inn(x)))

= apα∞(a,−)(pushn(x) ·apinn+1
(βn(x))

−1)−1 ·δ∞(inn+1(αn(a,x)))

= (pushn+1(αn(a,x)) ·apinn+2
(γn(a,x))

−1

·apinn+2
(apαn+1(a,−)(βn(x)))

−1)−1

· (pushn+1(αn(a,x)) ·apinn+2
(βn+1(αn(a,x)))

−1)

= apinn+2
(apαn+1(a,−)(βn(x))) ·apinn+2

(γn(a,x))

·apinn+2
(βn+1(αn(a,x)))

−1.

Therefore γ∞(a, inn(x)) fits in the square

• •

• •

apinn+2
(apαn+1(a,−)(βn(x)))

γ∞(a, inn(x)) apinn+2
(γn(a,x))

apinn+2
(βn+1(αn(a,x)))

(2)

which we can see as a sort of reduction rule for γ∞(a, inn(x)). In the formalization, we simply

define a coherence operation combining all the ingredients of the equality reasoning above,

see fragment 15.

16 Guillaume Brunerie

ε∞ : J∞A
ε∞ = in∞ 0 ε

α∞ : A → J∞A → J∞A
α∞ a = J∞A-rec α∞-in∞ α∞-push∞ module _ where

α∞-in∞ : (n : N) (x : J n) → J∞A
α∞-in∞ n x = in∞ (S n) (α n a x)

α∞-push∞ : (n : N) (x : J n) → α∞-in∞ n x == α∞-in∞ (S n) (ι n x)
α∞-push∞ n x = push∞ (S n) (α n a x) • ! (ap (in∞ (S (S n))) (γ n a x))

δ∞ : (x : J∞A) → x == α∞ ⋆A x
δ∞ = J∞A-elim δ∞-in∞ (λ n x → ↓-=’-from-square (ap-idf (push∞ n x)) idp (δ∞-push∞ n x))

module _ where

δ∞-in∞ : (n : N) (x : J n) → in∞ n x == α∞ ⋆A (in∞ n x)
δ∞-in∞ n x = push∞ n x • ! (ap (in∞ (S n)) (β n x))

δ∞-push∞ : (n : N) (x : J n) → Square (δ∞-in∞ n x)
(push∞ n x)
(ap (α∞ ⋆A) (push∞ n x))
(δ∞-in∞ (S n) (ι n x))

δ∞-push∞ = λ n x →

& coh (push∞ n x)
(ap-square (in∞ (S (S n))) (η n x))
(natural-square (push∞ (S n)) (β n x) idp (ap-◦ _ _ _))
(push∞-β n x)

module δ∞Push∞ where

coh : Coh ({A : Type i} {a b : A} (p : a == b) {d : A} {s : d == b}
{c : A} {r : b == c} {f : A} {u : f == c} {e : A} {t : e == c}
{w : f == e} (eta : Square w idp t u)
{v : d == e} (nat : Square v s t r)
{vw : d == f} (vw= : vw == v • ! w)
→ Square (p • ! s) p vw (r • ! u))

coh = path-induction

Code fragment 13 The structure on J∞A

• •

• •

• • •

pushn(x)

pushn(x) pushn+1(in(x))idp

apinn+1
(βn(x))

pushn+1(αn(⋆A,x))

apinn+2
(apin+1

(βn(x)))

apinn+2
(γn(⋆A,x))

apinn+2
(βn+1(in(x)))

Diagram 14 The square defining apdδ∞
(pushn(x))

The James construction and π4(S
3) in homotopy type theory 17

γ∞ : (a : A) (x : J∞A) → α∞ a (α∞ ⋆A x) == α∞ ⋆A (α∞ a x)
γ∞ = γ-ify α∞ δ∞

γ∞-in : (a : A) (n : N) (x : J n)
→ Square (γ∞ a (in∞ n x))

(ap (in∞ (S (S n))) (ap (α (S n) a) (β n x)))
(ap (in∞ (S (S n))) (β (S n) (α n a x)))
(ap (in∞ (S (S n))) (γ n a x))

γ∞-in = λ a n x → & coh (push∞-β n x) (ap-•! _ _ _) (ap-α∞-in∞ (S n) a (β n x))
module γ∞In where

coh : Coh ({A : Type i} {a d : A} {r : a == d} {b : A} {s : b == d}
{c : A} {t’ : c == b} {e : A} {u : e == d}
{rs’ : a == b} (rs= : rs’ == r • ! s)
{fpq : a == c} (fpq= : fpq == rs’ • ! t’)
{t : c == b} (t= : t’ == t)
→ Square (! fpq • (r • ! u)) t u s)

coh = path-induction

Code fragment 15 The reduction rule for γ∞(a, inn(x))

