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Automated Reasoning with Restricted Intensional Sets
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Intensional sets, i.e., sets given by a property rather than by enumerating elements, are widely recognized
as a key feature to describe complex problems (see, e.g., specification languages such as B and Z). Notwith-
standing, very few tools exist supporting high-level automated reasoning on general formulas involving
intensional sets. In this paper we present a decision procedure for a first-order logic language offering both
extensional and (a restricted form of) intensional sets (RIS). RIS are introduced as first-class citizens of
the language and set-theoretical operators on RIS are dealt with as constraints. Syntactic restrictions on
RIS guarantee that the denoted sets are finite, though unbounded. The language of RIS, called LRIS , is
parametric with respect to any first-order theory X providing at least equality and a decision procedure
for X -formulas. In particular, we consider the instance of LRIS when X is the theory of hereditarily finite
sets and binary relations. We also present a working implementation of this instance as part of the {log}
tool and we show through a number of examples and two case studies that, although RIS are a subclass
of general intensional sets, they are still sufficiently expressive as to encode and solve many interesting
problems. Finally, an extensive empirical evaluation provides evidence that the tool can be used in practice.
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1. INTRODUCTION

In the practice of mathematics very often a set is denoted by providing a property that
the elements must satisfy, rather than by explicitly enumerating all its elements. This
is usually achieved by the well-known mathematical notation

{ x | ϕ(x) }

where x is a variable (the control variable) and ϕ is a first-order formula containing
x. The logical meaning of such notation is the set S such that ∀x(x ∈ S ⇔ ϕ(x)), that
is, the set of all instances of x for which ϕ(x) holds. Sets defined by properties are also
known as set comprehensions or set abstractions or intensional defined sets; hereafter,
we will refer to such sets simply as intensional sets.

Authors’ addresses: M. Cristiá, Universidad Nacional de Rosario and CIFASIS, Pellegrini 250, 2000 Rosario,
Argentina; email: cristia\mathbin{\bullet}cifasis-conicet.gov.ar ; G. Rossi, Università di Parma, Dip. di
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A:2 M. Cristiá and G. Rossi

Intensional sets are widely recognized as a key feature to describe complex prob-
lems, possibly leading to more readable and compact programs than those based on
conventional data abstractions. As a matter of fact, various specification or modeling
languages provide intensional sets as first-class entities. For example, some form of
intensional sets are available in notations such as Z [Woodcock and Davies 1996] and
B [Schneider 2001], Alloy [Jackson 2006], MiniZinc [Nethercote et al. 2007], and ProB
[Leuschel and Butler 2003]. Also, a few programming languages support intensional
sets. Among them, SETL [Schwartz et al. 1986], Python, and the logic programming
language Gödel [Hill and Lloyd 1994].

However, as far as we know, none of these proposals provides the ability to perform
high-level automated reasoning on general formulas involving intensional sets. No di-
rect support for reasoning about intensional sets seem to be readily available even
in state-of-the-art satisfiability solvers, as noted, for instance, by Lam and Cervesato
with reference to SMT solvers [Lam and Cervesato 2014]. Generally speaking, such
reasoning capabilities would be of great interest to several communities, such as pro-
gramming, constraint solving, automated theorem proving, and formal verification.

Some form of automated reasoning about intensional sets is provided by (Constraint)
Logic Programming (CLP) languages with sets, such as LDL [Beeri et al. 1991] and
CLP(SET) [Dovier et al. 2000]. The processing of intensional sets in these proposals
is based on the availability of a set-grouping mechanism capable of collecting into an
extensional set all the elements satisfying the property characterizing the given in-
tensional definition. Restrictions are often put on the form of the collected sets, such
as non-emptiness and/or groundness. Allowing more general forms of set-grouping,
however, would require the ability to deal with logical negation in a rather non-trivial
way (see [Bruscoli et al. 1994; Dovier et al. 2001] for an analysis of the relationship
between intensional sets and negation).

Actually, set-grouping is not always necessary to deal with intensional sets, and
sometimes it is not desirable, at all. For instance, given the formula t ∈ {x | ϕ}, one
could check whether it is satisfiable or not by simply checking satisfiability of ϕ[x 7→ t],
i.e., of the instance of ϕ which is obtained by substituting x by t.

In this paper, we present a complete constraint solver which can act as a decision
procedure for an important fragment of a first-order logic language offering both ex-
tensional and intensional sets. Intensional sets are introduced as first-class citizens
of the logic language, and set-theoretical operators on intensional sets, such as mem-
bership, union, etc., are dealt with as constraints in that language. Complex formulas
involving intensional sets are processed and solved by a suitable constraint solver by
using a sort of lazy partial evaluation. That is, an intensional set S is treated as a
block until it is necessary to identify one of its elements, say d. When that happens, S
is transformed into an extensional set of the form {d}∪RS , where RS is the “rest” of S.
At this point, classic set constraint rewriting (in particular set unification) is applied.

A similar approach, based on intensional set constraint solving, has been proposed
in [Dovier et al. 2003]. Differently from that work, however, we avoid problems arising
if general intensional sets are allowed (namely, the use of logical negation and possibly
infinite sets), by considering a narrower form of intensional sets, called Restricted In-
tensional Sets (RIS). RIS have similar syntax and semantics to the set comprehensions
available in the formal specification language Z, i.e.,

{x : D | φ • u(x)}

where D is a set, φ is a formula, and u is a term containing x. The intuitive semantics
of {x : D | φ • u(x)} is “the set of terms u(x) such that x belongs to D and φ holds for
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Automated Reasoning with RIS A:3

x”.1 φ is a quantifier-free formula over a first-order theory X , for which we assume a
complete satisfiability solver is available. Moreover, RIS have the restriction that D
must be a finite set. This fact, along with a few restrictions on variables occurring in φ
and u, guarantees that the RIS is a finite set, given that it is at most as large as D. It is
important to note that, although RIS are guaranteed to denote finite sets, nonetheless,
RIS can be not completely specified. In particular, as the domain can be a variable or
a partially specified set, RIS are finite but unbounded.

In previous work, we have proposed a constraint language dealing with RIS, called
LRIS [Cristiá and Rossi 2017]. LRIS formulas are Boolean combinations of constraints
representing set equality and set membership and whose set terms can be both exten-
sional sets and RIS. Furthermore, LRIS is parametric w.r.t. the language of X , in the
sense that set elements and the formulas inside RIS are X -terms and quantifier-free
X -formulas, respectively. In particular, X can be the theory of sets and binary rela-
tions described in [Cristiá and Rossi 2019]. Besides, LRIS is endowed with a complete
solver, called SATRIS , which can act as a decision procedure for an important fragment
of LRIS formulas (provided a decision procedure for X is available). In this paper we
extend our previous work on RIS in several ways:

(1) The Boolean algebra of sets is now supported; this is achieved by extending the
collection of primitive set constraints admitting RIS to union (∪) and disjointness
(‖).

