Skip to main content
Log in

Formalization of Geometric Algebra in HOL Light

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

Although the theories of geometric algebra (GA) are widely applied in engineering design and analysis, the studies on their formalization have been scarcely conducted. This paper proposes a relatively complete formalization of GA in HOL Light. Both algebraic and geometric parts of the GA theories are formalized successively. For the algebraic part, a uniform abstract product is proposed to facilitate the formalization of the three basic products based on the formal definition of multivectors with three types of metrics. For the geometric part, the formal formulation is provided for the blades and versors and their relations at first. Then, several commonly used specific spaces are formally represented in the theoretical framework of GA. The novelty of the present paper lies in two aspects: (a) the multivector type, (P,Q,R)geomalg, is defined and the definition provides the most important foundation for the formalization of geometric algebra, and (b) a procedure is developed for automatically proving the properties of GA operations. The present work improves the function of HOL Light and makes the GA-based formal analysis and verification more convenient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hestenes, D.: A Unified Language for Mathematics and Physics. Springer, Netherlands (1986)

    Book  MATH  Google Scholar 

  2. Kleppe, A.L., Egeland, O.: Inverse kinematics for industrial robots using conformal geometric algebra. Model. Identif. Control 37(1), 63–75 (2016)

    Article  Google Scholar 

  3. Stanway, M.J., Kinsey, J.C.: Rotation identification in geometric algebra: theory and application to the navigation of underwater robots in the field. J. Field Robot. 32(5), 632–654 (2015)

    Article  Google Scholar 

  4. Bernal-Marin, M., Bayro-Corrochano, E.: Integration of Hough transform of lines and planes in the framework of conformal geometric algebra for 2D and 3D robot vision. Pattern Recognit. Lett. 32(16), 2213–2223 (2011)

    Article  Google Scholar 

  5. Franchini, S., Gentile, A., Sorbello, F., Vassallo, G., Vitabile, S.: An embedded, FPGA-based computer graphics coprocessor with native geometric algebra support. Integr. VlSI J. 42(3), 346–355 (2009)

    Article  MATH  Google Scholar 

  6. Hestenes, D., Sobczyk, G., Marsh, J.S.: Clifford algebra to geometric calculus: a unified language formathematics and physics. Am. J. Phys. 53(5), 510–511 (1985)

    Article  Google Scholar 

  7. Dorst, L., Doran, C., Lasenby, J.: Applications of Geometric Algebra in Computer Science and Engineering. Birkhauser, Basel (2002)

    Book  MATH  Google Scholar 

  8. Macdonald, A.: A survey of geometric algebra and geometric calculus. Adv. Appl. Clifford Algebras 27(1), 1–39 (2016)

    Article  MathSciNet  Google Scholar 

  9. Abłamowicz, R., Fauser, B.: Clifford and Graßmann Hopf algebras via the BIGEBRA package for Maple. Comput. Phys. Commun. 170(2), 115–130 (2002)

    Article  MATH  Google Scholar 

  10. Aragoncamarasa, G., Aragongonzalez, G., Aragon, J.L., Rodriguezandrade, M.A.: Clifford algebra with mathematica. Physics (2008). Preprint. arXiv:0810.2412. October 2008

  11. Mann, S., Dorst, L., Bouma, T.: The Making of GABLE: A Geometric Algebra Learning Environment in Matlab. Birkhüser, Boston (2001)

    Google Scholar 

  12. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: a theorem proving environment for higher order logic. FEBS Lett. 89(2), 317–320 (1993)

    MATH  Google Scholar 

  13. Harrison, J.: HOL light: a tutorial introduction. In Srivas, M., Camilleri, A., eds.: Proceedings of the First International Conference on Formal Methods in Computer-Aided Design (FMCAD’96). Volume 1166 of Lecture Notes in Computer Science., Springer, pp. 265–269 (1996)

  14. Paulson, L.C.: Isabelle—A Generic Theorem Prover. LNCS, Heidelberg (1994)

    MATH  Google Scholar 

  15. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  16. Dutertre, B.: Elements of mathematical analysis in PVS. Lect. Notes Comput. Sci. 1125, 141–156 (1999)

    Article  Google Scholar 

  17. Kaufmann, M., Manolios, P., Moore, J.S., Kaufmann, M., Moore, J.S.: Acl2 Computer Aided Reasoning: An Approach (vol 1). World Scientific Publishing Company 81(957), 1–27 (2002)