There is a similar reduction rule for η∞(inn(x)). The term η∞(inn(x)) is defined using

apdδ∞
(δ∞(inn(x))) and we have

apdδ∞
(δ∞(inn(x))) = apdδ∞

(pushn(x) ·apinn+1
(βn(x)

−1))

= δ pushn
∞ (x) ·apdλx.pushn+1(x)·apinn+2

(βn+1(x)−1)(βn(x)
−1).

The apdpushn+1
(βn(x)

−1) part cancels with the naturality square of pushn+1 on βn(x) used

in δ
pushn
∞ (x) and the remaining part apdapinn+2

(βn+1(−)−1)(βn(x)
−1) is the naturality square of

βn+1 on βn(x). Therefore η∞(inn(x)) fits in the three-dimensional diagram

• •

•

• •

apinn+2
(apαn+1(⋆A ,−)(βn(x)))

γ∞(⋆A, inn(x))idp apinn+2
(γn(⋆A,x))

apinn+2
(βn+1(in(x)))

apinn+2
(βn+1(αn(⋆A,x)))

apinn+2
(apin+1

(βn(x)))

(3)

where the half-disc on the left is η∞(inn(x)), the square in the middle is square (2), the trian-

gle on the right is the application of inn+2 to ηn(x) and the outer diagram is the application

of inn+2 to the naturality square of βn+1 on βn(x), which is

• •

• •

apαn+1(⋆A,−)(βn(x))

βn+1(αn(⋆A,x)) βn+1(in(x))

apin+1
(βn(x))

18 Guillaume Brunerie

As we see it as a reduction rule for η∞(inn(x)), in the formalization it is helpful to see it as a

cube, where the left face is η∞(inn(x)), the right face is apinn
(ηn(x)), and the other faces are

what is needed to make the sides of the left and right face coincide. As before, it is defined

as a coherence operation combining all the ingredients described above.

The two maps We can now define the maps back and forth by

to : J∞A → JA, from : JA → J∞A,

to(inn(x)) := inJ
n(x), from(εJ) := ε∞,

apto (pushn(x)) := pushJ
n(x), from(αJ(a,x)) := α∞(a, from(x)),

apfrom(δJ(x)) := δ∞(from(x)).

The code, given in fragment 16, is straightforward.

to : J∞A → JA
to = J∞A-rec inJ pushJ

from : JA → J∞A
from = JA-rec ε∞ α∞ δ∞

Code fragment 16 The two maps

5 The two composites

We now prove that the two maps to and from are inverse to each other. We will stop giving

code fragments, as they would become too long, but we remind the reader that the full code

is available at https://github.com/guillaumebrunerie/JamesConstruction.

First composite Let’s first prove that from(to(z)) = z for all z : J∞A.

By induction on z, it is enough to show that for every n : N and x : JnA, we have

from(inJ
n(x)) = inn(x) and apfrom(push

J
n(x)) = pushn(x) (in the appropriate dependent path

type). Let’s first do the case of inJ
n(x) by induction on n, and then by induction on x, using

the dependent elimination rule for Jn+2A.

– For 0 and ε , we have

from(inJ
0(ε)) = from(εJ)

= ε∞

= in0(ε).

– For 1 and a : A, we have

from(inJ
1(a)) = from(αJ(a,εJ))

= α∞(a, from(εJ))

= in1(a).

https://github.com/guillaumebrunerie/JamesConstruction

The James construction and π4(S
3) in homotopy type theory 19

– For n+2 and in+1(x), we have

from(inJ
n+2(in+1(x))) = from(αJ(⋆A, in

J
n+1(x)))

= α∞(⋆A, from(inJ
n+1(x)))

= α∞(⋆A, inn+1(x)) by induction hypothesis

= inn+2(αn+1(⋆A,x))

= inn+2(in+1(x)) using βn+1(x).

– For n+2 and αn+1(a,x), we have

from(inJ
n+2(αn+1(a,x))) = from(αJ(a, in

J
n+1(x)))

= α∞(a, from(inJ
n+1(x)))

= α∞(a, inn+1(x)) by induction hypothesis

= inn+2(αn+1(a,x)).