(2) The decision procedure for LRIS , SATRIS , and its Prolog implementation are ex-
tended accordingly.

(3) Formulas inside RIS can be existentially quantified X -formulas as long as the
quantified variables are special parameters of functional predicates.

(4) An extensive empirical evaluation of these extensions, based on problems drawn
from the TPTP library, is also made.

Though RIS are restricted, we aim to show that in spite of these restrictions LRIS

is still a very expressive language. In particular, we will show that it allows Restricted
Universal Quantifiers (RUQ) on finite domains to be expressed as LRIS formulas, thus
allowing an important class of quantified formulas to lay inside the decision procedure.
Besides encoding RUQ, RIS provide a sort of second-order language of sets as they
allow to iterate over sets of sets and are useful to express partial functions, as well as
a programming facility similar to list/set comprehensions available in programming
languages.

The paper is organized as follows. In Section 2 the syntax and semantics of LRIS are
introduced; in particular Section 2.3 presents some basic examples of formulas involv-
ing RIS terms. Section 3 lists and discusses the rewrite rules of SATRIS , in particular
those for set union and disjointness. In Section 4 we precisely characterize the admis-
sible LRIS formulas involving RIS, and we prove that SATRIS is a decision procedure
for such formulas. Section 5 shows two important applications for RIS: RUQ and par-
tial functions. The extension allowing existentially quantified formulas inside a RIS
term is motivated and discussed in Section 6. Section 7 presents the implementation
of our approach as part of the {log} tool (pronounced ’setlog’) [Rossi 2008] where two
case studies are also discussed: the first one presents an automated proof of a non-
trivial security property, while the second elaborates on the possibility to iterate over
collections of sets and shows how {log} can be used as a programming tool and as a ver-
ification tool. The results of the empirical evaluation of {log} are presented in Section

1In this notation, as in Z, x : D is interpreted as x ∈ D.
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A:4 M. Cristiá and G. Rossi

8. A comparison of our approach with other works and our conclusions are presented
in Sections 9 and 10, respectively.

2. FORMAL SYNTAX AND SEMANTICS

This section describes the syntax and semantics of the language of Restricted Inten-
sional Sets, LRIS . A gentle, informal introduction is provided in Section 2.3.
LRIS is a first-order predicate language with terms of two sorts: terms designat-

ing sets and terms designating ur-elements. The latter are provided by an external
first-order theory X (i.e., LRIS is parametric with respect to X ). X must include: a
class ΦX of admissible X -formulas based on a set of function symbols FX and a set
of predicate symbols ΠX (providing at least equality); an interpretation structure IX
with domain DX and interpretation function (·)IX ; and a decision procedure SATX for
X -formulas. When useful, we will write LRIS(X ) to denote the instance of LRIS based
on theory X . On the other hand, LRIS provides special set constructors, and a handful
of reserved predicate symbols endowed with a pre-designated set-theoretic meaning.
Set constructors are used to construct both RIS and extensional sets. Set elements
are the objects provided by X , which are manipulated through the primitive operators
that X offers. Hence, LRIS sets represent untyped unbounded finite hybrid sets, i.e.,
unbounded finite sets whose elements are of arbitrary sorts. LRIS formulas are built
in the usual way by using conjunction, disjunction and negation of atomic formulas. A
number of complex operators (in the form of predicates) are defined as LRIS formulas,
thus making it simpler for the user to write complex formulas.

2.1. Syntax

Syntax is defined primarily by giving the signature upon which terms and formulas of
the language are built.

Definition 2.1 (Signature). The signature ΣRIS of LRIS is a triple 〈F ,Π,V〉 where:

—F is the set of function symbols, partitioned as F = FS ∪ FX , where FS contains
∅, {· ⊔ ·} and {· : · | · • ·}, while FX contains the function symbols provided by the
theory X (at least, a constant and the binary function symbol (·, ·)).

—Π is the set of primitive predicate symbols, partitioned as Π = ΠS ∪ΠT ∪ΠX , where
ΠS , {=S , 6=S ,∈S , 6∈S , unS , ‖S}, ΠT , {set , isX }, while ΠX contains the predicate
symbols provided by the theory X (at least =X ).

— V is a denumerable set of variables, partitioned as V = VS ∪ VX .

Intuitively, ∅ represents the empty set, {t ⊔A} represents the set {t} ∪A, and {c(~x) :
D | φ(~x) • u(~x)}, where ~x , 〈x1, . . . , xn〉, n > 0, is the vector of all variables occurring
in c, represents the set of all instances of u such that c belongs to D and φ holds. =X is
interpreted as the identity in DX, while (·, ·) will be used to represent ordered pairs.
LRIS defines two sorts, Set and X, which intuitively represent the domain of set

objects and the domain of non-set objects (or ur-elements). We also assume a sort Bool
is available, representing the two-valued domain of truth values {false, true}.

To each variable in V and each constant in F we associate a sort S, while to each
function symbol in F of arity n ≥ 1 we associate a string S1 x . . . x Sn -> S, where S, Si ∈
{Set,X}. Moreover, if t is a variable or a constant and S is the associated sort, or t is a
term h(t1, . . . , tn), n ≥ 1, and S1 x . . . x Sn -> S is the sort associated to h, then we say
that t is of sort S and we write t : S.
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Automated Reasoning with RIS A:5

Definition 2.2 (Sorts of function symbols). The sorts of the symbols defined in F
are as follows:

∅ : Set

{· ⊔ ·} : X x Set -> Set

{· : · | · • ·} : X x Set x Bool x X -> Set

s :

ns
︷ ︸︸ ︷

X x . . . x X -> X, if s ∈ FX , for some ns ≥ 0

v : Set, if v ∈ VS
v : X, if v ∈ VX

In view of the intended interpretation, terms of sort Set are called set terms; in par-
ticular, set terms of the form {· ⊔ ·} are extensional set terms, whereas set terms of the
form {· : · | · • ·} are RIS terms2; variable set terms are simply called set variables.

Note that terms that constitute the elements of sets are all of sort X. Also note that
in a RIS term, {c : D | φ • u}, D (called domain) is a set term, φ (called filter) is a
X -formula, while c (called control term) and u (called pattern) are X -terms.

Terms of LRIS—called RIS-terms—are built from symbols in F and V as follows.

Definition 2.3. [RIS-terms] Let T 0
RIS be the set of terms generated by the following

grammar:

T 0
RIS ::= Elem | Set

Elem ::= TX | VX

Set ::=´∅´

| Ris

| ´{´ Elem ´⊔´ Set ´}´

| VS

Ctrl ::= VX | ´(´ Ctrl ´, ´ Ctrl ´)´

Pattern ::= VX | ´(´ Ctrl ´, ´ TX ´)´

Ris ::= ´{´ Ctrl ´ : ´ Set ´|´ ΦX ´ • ´ Pattern ´}´

where TX and ΦX represent the set of non-variable X -terms and the set of X -formulas
built using symbols in FX and ΠX , respectively.