  18. Rudnicki, P.: An overview of the Mizar project. Univ. Technol. Bastad 31(3), 311–332 (1994)

    Google Scholar 

  19. Arthan, R.: Mathematical Case Studies: The Geometric Algebra (2006). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.1120. May 2012

  20. Fuchs, L., Théry, L.: Implementing geometric algebra products with binary trees. Adv. Appl. Clifford Algebras 24(2), 589–611 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Harrison, J.: The HOL Light theory of Euclidean space. J. Autom. Reason. 50(2), 173–190 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ma, S., Shi, Z., Shao, Z., Guan, Y., Li, L., Li, Y.: Higher-order logic formalization of conformal geometric algebra and its application in verifying a robotic manipulation algorithm. Adv. Appl. Clifford Algebras 26(4), 1–26 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Harrison, J.: The HOL Light theorem prover. http://www.cl.cam.ac.uk/~jrh13/hol-light/. Accessed 6 Aug 2016

  24. Harrison, J.: HOL Light: an overview. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Proceedings of the 22nd International Conference on Theorem Proving in Higher Order Logics, TPHOLs 2009. Volume 5674 of Lecture Notes in Computer Science., Munich, Germany, Springer-Verlag 60–66 (2009)

  25. Hales, T., Adams, M., Bauer, G., Dang, D.T., Harrison, J., Hoang, T.L., Kaliszyk, C., Magron, V., Mclaughlin, S., Nguyen, T.T.: A formal proof of the Kepler conjecture. Mathematics 16(3), 47–58 (2015)

    MATH  Google Scholar 

  26. Harrison, J.: Geometric algebra. https://github.com/jrh13/hol-light/blob/master/Multivariate/clifford.ml. Accessed 4 May 2016

  27. Rivera-Rovelo, J., Bayro-Corrochano, E.: Medical image segmentation using a self-organizing neural network and Clifford geometric algebra. In: International Joint Conference on Neural Networks, pp. 3538–3545 (2006)

  28. Hestenes, D., Li, H., Rockwood, A.: New algebraic tools for classical geometry. Geometric Computing with Clifford Algebras, pp. 3–26 (2001)

  29. Hestenes, D.: New foundations for classical mechanics. Math. Gaz. 71(458), 703–704 (2002)

    MATH  Google Scholar 

  30. Harrison, J.: A HOL theory of Euclidean space. In: Hurd, J., Melham, T. (eds.) Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005. Volume 3603 of Lecture Notes in Computer Science., Oxford, UK, Springer-Verlag, pp. 114–129 (2005)

  31. Harrison, J.: Definition of finite Cartesian product types. https://github.com/jrh13/hol-light/blob/master/cart.ml. Accessed 16 May 2016

  32. Harrison, J.: Real vectors in Euclidean space, and elementary linear algebra. https://github.com/jrh13/hol-light/blob/master/Multivariate/vectors.ml. Accessed 11 June 2016

  33. Harrison, J.: Determinant and trace of a square matrix. https://github.com/jrh13/hol-light/blob/master/Multivariate/determinants.ml. Accessed 11 Jan 2016

  34. Dorst, L.: The Inner Products of Geometric Algebra. Birkhäuser, Boston (2002)

    Book  MATH  Google Scholar 

  35. Hartley, D., Tuckey, P.: Gröbner bases in Clifford and Grassmann algebras. J. Symb. Comput. 20(2), 197–205 (1995)

    Article  MATH  Google Scholar 

  36. Harrison, J.: Formalizing basic complex analysis. In: Matuszewski, R., Zalewska, A. (eds.) From Insight to Proof: Festschrift in Honour of Andrzej Trybulec. Volume 10(23) of Studies in Logic, Grammar and Rhetoric, pp. 151–165. University of Białystok (2007)

  37. Gabrielli, A., Maggesi, M.: In: Formalizing Basic Quaternionic Analysis. Springer, Cham pp. 225–240 (2017)

Download references

Acknowledgements

This work was supported by the National Key R & D Plan (2017YFC0806700), National Natural Science Foundation of China (61572331, 61876111, 61472468, 61602325), Capacity Building for Sci-Tech Innovation - Fundamental Scientific Research Funds (025185305000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Ping Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, LM., Shi, ZP., Guan, Y. et al. Formalization of Geometric Algebra in HOL Light. J Autom Reasoning 63, 787–808 (2019). https://doi.org/10.1007/s10817-018-9498-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-018-9498-9

Keywords

Navigation