– For n+2 and βn+1(x), we have

apfrom(apinJ
n+2

(βn+1(x))) = apfrom(idpαJ(⋆A,in
J
n+1(x))

)

= idpfrom(αJ(⋆A,in
J
n+1(x)))

= idpα∞(⋆A,from(inJ
n+1(x)))

hence it follows from the fact that the diagram

• • •

• • •

p

idpα∞(⋆A,from(inJ
n+1(x)))

idpinn+2(αn+1(⋆A ,x))

idpα∞(⋆A,inn+1(x))
idpinn+2(αn+1(⋆A ,x)) apinn+2

(βn+1(x))

p apinn+2
(βn+1(x))

can be filled. Here the path p : α∞(⋆A, from(inJ
n+1(x))) = α∞(⋆A, inn+1(x)) is the func-

tion α∞(⋆A,−) applied to the induction hypothesis, the two curved paths in the mid-

dle are definitionally equal, and the right square is a connection. The top and the bot-

tom side are the equalities between from(inJ
n+2(x)) and inn+2(x) constructed above for

x := αn+1(⋆A,x) and x := in+1(x), which is what we want.

– For n+2 and γn(a,x), we need to give a square

• •

• •

apfrom(apinJ
n+2

(γn(a,x))) apinn+2
(γn(a,x))

where the top and bottom lines are the two equalities

from(inJ
n+2(αn+1(a, in(x)))) = inn+2(αn+1(a, in(x)))

and from(inJ
n+2(in+1(αn(a,x)))) = inn+2(in+1(αn(a,x)))

20 Guillaume Brunerie

which have been constructed in the cases above. The idea is to consider the following

sequence of equalities

apfrom(apinJ
n+2

(γn(a,x))) = apfrom(γJ(a, in
J
n(x))) by definition of inJ ,

= γ∞(a, from(inJ
n(x))) by definition of from,

= γ∞(a, inn(x)) by induction hypothesis,

= apinn+2
(γn(a,x)) by diagram 2.

The first, third and fourth of those equalities are actually squares, so the above equational

reasoning means that we consider a composition of squares as follows:

• • • •

• • • •

apfrom(apinJ
n+2

(γn(a,x))) apinn+2
(γn(a,x))

However, it turns out that the top and the bottom line of that composition of squares

are not definitionally equal to what we want. For instance the top lines both go from

from(inJ
n+2(αn+1(a, in(x)))) to inn+2(αn+1(a, in(x))), but in two different ways, and we

have to prove that they are equal. This isn’t complicated, but it needs to be done, and it’s

not a priori obvious to see when just looking at the equational reasoning above.

– For n+ 2 and ηn(x), it is similar to the case of γn. The core of the argument is the

sequence of equalities

ap2
from(ap

2
inJ

n+2
(ηn(x))) = ap2

from(ηJ(in
J
n(x))) by definition of inJ ,

= η∞(from(inJ
n(x))) by definition of from,

= η∞(inn(x)) by induction hypothesis,

= ap2
inn+2

(ηn(x)) by diagram 3,

but the terms involved are squares which do not always have the same sides, therefore

in the formalization we need to consider a composition of cubes, and then as above we

need to prove that all four faces are equal to the ones required by the elimination rule of

Jn+2A, which isn’t a priori true.

We finally have to show that for every n : N and x : JnA, we have an equality between

apfrom(push
J
n(x)) and pushn(x) along the equalities

from(inJ
n(x)) = inn(x)

and

from(inJ
n+1(in(x))) = inn+1(in(x))

that we have just constructed. We have

apfrom(push
J
n(x)) = δ∞(from(inJ

n(x)))

= δ∞(inn(x)) by induction hypothesis

= pushn(x) ·apinn+1
(βn(x))

−1,

The James construction and π4(S
3) in homotopy type theory 21

hence we have a filler of the square

• •

• • •

p

apfrom(push
J
n(x)) pushn(x)

apα∞(⋆A ,−)(p) apinn+1
(βn(x))

where p is the equality from(inJ
n(x)) = inn(x).

Second composite Let’s now prove that to(from(z)) = z, for all z : JA.

The idea is very similar, we proceed by induction on z and we have to prove that

to(ε∞) = εJ (which is true by definition), that for all a : A and x : J∞A we have to(α∞(a,x)) =
αJ(a, to(x)), and that for all x : J∞A we have apto(δ∞(x)) = δJ(to(x)) along the appropriate

equalities. Let’s first do the case of α∞ by induction on x. There are two cases.

– For an element of the form inn(x), we have

to(α∞(a, inn(x))) = to(inn+1(αn(a,x)))

= αJ(a, in
J
n(x))

= αJ(a, to(inn(x))),

which is what we wanted.