The set of RIS-terms, denoted by TRIS , is the maximal subset of T 0
RIS complying

with the sorts as given in Definition 2.2 and respecting the following restriction on
RIS terms: if c is the control term of a RIS, then its pattern can be either c or (c, t).

The special form of control terms and patterns will be precisely motivated and dis-
cussed in Section 6.

Sets denoted by both extensional set terms and RIS terms can be partially specified
because elements and sets can be variables. In particular, RIS can have a variable
domain.

Definition 2.4 (Variable-RIS). A RIS term is a variable-RIS if its domain is a vari-
able or (recursively) a variable-RIS; otherwise it is a non-variable RIS.

2The form of RIS terms is borrowed from the form of set comprehension expressions available in Z.
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A:6 M. Cristiá and G. Rossi

Variable-RIS will be of special interest since they can be easily turned into the empty
set by substituting their domains by the empty set.

Definition 2.5 (Sorts of predicate symbols). The sorts of the predicate symbols in
ΠS ∪ΠT are as follows (symbols =, 6=, ∈, /∈ and ‖ are infix; all other symbols are prefix):

=S , 6=S : Set x Set -> Bool

∈S , 6∈S : X x Set -> Bool

unS : Set x Set x Set -> Bool

‖S : Set x Set -> Bool

set , isX : Set ∪ X -> Bool

Definition 2.6 (RIS-constraints). A (primitive) RIS-constraint is any atom built
from symbols in ΠS ∪ΠT complying with the sorts as given in Definition 2.2. The set of
RIS-constraints is denoted by CRIS . RIS-constraints based on a symbol π (resp., on a
set of symbols Π) are called π-constraints (resp., Π-constraints).

Formulas of LRIS—called RIS-formulas—are built from RIS-constraints and X -
formulas as follows.

Definition 2.7 (RIS-formulas). The set of RIS-formulas, denoted by ΦRIS , is
given by the following grammar.

ΦRIS ::= true | CRIS | ΦRIS ∧ ΦRIS | ΦRIS ∨ΦRIS | ΦX

RIS-formulas not containing any X -formula are called pure RIS-formulas.

Remark 2.8 (Notation). The following notational conventions are used through-
out this paper. s, t, u, a, b, c, d (possibly subscripted) stand for arbitrary terms of sort
X; while A,B,C,D stand for arbitrary terms of sort Set (either extensional or inten-
sional, variable or not). When it is useful to be more specific, we will use Ā, B̄, C̄, D̄
to represent either variables of sort Set or variable-RIS; X,Y, Z,N to represent vari-
ables of sort Set that are not variable-RIS; and x, y, z, n to represent variables of sort
X. Φ,Γ,Λ stand for RIS-formulas, while φ, γ, λ stand for X -formulas; p, q, r stand for
atomic formulas/constraints.

Moreover, a number of special notational conventions are used for the sake of con-
ciseness. Specifically, we will write {t1 ⊔ {t2 ⊔ · · · {tn ⊔A} · · · }} (resp., {t1 ⊔ {t2 ⊔ · · · {tn ⊔

∅} · · · }}) as {t1, t2, . . . , tn ⊔A} (resp., {t1, t2, . . . , tn}). We will also use the notation [m,n],
m and n integer constants, as a shorthand for {m,m+1, . . . , n}. As concerns RIS, when
the pattern is the control term and the filter is true, they can be omitted (as in Z),
although one must be present.

2.2. Semantics

Sorts and symbols in ΣRIS are interpreted according to the interpretation structure
R = 〈D, (·)R〉, where D and (·)R are defined as follows.

Definition 2.9 (Interpretation domain). The interpretation domainD is partitioned
as D = DSet ∪ DX where:

—DSet: the collection of all finite sets built from elements in DX

—DX: a collection of any other objects (not in DSet).

Definition 2.10 (Interpretation function). The interpretation function (·)R for sym-
bols in ΣRIS is defined as follows:
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Automated Reasoning with RIS A:7

— Each sort S ∈ {X, Set} is mapped to the domain DS.
—R coincides with IX for symbols in FX and ΠX .
— For each sort S, each variable x of sort S is mapped to an element xR in DS.
— The constant and function symbols in FS are interpreted as follows:

— ∅ is interpreted as the empty set ∅;
— {t ⊔ A} is interpreted as the set {tR} ∪ AR;
— Let ~v be a vector of free variables and ~x the vector of variables occurring in c, then

the set {c(~x) : D | φ(~x,~v) • u(~x,~v)} is interpreted as the set

{y : ∃~x(c(~x) ∈X D ∧ φ(~x,~v) ∧ y =X u(~x,~v))}

Note that in RIS terms, ~x are bound variables whose scope is the RIS itself, while
~v are free variables possibly occurring in the formula where the RIS is participat-
ing in.

— The predicate symbols in ΠS are interpreted as follows:
— A =S B is interpreted as AR = BR, where = is the identity relation in DSet;
— t ∈S A is interpreted as tR ∈ AR, where ∈ is the set membership relation in DSet;
— unS(A,B,C) is interpreted as AR ∪ BR = CR, where ∪ is the set union operator

in DSet;
— A ‖S B is interpreted as AR ∩BR = ∅, where ∩ is the set intersection operator in
DSet;

— isX (t) is interpreted as tR ∈ DX;
— set(t) is interpreted as tR ∈ DSet;
— A 6= B and t /∈ A are interpreted as ¬(AR = BR) and ¬(tR ∈ AR), respectively.

Equality between extensional set terms is regulated by the following two equational
axioms [Dovier et al. 2000]:

{x, x ⊔ A} = {x ⊔ A} (Ab)

{x, y ⊔ A} = {y, x ⊔ A} (Cℓ)

which state that duplicates in a set term do not matter (Absorption property) and that
the order of elements in a set term is irrelevant (Commutativity on the left), respec-
tively. These two properties capture the intuitive idea that, for instance, the set terms
{1, 2}, {2, 1}, and {1, 2, 1} all denote the same set. In other words, duplicates do not
occur in a set, but they may occur in the set term that denotes it. On the other hand,
equality between X -terms is assumed to be managed by the parameter theory X .

2.3. Examples of LRIS formulas using RIS

In this section we present some simple examples of LRIS formulas, in particular those
where RIS terms play a major role, with the objective to help the reader to understand
the notation. A deeper discussion of the applicability of LRIS can be found in Sections
5 and 7.

For the sake of presentation, in coming examples, we will assume that the language
of X , LX , provides the constant, function and predicate symbols of the theory of the
integer numbers. Moreover, we will write = (resp., 6=,∈, un) in place of =X and =S

(resp., ∈X , 6=X , unX and ∈S , 6=S , unS) whenever is clear from context.

Example 2.11. The following is an atomic RIS-formula:

{x : [−2, 2] | xmod 2 = 0 • x} = {−2, 0, 2}

This formula is clearly satisfiable with respect to the intended interpretation R. The
RIS term can be written more compactly by omitting the pattern as it is the control
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A:8 M. Cristiá and G. Rossi

variable:

{x : [−2, 2] | xmod 2 = 0} = {−2, 0, 2}

Example 2.12. Set membership is also a viable operation on RIS:

(5, y) ∈ {x : D | true • (x, x ∗ x)}

where D is a variable. This formula is satisfiable with respect to R provided y is as-
signed the value 25 and D is bound to any set containing 5. The RIS can also be written
as (5, y) ∈ {x : D • (x, x ∗ x)} because the filter is true. Note that the control term and
the pattern verify the condition stated in Definition 2.3.

The negation of a set membership constraint, as all negations in LRIS , is written by
using the corresponding predicate symbol and not the logical negation which, anyway,
is not part of LRIS .

Example 2.13. A RIS-formula containing negative constraints:

(5, 0) /∈ {(x, y) : {z ⊔ Z} | y 6= 0 • (x, y)}

where z and Z are free variables. This formula is satisfiable with respect to R for
any z and Z. As above, the pattern can be omitted. Observe that in y 6= 0 inequality
corresponds to that of the theory X .

Example 2.14. The following is a non-atomic RIS-formula involving RIS terms:

A = {x : D | x 6= 0} ∧ un(A,B,C) ∧ A ‖ C ∧ A 6= ∅

This formula turns out to be unsatisfiable with respect to R since un(A,B,C) ∧ A ‖ C
is satisfiable only if A = ∅, while the input formula constraints A to be distinct from
∅.

Finally, note that we allow RIS terms to be the set part of extensional set terms,
e.g., {z ⊔ {x : A | x 6= y}}, as well as to be the domain of other RIS. LRIS also defines
two constraints that are mainly used internally by the solver, namely set(t) and isX (t).
Each one asserts that its parameter is of sort Set and X, respectively.

2.4. Derived Constraints and Expressiveness

Dovier et al. [Dovier et al. 2000] proved that the collection of predicate symbols in ΠS

is sufficient to define constraints implementing other common set operators, such as ∩
and ⊆.

Specifically, let us consider the following predicate symbols:⊆, inters, diff , along with
their interpretations: A ⊆ B is interpreted as AR ⊆ BR; inters(A,B,C) is inter-
preted as CR = AR ∩ BR; diff (A,B,C) is interpreted as CR = AR\BR. Dovier et al.
[Dovier et al. 2000] prove that these predicates can be made available in LRIS without
having to add them to the collection of its primitive constraints. As an example, A ⊆ B
can be defined by the LRIS formula un(A,B,B).

With a little abuse of terminology, we say that atoms based on these predicates are
derived constraints. Whenever a formula contains a derived constraint, the constraint
is replaced by its definition turning the given formula into a LRIS formula. Precisely,
if Φ is theRIS-formula defining the constraint c, then c is replaced by Φ and the solver
checks satisfiability of Φ to determine satisfiability of c. Thus, we can completely ig-
nore the presence of derived constraints in the subsequent discussion about constraint
solving and formal properties of our solver (namely, soundness and termination).
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Automated Reasoning with RIS A:9

The negated versions of set operators can be introduced as derived constraints, as
well. Specifically, if p is a predicate symbol in Π, a new predicate p′ is associated to p
to obtain a positive form p′(~t) for literals ¬p(~t). Then, the definition of p′ for p ∈ {un, ‖}
can be given as a RIS-formula, hence, as a derived constraint. The derived constraint
for ¬∪ and ¬ ‖ (called nun and 6‖, respectively) are shown in [Dovier et al. 2000]. For
example, ¬A ∪B = C is introduced as:

nun(A,B,C) , (n ∈ C ∧ n /∈ A ∧ n /∈ B) ∨ (n ∈ A ∧ n /∈ C) ∨ (n ∈ B ∧ n /∈ C) (1)

The same approach can be used to define the derived constraint for ¬ ⊆, ¬∩ and ¬\,
called 6⊆, ninters and ndiff , respectively. With a little abuse of terminology, we will refer
to atoms based on these predicates as negative constraints. Thanks to the availability
of negative constraints, classical negation is not strictly necessary in LRIS .

As concerns expressiveness, now LRIS supports equality, set membership, union,
disjointness, intersection, difference and all their negations. Hence, the Boolean alge-
bra of sets is fully supported.

3. A SOLVER FOR LRIS

In this section we present a constraint solver for LRIS , called SATRIS . The solver
provides a collection of rewrite rules for rewriting LRIS formulas that are proved to
be a decision procedure for a large class of LRIS formulas. As already observed, how-
ever, checking the satisfiability ofRIS-formulas depends on the existence of a decision
procedure for X -formulas (i.e., formulas over LX ).

3.1. The solver

SATRIS is a rewriting system whose global organization is shown in Algorithm 1,
where STEP is the core of the algorithm.

sort infer is used to automatically add ΠT -constraints to the input formula Φ to force
arguments of RIS-constraints in Φ to be of the proper sorts (see Remark 3.1 below).
sort infer is called twice in Algorithm 1: first, at the beginning of the Algorithm, and
second, within the procedure STEP for the constraints that are generated during con-
straint processing. sort check checks ΠT -constraints occurring in Φ: if they are satisfi-
able, then Φ is returned unchanged; otherwise, Φ is rewritten to false .

Algorithm 1 The SATRIS solver. Φ is the input formula.

procedure STEP(Φ)
for all π ∈ ΠS ∪ ΠT : Φ← rwπ(Φ);
Φ← sort check(sort infer(Φ))

return Φ

procedure rwπ(Φ)
if false ∈ Φ then

return false
else

repeat
select a π-constraint c in Φ
apply any applicable rule to c

until no rule applies to any π-constraint

return Φ

procedure SATRIS(Φ)
Φ← sort infer(Φ)
repeat

Φ′ ← Φ
repeat

Φ′′ ← Φ
Φ← STEP(Φ)