– For a path of the form pushn(x), we have

apto(apα∞(a,−)(pushn(x))) = apto(pushn+1(αn(a,x)) ·apinn+2
(γn(a,x))

−1)

= δJ(in
J
n+1(αn(a,x))) · γJ(a, in

J
n(x))

−1

= δJ(αJ(a, in
J
n(x))) ·γJ(a, in

J
n(x))

−1

= apαJ(a,−)(δJ(in
J
n(x))) by definition of γJ

= apαJ(a,−)(push
J
n(x))

= apαJ(a,−)(apto(pushn(x))),

which is again what we wanted.

We now prove that the path apto(δ∞(x)) : to(x) = to(α∞(⋆A,x)) composed with the

path from to(α∞(⋆A,x)) to αJ(⋆A, to(x)) that we have just constructed is equal to the path

δJ(to(x)) : to(x) = αJ(⋆A, to(x)).

– For an element of the form inn(x), we have

apto(δ∞(inn(x))) = apto(pushn(x) ·apinn+1
(βn(x))

−1)

= pushJ
n(x)

= δJ(in
J
n(x))

= δJ(to(inn(x))),

which proves the result, as the path from to(α∞(⋆A, inn(x))) to αJ(⋆A, to(inn(x))) is the

constant path.

22 Guillaume Brunerie

– For a path of the form pushn(x), we have to compare the terms ap2
to(apdδ∞

(pushn(x)))
and apdδJ

(apto(pushn(x))). For the first one, we just apply the function to to diagram

14. We obtain

• •

• •

• • •

pushJ
n(x)

pushJ
n(x) δJ(αJ(⋆A, in

J
n(x)))idp

idp

δJ(αJ(⋆A, in
J
n(x)))

idp

γJ(⋆A, in
J
n(x))

idp

where the bottom right triangle is filled using ηJ(in
J
n(x)) and the rest is degenerate. On

the other hand, we have

apdδJ
(apto(pushn(x))) = apdδJ

(pushJ
n(x))

= apdδJ
(δJ(in

J
n(x)))

and ηJ(in
J
n(x)) is defined from apdδJ

(δJ(in
J
n(x))) by a coherence operation. There-

fore some coherence operation proves that the two terms ap2
to(apdδ∞

(pushn(x))) and

apdδJ
(apto(pushn(x))) are equal.

This concludes the proof that J∞A is equivalent to JA.

6 Equivalence between JA and ΩΣA

We now prove that when A is 0-connected, the type JA is equivalent to ΩΣA. We recall that

ΩX is defined to be (⋆X = ⋆X), where X is a type pointed by ⋆X : X , and that given a type A,

the type ΣA is the higher inductive type generated by the constructors

north : ΣA,

south : ΣA,

merid : A → north=ΣA south,

and pointed by north. The function δJ shows that the map αJ(⋆A,−) is homotopic to the

identity function, hence αJ(⋆A,−) is an equivalence. Given that A is 0-connected, it follows

that αJ(a,−) is an equivalence for every a : A. We define F : ΣA → Type by

F(north) := JA,

F(south) := JA,

apF (merid(a)) := ua(αJ(a,−)),

The James construction and π4(S
3) in homotopy type theory 23

where, at the last line, the function ua produces a path in the universe given an equivalence,

using the univalence axiom.

We now prove that the total space of F is contractible. According to the flattening lemma

(see [6, section 6.12]), the total space of F is equivalent to the type

T := JA⊔A×JA JA,

where the two maps A× JA → JA are snd and αJ respectively. In particular, given a : A and

x : JA, we have

push(a,x) : inl(x) = inr(αJ(a,x)).

We want to construct, for every x : T , a path p(x) from x to inl(εJ).

– For inl(εJ), we take the constant path idpinl(εJ)

– For an element of the form inl(αJ(a,x)), we take the composition

inl(αJ(a,x)) inr(αJ(⋆A,αJ(a,x)))

inl(x) inr(αJ(a,x))

inl(εJ).

push(⋆A,αJ(a,x))

p(inl(x))

push(a,x)

apinr(δJ(αJ(a,x)))

– For a path of the form apinl(δJ(x)), we need to fill the diagram

inl(αJ(⋆A,x)) inr(αJ(⋆A,αJ(⋆A,x)))

inl(x) inr(αJ(⋆A,x))

push(⋆A,αJ (⋆A,x))

apinl(δJ(x))

push(⋆A,x)

apinr(δJ(αJ(⋆A,x)))

By naturality of push(⋆A,−) on the path δJ(x), we get a filler of the similar diagram

which has apinr(apαJ(⋆A,−)(δJ(x))) on the right side. Moreover, we know that the paths

apinr(apαJ(⋆A,−)(δJ(x))) and apinr(δJ(αJ(⋆A,x))) are equal via ηJ(x), which concludes.