until Φ = Φ′′

Φ← remove neq(Φ)
until Φ = Φ′

Φ is ΦS ∧ ΦX

Φ← ΦS ∧ SATX (ΦX )
return Φ

remove neq deals with the elimination of 6=-constraints involving variables of sort
Set, possibly occurring in the formula Φ at the end of the innermost loop of SATRIS .
Its motivation and definition will be made evident later in Section 3.4.
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STEP applies specialized rewriting procedures to the current formula Φ and returns
either false or the modified formula. Each rewriting procedure applies a few non-deter-
ministic rewrite rules which reduce the syntactic complexity ofRIS-constraints of one
kind. Procedure rwπ in Algorithm 1 represents the rewriting procedure for (ΠS ∪ ΠT )-
constraints. The execution of STEP is iterated until a fixpoint is reached—i.e., the
formula cannot be simplified any further. STEP returns false whenever (at least) one of
the procedures in it rewrites Φ to false. In this case, a fixpoint is immediately detected,
since STEP(false) returns false. The rewrite rules for RIS-constraints involving only
extensional set terms are described in Section 3.2, while those for RIS-constraints
involving both extensional and RIS terms are detailed in Section 3.3.
SATX is the constraint solver for X -formulas. The formula Φ can be seen, without

loss of generality, as ΦS ∧ΦX , where ΦS is a pureRIS-formula and ΦX is a X -formula.
SATX is applied only to the ΦX conjunct of Φ. Note that, conversely, STEP rewrites
only RIS-constraints, while it leaves all other atoms unchanged. Nonetheless, as the
rewrite rules show, SATRIS generates X -formulas that are conjoined to ΦX so they are
later solved by SATX .

As we will show in Section 4, when all the non-deterministic computations of
SATRIS(Φ) terminate with false , then we can conclude that Φ is unsatisfiable; oth-
erwise, when all the computations terminate and at least one of them does not return
false, then we can conclude that Φ is satisfiable and each solution of the formulas re-
turned by SATRIS is a solution of Φ, and vice versa.

Remark 3.1. LRIS does not provide variable declarations. The sort of variables are
enforced by adding suitable sort constraints to the formula to be processed. Sort con-
straints are automatically added by the solver. Specifically, a constraint set(y) (resp.,
isX (y)) is added for each variable y which is required to be of sort Set (resp., X). For
example, given X = {y ⊔ A}, sort infer conjoins the sort constraints set(X), isX (y) and
set(A). If the set of function and predicate symbols of RIS and X are disjoint, there is
a unique sort constraint for each variable in the formula.

The rewrite rules used by SATRIS are defined as follows.

Definition 3.2 (Rewrite rules). If π is a symbol in ΠS∪ΠT and p is aRIS-constraint
based on π, then a rewrite rule for π-constraints is a rule of the form p −→ Φ1∨· · ·∨Φn,
where Φi, i ≥ 1, are RIS-formulas. Each atom matching p is non-deterministically
rewritten to one of the Φi. Variables appearing in the right-hand side but not in the
left-hand side are assumed to be fresh variables, implicitly existentially quantified
over each Φi.

A rewriting procedure for π-constraints consists of the collection of all the rewrite
rules for π-constraints. For each rewriting procedure, STEP selects rules in the order
they are listed in the figures below. The first rule whose left-hand side matches the
input π-constraint is used to rewrite it. If no rule applies, then the input constraint is
left unchanged (i.e., it is irreducible).

3.2. Rewrite rules for extensional set terms

When LRIS formulas contain only extensional set terms, all the operators defined in
ΠS are dealt with the rewrite rules given in [Dovier et al. 2000]. In particular, set
equality between extensional set terms is implemented by (Ab)(Cℓ)-set unification
[Dovier et al. 2006]. One of the key rewrite rules of set unification is the following,
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which implements axioms (Ab) and (Cℓ) (adapted from [Dovier et al. 2000]):

{t1 ⊔ A} = {t2 ⊔ B} −→

t1 =X t2 ∧A = B ∨ t1 =X t2 ∧ {t1 ⊔ A} = B ∨ (2)

t1 =X t2 ∧A = {t2 ⊔ B} ∨ A = {t2 ⊔ N} ∧ {t1 ⊔ N} = B

where A and B are extensional sets, t1 and t2 are arbitrary X -terms, N is a new vari-
able (of sort Set), and =X is the equality provided by the theory X . This means that
every time LRIS finds an atom such as the left-hand side of rule (2), it attempts to find
a solution for it in four different ways. In some cases one or more will fail (i.e., they
will be false) but in general LRIS will compute all the four solutions.

In this paper we will extend the set unification algorithm of [Dovier et al. 2006] to
deal with also RIS terms.

Given that the rules for extensional set terms has been extensively stud-
ied by the authors [Dovier et al. 2000; Dovier et al. 2006; Cristiá et al. 2015;
Cristiá and Rossi 2019], they are not shown here, and can be found in
[Cristiá and Rossi 2019].

3.3. Rewrite rules for RIS

When a LRIS formula includes RIS terms, the rewrite rules for extensional sets are
extended in a rather natural way. The following is an example to intuitively show how
SATRIS works when RIS are involved.

Example 3.3. If S is a variable and a, b are constants belonging to FX , then SATRIS

can determine the satisfiability of:

{(x, y) : {(a, 1) ⊔ S} | x ∈ {a, b}} = {(a, 1)}

by proceeding as follows (the arrow indicates a rewriting step; some steps are simpli-
fied):

{(x, y) : {(a, 1) ⊔ S} | x ∈ {a, b}} = {(a, 1)}

→ (x, y) = (a, 1) ∧ x ∈ {a, b} ∧ {(a, 1) ⊔ {(x, y) : S | x ∈ {a, b}}} = {(a, 1)}

∨ (x, y) = (a, 1) ∧ x /∈ {a, b} ∧ {(x, y) : S | x ∈ {a, b}} = {(a, 1)}

→ x = a ∧ y = 1 ∧ (x = a ∨ x = b)

∧ ({(x, y) : S | x ∈ {a, b}} = ∅ ∨ {(x, y) : S | x ∈ {a, b}} = {(a, 1)})

∨ false

→ x = a ∧ y = 1

∧ (S = ∅ ∨ S = {(a, 1) ⊔ N} ∧ (a, 1) /∈ N ∧ {(x, y) : N | x ∈ {a, b}} = ∅)

where N is a fresh variable. At this point, Algorithm 1 stops thus returning a disjunc-
tion of two LRIS formulas:

x = a ∧ y = 1 ∧ S = ∅

∨x = a ∧ y = 1 ∧ S = {(a, 1) ⊔ N} ∧ (a, 1) /∈ N ∧ {(x, y) : N | x ∈ {a, b}} = ∅

which are surely satisfiable. The first one because all variables are bound to terms and
the second one because:

(a, 1) /∈ N ∧ {(x, y) : N | x ∈ {a, b}} = ∅

is satisfiable by substituting N by the empty set.