– For a point of the form inr(x), we take the composition

inr(x) inr(αJ(⋆A,x)) inl(x) inl(εJ).
apinr(δJ(x)) p(inl(x))push(⋆A,x)

– Finally for a path of the form push(a,x), it is enough to notice that the path from

inr(αJ(⋆A,x)) to inl(εJ) constructed above (i.e. with x := αJ(⋆A,x)) is equal to the com-

position

inr(αJ(a,x)) inl(x) inl(εJ).
p(inl(x))push(a,x)

This concludes the proof that T is contractible, and therefore ΩΣA is equivalent to the

fiber F(north) of F (it follows from Theorem 4.7.7 and Corollary 8.1.13 of [6] applied to

F), which is equal to JA by definition.

24 Guillaume Brunerie

7 Connectivity of the maps in and inn

In this section we compute the connectivity of the maps inn : JnA → J∞A. It quantifies how

“close” JnA is to J∞A, so it will be useful to study the first few homotopy groups of J∞A by

studying those of JnA instead.

We recall that a type X is said to be n-connected if its n-truncation is contractible, and a

map f : X →Y is said to be n-connected if all of its (homotopy) fibers are n-connected. We

also recall the two following propositions.

Proposition 1 [cf [6, lemma 7.5.7]] For f : A → B and P : B → Type, consider the map

λ s.s◦ f : ∏
b:B

P(b)→ ∏
a:A

P(f (a)).

Then f is n-connected if and only if for every family of n-types P, the map (λ s.s◦ f) has

a section.

Proposition 2 [cf [6, lemma 8.6.1]] If f : A → B is n-connected and P : B → Type is a

family of (n+ k)-types, then the map

λ s.s◦ f : ∏
b:B

P(b)→ ∏
a:A

P(f (a))

is (k−2)-truncated (in the sense that all its fibers are (k−2)-truncated).

Given two maps f : X → A and g : Y → B, the pushout-product of f and g is the map

f ×̂g : (X ×B)⊔X×Y (A×Y)→ (A×B),

(f ×̂g)(inl(x,b)) := (f (x),b),

(f ×̂g)(inr(a,y)) := (a,g(y)),

ap f ×̂g(push(x,y)) := idp(f (x),g(y)).

We have the commutative square

X ×Y A×Y

(X ×B)⊔X×Y (A×Y)

X ×B A×B

f×1Y

1X×g 1A×g

inr

f ×̂g

p

f×1B

inl

We have the following proposition.

Proposition 3 If f is m-connected and g is n-connected, then f ×̂g is (m+n+2)-connected.

Proof We use proposition 1. We consider P : A×B → Type a family of (n+m+2)-types

together with

k : (u : (X ×B)⊔X×Y (A×Y))→ P((f ×̂g)(u)).

By splitting k in three parts and currying, it is enough to prove the following lemma.

The James construction and π4(S
3) in homotopy type theory 25

Lemma 1 Suppose we have P : A → B → Type a family of (n+m+2)-types together with

u : (x : X)(b : B)→ P(f (x),b),

v : (a : A)(y : Y)→ P(a,g(y)),

w : (x : X)(y : Y)→ u(x,g(y)) =P(f (x),g(y)) v(f (x),y).

Then there exists a map

h : (a : A)(b : B)→ P(a,b)

together with homotopies

p : (x : X)(b : B)→ h(f (x),b) = u(x,b),

q : (a : A)(y : Y)→ h(a,g(y)) = v(a,y),

r : (x : X)(y : Y)→ p(x,g(y))−1 ·q(f (x),y) = w(x,y).

Proof Let’s define F : A → Type by

F(a) := ∑
k:(b:B)→P(a,b)

((y : Y)→ k(g(y)) = v(a,y)).

For a given a : A, the type F(a) is the fiber of the map

λ s.s◦g : ∏
b:B

P(a,b)→ ∏
y:Y

P(a,g(y))

at v(a,−). Given that g is n-connected and that P(a,−) is a family of (n+m+2)-truncated

types, proposition 2 shows that F(a) is m-truncated.