Hence, intuitively, the key idea behind the extension of the rewriting rules for exten-
sional set terms to RIS terms is a sort of lazy partial evaluation of RIS. That is, a RIS
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term is treated as a block until it is necessary to identify one of its elements. When
that happens, the RIS is transformed into an extensional set whose element part is
the identified element and whose set part is the rest of the RIS. At this point, classic
set constraint rewriting (in particular set unification) can be applied. More precisely,
when a term such as {x : {d ⊔ D} | φ • u} is processed, two cases are considered:

— x = d and φ holds for d, in which case the RIS is rewritten as the extensional set
{u(d) ⊔ {x : D | φ • u}}; and

— x = d but φ does not hold for d, i.e., ¬φ(d) holds, in which case the RIS is rewritten
as {x : D | φ • u}.

The main rewrite rules for ΠS -constraints dealing with RIS terms are given in Fig-
ures 1-4 and are discussed below; rules for special cases are presented in Appendix A.
In order to make the presentation more accessible: a) the rules are given for RIS whose
domain is not another RIS, in particular, the domain of a variable-RIS is a single vari-
able; and b) the control term of RIS is always a variable. The generalization to cases
in which these restrictions are removed is discussed in Appendix A. In these figures, a
RIS of the form {x : D | φ •u} is abbreviated as {D | φ •u}. Besides, φ(d), γ(d), u(d) and
v(d) are shorthands for φ[x 7→ d], γ[x 7→ d], u[x 7→ d] and v[x 7→ d], respectively, where
[x 7→ d] represents variable substitution. In all rules, ∅ represents either ∅ or a RIS
with empty domain (e.g., {∅ | φ • u}). Recall the notation used across the paper given
in Remark 2.8.

3.3.1. Equality. Figure 1 lists the main rewrite rules applied by STEP to deal with
constraints of the form A = B and A 6= B, where A and B are LRIS set terms and at
least one of them is a RIS term.

Equality between a RIS and an extensional set is governed by rules (3)–(7). In par-
ticular:

— Rule (5) deals with the case in which a RIS with a non-empty domain must be equal
to the empty set. It turns out that to force a RIS {D | φ • u} to be empty it is enough
that the filter φ is false for all elements in D, i.e., ∀x ∈ D : ¬φ (see Proposition C.2 in
the appendix). This restricted universal quantification is conveniently implemented
through recursion, by extracting one element d at a time from the RIS domain.

— Rule (6) deals with the case illustrated by Example 3.3, i.e., equality between a
non-variable RIS and any other non-empty set (including variables and RIS).

— Rule (7) deals with equality between a variable-RIS and an extensional set. The
intuition behind this rule is as follows. Given that {t ⊔A} is not empty, then D̄ must
be not empty in which case it is equal to {n ⊔ N} for some n and N . Furthermore, n
must satisfy φ and u(n) must be equal to t. As the first element of {t ⊔ A} belongs to
the RIS, then the rest of the RIS must be equal to A. It is not necessary to consider
the case where ¬φ(n), as in rule (6), because n is a fresh variable.

Other rules deal with the symmetric cases (e.g., B = {{d ⊔ D} | φ • u}, {t ⊔ A} = {D̄ |
φ•u}), and with special cases where some variables are shared between the two terms
to be compared (e.g., {D̄ | φ•u} = {t⊔D̄}), see Appendix A. The cases not considered by
any rule, namely, equality between a variable and a variable-RIS, between a variable-
RIS and the empty set, and between two variable-RIS, are dealt with as irreducible
(see Section 4.2).

Negated equality is governed by rule (8). Note that this rule serves for all combina-
tions of set terms and it is based on the definition of set inequality. In fact, D can be
either a variable, or a variable-RIS, or a set term of the form {d ⊔ D}, while A can be
any term, including another RIS. In this case, the problem is handed over to the rules
for set membership.
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{∅ | φ • u} = ∅→ true (3)

{∅ | φ • u} = {t ⊔ A} → false (4)

{{d ⊔ D} | φ • u} = ∅→ ¬φ(d) ∧ {D | φ • u} = ∅ (5)

If B is any set term except ∅:

{{d ⊔ D} | φ • u} = B →

(φ(d) ∧ {u(d) ⊔ {D | φ • u}} = B) ∨ (¬φ(d) ∧ {D | φ • u} = B)

(6)

{D̄ | φ • u} = {t ⊔ A} →

D̄ = {n ⊔ N} ∧ φ(n) ∧ t =X u(n) ∧ {N | φ • u} = A
(7)

{D | φ • u} 6= A→

(n ∈ {D | φ • u} ∧ n /∈ A) ∨ (n /∈ {D | φ • u} ∧ n ∈ A)
(8)

Fig. 1. Rewrite rules for A = B and R 6= B; A or B RIS terms

t ∈ {∅ | φ • u} −→ false (9)

t ∈ {D | φ • u} −→ n ∈ D ∧ φ(n) ∧ t =X u(n) (10)

t /∈ {∅ | φ • u} −→ true (11)

t /∈ {{d ⊔ D} | φ • u} −→

(φ(d) ∧ t 6=X u(d) ∧ t /∈ {D | φ • u}) ∨ (¬φ(d) ∧ t /∈ {D | φ • u})
(12)

Fig. 2. Rewrite rules for t ∈ A and t /∈ A; A RIS term

3.3.2. Membership. Rules dealing with constraints of the form t ∈ A and t /∈ A, where
t is a LX term and A is a RIS term, are listed in Figure 2. The case t /∈ Ā where Ā is
a variable-RIS is dealt with as irreducible (Section 4.2), while constraints of the form
t ∈ A are eliminated in all cases.

3.3.3. Union. The rules for the union operator are given in Figure 3.

— Rules (14)-(16) extend similar rules dealing with extensional set terms to the case
where one argument is a RIS whose domain is the empty set. In these cases, un-
constraints are rewritten to equality constraints and rules of Figure 1 are called
into play.

— Rules (17)-(19) are the same used for extensional set terms; the use of set unifica-
tion, however, forces arguments which are RIS terms to be possibly converted into
extensional sets.

— Finally, rule (20) is added to deal with constraints where at least one argument is a
non variable-RIS and cannot be dealt with by the previous rules. For example, rule
(19) cannot be used when the last argument is a RIS, then rule (20) is used instead.
In rule (20), each non variable-RIS is rewritten into either an extensional set or a
new RIS with one element less in its domain, plus the constraints that assert or
negate the filter. This is formalized by functions S and C.
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un(X,X,B)→ X = B (13)

un(A,B,∅)→ A = ∅ ∧B = ∅ (14)

un(∅, A,B)→ B = A (15)

un(A,∅, B)→ B = A (16)

un({t ⊔ C}, A, B̄)→

{t ⊔ C} = {t ⊔N1} ∧ t /∈ N1 ∧ B̄ = {t ⊔N}

∧ (t /∈ A ∧ un(N1, A,N) ∨ A = {t ⊔N2} ∧ t /∈ N2 ∧ un(N1, N2, N))

(17)

un(A, {t ⊔ C}, B̄)→

{t ⊔ C} = {t ⊔N1} ∧ t /∈ N1 ∧ B̄ = {t ⊔N}

∧ (t /∈ A ∧ un(N1, A,N) ∨ A = {t ⊔N2} ∧ t /∈ N2 ∧ un(N1, N2, N))

(18)

un(A,B, {t ⊔ C})→

{t ⊔ C} = {t ⊔N}

∧ (A = {t ⊔N1} ∧ t /∈ N1 ∧ un(N1, B,N)

∨B = {t ⊔N1} ∧ t /∈ N1 ∧ un(A,N1, N)

∨ A = {t ⊔N1} ∧ t /∈ N1 ∧B = {t ⊔N2} ∧ t /∈ N2 ∧ un(N1, N2, N))

(19)

If at least one of A,B,C is not a variable nor a variable-RIS:

un(A,B,C)→ un(S(A),S(B),S(C)) ∧ C(A) ∧ C(B) ∧ C(C) (20)

where S is a set-valued function and C is a constraint-valued function

S(σ) =

{
Nσ if σ ≡ {{d ⊔D} | φ • u}

σ otherwise

C(σ) =







Nσ = ({u(d) ⊔ {D | φ • u}} ∧ φ(d)) if σ ≡ {{d ⊔D} | φ • u}

∨ (Nσ = {D | φ • u} ∧ ¬φ(d))

true otherwise

Fig. 3. Rewrite rules for un(A,B, C); A, B or C a RIS term

The cases not considered in Figure 3, that is, when the three arguments are either
variables or variables-RIS and the first two are not the same variable, are dealt with
as irreducible (Section 4.2).

The rule for nun is the standard rule for extensional set terms (cf. rule (1)).

3.3.4. Disjointness. The rules for the ‖ operator are listed in Figure 4. As with the other
operators, some of the standard rules for extensional set terms are extended to deal
with RIS and new rules are added. In particular:

— Rule (22) is simply extended to RIS whose domain is the empty set.
— Rule (26) is a new rule dealing with the case when the second argument is a non

variable-RIS. As can be seen, two cases are considered depending on whether the
filter holds or not for one of the elements of the domain. In the first case, the rules
for /∈ are called and then a recursion is started; in the second case only the recursive
call is made.
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X ‖ X → X = ∅ (21)

A ‖ ∅→ true (22)

∅ ‖ A→ true (23)

A ‖ {t ⊔B} → t /∈ A ∧ A ‖ B (24)

{t ⊔B} ‖ A→ t /∈ A ∧ A ‖ B (25)

A ‖{{d ⊔D} | φ • u} →

φ(d) ∧ u(d) /∈ A ∧ A ‖ {D | φ • u} ∨ ¬φ(d) ∧ A ‖ {D | φ • u}
(26)

{{d ⊔ D} | φ • u} ‖ A→

φ(d) ∧ u(d) /∈ A ∧ {D | φ • u} ‖ A ∨ ¬φ(d) ∧ {D | φ • u} ‖ A
(27)

Fig. 4. Rewrite rules for A ‖ B; A or B a RIS term

If A ∈ VS , t : X and Φ is the input formula then:

If A is an argument of a un-constraint or the domain of a variable-RIS

occurring as the argument of either a = or /∈ or un constraint in Φ:

A 6= t→ (n ∈ A ∧ n /∈ t) ∨ (n ∈ t ∧ n /∈ A)

(28)

Fig. 5. Rule scheme for 6=-constraint elimination rules

Note that A ‖ B is not further rewritten if A and B are distinct variables or
variable-RIS. The rule for 6‖ is the standard rule for extensional set terms (see
[Cristiá and Rossi 2019]).

3.4. Procedure remove neq

The RIS-formula returned by Algorithm 1 when STEP reaches a fixpoint is not guar-
anteed to be satisfiable due to the presence of inequalities involving set variables. For
example, the formula D 6= ∅∧{x : D | x = x} = ∅ is dealt with by SATRIS as irreducible
but it is clearly unsatisfiable. In order to guarantee satisfiability, all such inequalities
must be removed from the final formula returned by SATRIS . This is performed (see
Algorithm 1) by executing the procedure remove neq, which applies the rewrite rule
described by the generic rule scheme of Figure 5. Basically, this rule exploits set ex-
tensionality to state that non-equal sets can be distinguished by asserting that a fresh
element (n) belongs to one but not to the other.

Example 3.4. Given the formula D 6= ∅ ∧ {x : D | φ • u} = ∅, remove neq rewrites
D 6= ∅ as n ∈ D, where n is a fresh variable. In turn, n ∈ D is rewritten as D = {n ⊔N}
for another fresh variable N . Finally, the whole formula is rewritten as D = {n ⊔

N} ∧ {x : {n ⊔ N} | φ • u} = ∅, which fires one of the rules given in Section 3.2. This
rewriting chain is fired only because D is the domain of a RIS; otherwise remove neq
does nothing with D 6= ∅.

4. DECIDABILITY OF LRIS FORMULAS

In this section we show that SATRIS can serve as a decision procedure for a large
fragment of LRIS . To this end, first we precisely characterize the admissible LRIS
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formulas involving RIS; then we prove that: (a) when SATRIS terminates the answer
is either false or a disjunction of LRIS formulas of a very particular form; (b) that
disjunction is always satisfiable, and a solution can be trivially found; (c) the set of
solutions of the computed formula is the same of the input formula; and (d) SATRIS

terminates for every admissible formula. Detailed proofs are given in Appendix C.

4.1. Admissible formulas

RIS are intended to denote finite sets. For this reason, RIS have the restriction that
the RIS domain must be a finite—though unbounded—set. However, this is not enough
to guarantee RIS finiteness.

Example 4.1. The LRIS formula

A = {1 ⊔ {x : A | true • (x, y)} (29)

admits only the solution binding A to the infinite set {1, (1, y), ((1, y), y),
(((1, y), y), y), . . . }. If SATRIS is requested to solve this formula, it will loop forever
trying to build the extensional set term representing this infinite set.

In the rest of this section, we will analyze this kind of “cyclic” definitions, introducing
a few restrictions on RIS-formulas that prevent them from defining infinite sets.

First of all, observe that we have assumed that the set VS of variables ranging
over RIS-terms (i.e., set variables) and the set VX of variables ranging over X -terms
are disjoint sets. Since RIS filters are X -formulas, then set variables cannot occur
in them. This fact prevents us from creating recursively defined RIS of the form
S = {c : D | φ(S) • u}. Moreover, since RIS patterns, as well as elements of RIS
domains, are X -terms, then no cyclic definitions of the form S = {c : D | φ • u(S)} or
S = {c : {t1, . . . , S, . . . , tn ⊔ A} | φ • u} can be written in LRIS .