For every x : X we have an element of F(f (x)) given by (u(x,−),w(x,−)). Hence, using

the fact that f is m-connected and proposition 1, there is a map k : (a : A)→ F(a) together

with a homotopy ϕ between k ◦ f and λx.(u(x,−),w(x,−)). We can now define h, p, q, and

r by

h(a,b) := fst(k(a))(b),

p(x,b) := fst(ϕ(x))(b),

q(a,y) := snd(k(a))(y),

r(x,y) := snd(ϕ(x))(y).

This concludes the proof that f ×̂g is (n+m+2)-connected. ⊓⊔

We can now compute the connectivity of the maps in.

Proposition 4 If A is k-connected, then the map in is (n(k + 1) + (k − 1))-connected for

every n : N.

Proof We proceed by induction on n. For 0, the map i0 is the inclusion of the basepoint of

A, hence i0 is (k−1)-connected because A is k-connected.

For n+1, the map f in the diagram defining Jn+2A (page 9) is the pushout-product of in
and of the map 1 → A (which is (k−1)-connected). Hence f is ((n+1)(k+1)+ (k−1))-
connected by proposition 3. Therefore the map in+1 is ((n+1)(k+1)+(k−1))-connected

as well, because a pushout of an ℓ-connected map is ℓ-connected. ⊓⊔

26 Guillaume Brunerie

In the following proposition, we consider an arbitrary family of types (An)n:N and maps

(in : An → An+1)n:N, with sequential colimit A∞.

Proposition 5 Given k : N, if all the maps i0, i1, . . . are k-connected, then in0 is also k-

connected.

Proof Let’s consider P : A∞ → Type a family of k-truncated types and d0 : (x : A0) →
P(in0(x)). Using proposition 1, it is enough to construct a section d of P which is equal

to d0 on A0 to conclude that in0 is k-connected. We define a family of maps dn : (x : An)→
P(inn(x)) by induction on n, starting with the given d0 for n = 0, as follows. Let’s consider

Pn+1 : An+1 → Type,

Pn+1(x) := P(inn+1(x)).

It is a family of k-truncated types, the map in is k-connected, and we have

d̃n : (x : An)→ Pn+1(in(x)),

d̃n(x) := transportP(pushn(x),dn(x)),

therefore, using proposition 1 again, there is a map dn+1 : (x : An+1)→P(inn+1(x)) satisfying

dn+1(in(x)) =
P
pushn(x)

dn(x).

The family (dn)n:N together with those equalities gives a section of P which is equal to d0

on A0. Therefore, the map in0 is k-connected, which is what we wanted to prove. ⊓⊔

It follows that if the maps in, in+1, . . . are k connected, then inn is also k-connected.

Therefore, in the case of the James construction, we have the following proposition.

Proposition 6 If A is k-connected, then the map inn : JnA → J∞A is (n(k + 1) + (k− 1))-
connected for every n : N.

Combining this result with those of the previous sections, for n = 1 we obtain the

Freudenthal suspension theorem (a more direct proof was given in [6, section 8.6]).

Corollary 1 (Freudenthal suspension theorem) Given a k-connected pointed type A, the

map

ϕA : A → ΩΣA,

ϕA(x) :=merid(x) ·merid(⋆A)
−1,

is 2k-connected.

For n = 2, we obtain the following corollary.

Corollary 2 Given a k-connected pointed type A, there is a (3k+1)-connected map

(A×A)⊔A∨A A → ΩΣA,

where the wedge sum A∨B of two pointed types A and B is defined as the pushout of the

span

A 1 B.

Note that both corollaries are also true in the case k = −1 because every map is (−2)-
connected.

The James construction and π4(S
3) in homotopy type theory 27

8 Whitehead products

In proposition 7 we give a decomposition of a product of spheres into a pushout of spheres.

This will allow us to define Whitehead products, which are used in the next section to define

the natural number n such that π4(S
3)≃ Z/nZ.

Given two pointed types A and B, their join A∗B is defined as the pushout of the span

A A×B B.fst snd

If A and B are spheres, one can show that we have the equivalence

S
n−1 ∗Sm−1 ≃ S

n+m−1.

Proposition 7 Given n,m : N∗, there is a map Wn,m : Sn+m−1 → Sn ∨Sm such that

S
n ×S

m ≃ 1⊔S
n+m−1

(Sn ∨S
m),

and such that the induced map S
n ∨S

m → S
n ×S

m is the canonical one.

We first prove the following more general version which isn’t more complicated to prove.

Proposition 8 Given two types A and B, there is a map WA,B : A∗B → ΣA∨ΣB such that

ΣA×ΣB ≃ 1⊔A∗B (ΣA∨ΣB)

and such that the induced map ΣA∨ΣB → ΣA×ΣB is the canonical one.

Proof We consider the following diagram

ΣA B 1

B A×B A

B B 1

north

α
south

id

snd fst

snd

snd

id

where α : A×B → north=ΣA south is defined by α(x,y) :=merid(x), and we use the 3×3-

lemma (cf section VII of [5]) which states that the pushout of the pushouts of the rows is

equivalent to the pushout of the pushouts of the columns.

The pushout of the top row is equivalent to ΣA∨ΣB, the pushout of the middle row is

equivalent to the join A∗B and the pushout of the bottom row is contractible, so the pushout

of the pushouts of the rows is equivalent to 1⊔A∗B (ΣA∨ΣB) for the map WA,B : A ∗B →

ΣA∨ΣB defined by

WA,B : A∗B → ΣA∨ΣB,

WA,B(inl(a)) := inr(north),

WA,B(inr(b)) := inl(north),

apWA,B
(push(a,b)) := apinr(ϕB(b)) ·push(⋆1) ·apinl(ϕA(a)).

The pushouts of the left and of the right columns are both equivalent to ΣA, and the

pushout of the middle column is equivalent to ΣA×B. Moreover, the horizontal map on the

28 Guillaume Brunerie

left between ΣA×B and ΣA is equal to fst, as can be proved by induction using the definition

of α . The horizontal map on the right is also equal to fst. Hence the pushout of the pushout

of the columns is equivalent to ΣA×ΣB. Therefore we have

ΣA×ΣB ≃ 1⊔A∗B (ΣA∨ΣB)

and it can be checked that the induced map ΣA∨ΣB → ΣA×ΣB is the canonical one. ⊓⊔

Proof (of proposition 7) We apply proposition 8 to A := S
n−1 and B := S

m−1, and we obtain

S
n ×S

m ≃ 1⊔Sn−1∗Sm−1

(Sn ∨S
m).

Moreover, we have S
n−1 ∗Sm−1 ≃ S

n+m−1, as mentioned earlier, which concludes. ⊓⊔

This allows us to define the following operation on homotopy groups.

Definition 1 Given a pointed type X and two positive integers n and m, the Whitehead

product is the function

[−,−] : πn(X)×πm(X)→ πn+m−1(X)

defined by composition with Wn,m when representing elements of homotopy groups as maps

from the spheres.

9 Application to homotopy groups of spheres

The sphere Sn is (n−1)-connected, therefore by the Freudenthal suspension theorem (corol-

lary 1), the map ϕSn : Sn → ΩS
n+1 is (2n−2)-connected. On homotopy groups it gives the

following result.

Proposition 9 For k,n : N, the map πn+k(S
n) → πn+k+1(S

n+1) is an isomorphism if n ≥

k+2 and surjective if n = k+1.

This means that the groups πn+k(S
n) (for a fixed k) stabilize for a large enough n. In partic-

ular, for k = 1 we have the following result.

Corollary 3 For n ≥ 3 we have πn+1(S
n) ≃ π4(S

3) and the map π3(S
2)→ π4(S

3) is sur-

jective.

Note that even though we know that π3(S
2) ≃ Z (from the Hopf fibration), as we are

working constructively this does not imply that π4(S
3) is of the form Z/nZ for some n : N.

Indeed, it cannot be proved constructively that every subgroup of Z is of the form nZ, as

there is no way to compute this n in general. In this case, however, we can use the James con-

struction to give an explicit definition of the kernel of that map. We will need the Blakers–

Massey theorem (see [4]):

Proposition 10 (Blakers–Massey theorem) Given two maps f : C → A and g : C → B, we

consider the types D := A⊔C B,

E :=∑
a:A

∑
b:B

(inl(a) =D inr(b)),

The James construction and π4(S
3) in homotopy type theory 29

and the map h : C → E defined by h(c) := (f (c),g(c),push(c)).

C

E B

A D

g

f

h

y

inr

inl

If f is n-connected and g is m-connected, then h is (n+m)-connected.

We now prove the following proposition.

Proposition 11 For n ≥ 2, the kernel of the surjective map π2n−1(S
n)→ π2n(S

n+1) induced

by ϕSn is generated by the Whitehead product [in, in], where in is the generator of πn(S
n).

Proof Applying corollary 2 to S
n which is (n−1)-connected, we get a (3n−2)-connected

map from J2(S
n) to ΩSn+1. In particular, given that 2n−1 < 3n−2, it means that

π2n−1(J2(S
n))≃ π2n−1(ΩS

n+1)≃ π2n(S
n+1),

so we now study the map π2n−1(S
n)→ π2n−1(J2(S

n)). We know from the James construction

that

J2(S
n)≃ (Sn ×S

n)⊔Sn∨Sn

S
n,

hence using the decomposition of Sn ×Sn given in proposition 7, we get

J2(S
n)≃ (1⊔S2n−1

(Sn ∨S
n))⊔Sn∨Sn

S
n

where the map from S
n ∨ S

n to the pushout on the left is inr (i.e. it’s the identity on the

second component). This reduces to

J2(S
n)≃ 1⊔S2n−1

S
n,

where the map S
2n−1 → S

n is the Whitehead map Wn,n : S2n−1 → S
n ∨S

n composed with the

folding map ∇Sn : Sn ∨Sn → Sn.

We now take the fiber P of the map S
n → J2(S

n), which is the pullback of the two maps

from Sn and 1 to J2(S
n)

S2n−1 Sn

P

1 J2(S
n)

∇Sn◦Wn,n

y

p

The map from S2n−1 to 1 is (2n− 2)-connected and the map from S2n−1 to Sn is (n− 2)-
connected (indeed, every map between two (n−1)-connected types is (n−2)-connected),

hence using the Blakers-Massey theorem, the dashed map from S
2n−1 to P is (3n− 4)-

connected. Given that 2n−2 ≤ 3n−4, it follows that π2n−2(P)≃ π2n−2(S
2n−1)≃ 0.

30 Guillaume Brunerie

The long exact sequence of homotopy groups for P → Sn → J2(S
n) is

π2n−1(P) π2n−1(S
n) π2n−1(J2(S

n)) π2n−2(P) = 0,

therefore π2n−1(J2(S
n)) is the quotient of π2n−1(S

n) by the image of the map π2n−1(P)→
π2n−1(S

n). But the dashed map is surjective on π2n−1, so it’s the same as the image of the

map π2n−1(S
2n−1) → π2n−1(S

n), which is generated by [in, in], by definition of the White-

head product.

Therefore, the kernel of the map π2n−1(S
n)→ π2n(S

n+1) is generated by [in, in]. ⊓⊔

In particular, applying this result to n = 2 and using the fact that π3(S
2) ≃ Z, we get the

following corollary.

Corollary 4 We have

π4(S
3)≃ Z/nZ,

where n is the absolute value of the image of [i2, i2] by the equivalence π3(S
2)

∼
−→ Z.

References

1. Guillaume Brunerie. On the homotopy groups of spheres in homotopy type theory. PhD thesis, 2016,

http://arxiv.org/abs/1606.05916 .

2. Jesper Cockx and Andreas Abel. Sprinkles of extensionality for your vanilla type theory. TYPES 2016.

http://www.types2016.uns.ac.rs/images/abstracts/cockx.pdf
3. Cyril Cohen, Thierry Coquand, Simon Huber, Anders Mörtberg. Cubical Type Theory: a constructive

interpretation of the univalence axiom. Post-proceedings of the 21st International Conference on Types for

Proofs and Programs, TYPES 2015. https://arxiv.org/abs/1611.02108

4. Kuen-Bang Hou, Eric Finster, Daniel R. Licata, and Peter LeFanu Lumsdaine. A Mecha-

nization of the Blakers-Massey Connectivity Theorem in Homotopy Type Theory. LICS (2016).

doi:10.1145/2933575.2934545

5. Daniel R. Licata and Guillaume Brunerie. A Cubical Approach to Synthetic Homotopy Theory. LICS

(2015). doi:10.1109/LICS.2015.19

6. The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics.

Institute for Advanced Study, Princeton, NJ, 2013, http://homotopytypetheory.org/book .

http://arxiv.org/abs/1606.05916
http://www.types2016.uns.ac.rs/images/abstracts/cockx.pdf
https://arxiv.org/abs/1611.02108
doi:10.1145/2933575.2934545
doi:10.1109/LICS.2015.19
http://homotopytypetheory.org/book

	1 Introduction
	2 Remarks on the formalization
	3 Definition of the types (JnA) and JA
	4 The two functions
	5 The two composites
	6 Equivalence between JA and A
	7 Connectivity of the maps in and inn
	8 Whitehead products
	9 Application to homotopy groups of spheres