Hence, the only possible way to create a cyclic definition involving a RIS is through
the set variable possibly occurring as the set part of the RIS domain, e.g., S = {c :
{t1, . . . , tn ⊔ S} | φ • u}. When the pattern is the same as the control term, an equation
such as S = {c : {t1, . . . , tn ⊔ S} | φ} admits the trivial solution in which S is bound
to the (finite) set containing all ti, i = 1, . . . , n, such that φ(ti) holds. For example,
S = {x : {−1, 0, 1 ⊔ S} | x 6= 0} has the solution S = {−1, 1 ⊔ N}, where N is a fresh
variable. This is no longer true when the pattern is not the control term, for instance
as in formula (29). In other words, when the pattern is the control term, then the RIS
is a subset of the domain, while in all other cases this relation does not hold.

As a consequence, processing a formula such as (29) may cause SATRIS to enter
into an infinite loop. In order to allow SATRIS to be a decision procedure for LRIS ,
formulas such as (29) should be discarded.

In what follows, we provide sufficient (syntactic) conditions characterizing a sub-
language of LRIS for which SATRIS will be proved to terminate and so to be a decision
procedure for that sub-language.

First, we define a transformation τ of RIS-formulas that allows us to restrict our
attention to a single kind of constraints. Let Φ = ΦS ∧ΦX be the input formula, where
ΦS is a pure RIS-formula and ΦX is a X -formula; ΦX is removed from Φ and so we
only consider its pure RIS part. Without loss of generality, ΦS can be seen as Φ1 ∨
· · · ∨ Φn, where the Φi’s are conjunctions of primitive RIS-constraints (i.e., all derived
constraints have been replaced by their definitions and the corresponding DNF has
been built). Then, each Φi is transformed into Φ′

i as follows:

— constraints of the form un(A,B,C), where A,B,C are either variables or variable-
RIS whose innermost domain variables are DA, DB, DC , and none of these domain
variables occur elsewhere in Φi, are removed from the formula
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— constraints of the form A = B, where neither is ∅, are rewritten into un(A,B,B) ∧
un(B,A,A)

— If one of the arguments of a un constraint is of the form {x1, . . . , xn ⊔ B} then it is
replaced by a new variable, N , and un({x1, . . . , xn}, B,N) is conjoined to the formula.

— all the 6=, ∈, /∈, ‖, and set constraints, and all the remaining = constraints, are
removed from the formula.

Hence, τ(Φ) = Φ′
1 ∨ · · · ∨Φ′

n, where each Φ′
i is a conjunction of un-constraints.

The following function allows to classify set terms occurring as arguments of un-
constraints.

Definition 4.2. Let T be a function that takes a set term T and returns an element
in {S,P,U}, where P depends on one argument belonging to {S,P,U} and U depends
on two arguments belonging to {S,P,U}. For each constraint of the form un(A,B,C)
the function T (T ) is defined as follows (note that the definition of T depends on the
position of the argument in the constraint):

(1) If T is C, then: T (C) = U(T (A), T (B))
(2) If T is either A or B, then:

T (∅) = S (30)

T ({· ⊔ V }) = T (V ) (31)

T ({c : D | F}) = T (D) (32)

T ({c : D | F • P}) = P(T (D)), c 6≡ P (33)

and T (T ) remains undefined when T is a variable.

Example 4.3. If Φi is {x : D | F • (x, y)} ⊆ D, then Φ′
i is

un({x : D | F • (x, y)}, D,D)

and the T function for this constraint is:

T (D) = U(T (D), T ({x : D | F • (x, y)}))

⇔ T (D) = U(T (D),P(T (D)))

where the computation of T stops because D is a variable.

Definition 4.4. P∗(D) denotes a P that at some point depends on variable D.

Definition 4.5 (Admissible RIS-formula). Let Φ be a RIS-formula not in solved
form and E be the collection of equalities computed by (recursively) applying the T
function to all the un-constraints in τ(Φ) and performing all possible term substi-
tutions. Then Φ is non-admissible iff E contains at least one equality of the form
X = U(Y, Z) such that:

— If X depends on P∗(D), for some variable D, then Y or Z does not depend on P∗(D);
and

— If Y or Z depend on P∗(D), for some variable D, then X does not depend on P∗(D).

All other RIS-formulas are admissible.

Example 4.6. Given the formula Φ

{x : D | F • (x, y)} ⊆ D ∧D 6= ∅

then τ(Φ) is

un({x : D | F • (x, y)}, D,D)
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that is exactly the formula of Example 4.3. So Φ is classified as non-admissible. Con-
versely, if Φ is just {x : D | F • (x, y)} ⊆ D, that is, D is a variable not occurring
elsewhere in Φ, then E is empty and Φ is classified as admissible.

Example 4.7. Given the formula Φ

{x : D | F • (x, y)} ⊆ {x : A | G} ∧ A ⊆ D ∧D 6= ∅

τ(Φ) is

un({x : D | F • (x, y)}, {x : A | G}, {x : A | G}) ∧ un(A,D,D)

Then, the collection E for Φ is

{T ({x : A | G}) = U(T ({x : D | F • (x, y)}), T ({x : A | G})), T (D) = U(T (A), T (D))}

⇔

{T (A) = U(P(T (D)), T (A)), T (D) = U(T (A), T (D))}

⇔ [by substitution]

{T (A) = U(P(U(T (A), T (D))), T (A)), T (D) = U(T (A), T (D))}

So Φ is classified as non-admissible. Given a formula similar to the previous one, but
where the second RIS is a set of pairs, i.e.,

{x : D | F • (x, y)} ⊆ {h : A | G • (h,w)} ∧ A ⊆ D ∧D 6= ∅

then the final collection E for this formula is

{P(T (A)) = U(P(U(T (A), T (D))),P(T (A))), T (D) = U(T (A), T (D))}

so it is classified as admissible.

From the above definitions, it is evident that, if the given formula Φ does not contain
any RIS term, or if all RIS terms possibly occurring in it have pattern identical to its
control term, then Φ is surely classified as admissible.

Intuitively, non-admissible formulas are those where a variable A is the domain of
a RIS representing a function and, at the same, time A is either a sub or a superset
of that function. For example, the non-admissible formula {x : D | true • (x, y)} ⊆
D ∧ D 6= ∅ implies that if a ∈ D then (a, n) ∈ D and so ((a, n), n1) ∈ D and so forth,
thus generating an infinite X -term. In other words, non-admissible formulas, in a way
or another, require to compare a function and its domain through the subset relation.
Note, however, thatRIS-formulas that are classified as non-admissible are, in a sense,
quite unusual formulas. Clearly, in most typed formalisms, such formulas would not
type-check (e.g., in B and Z [Spivey 1992; Abrial 1996]). Therefore, missing them from
the decision procedure implemented by SATRIS does not seem to be a real lack.

4.2. Satisfiability of solved form

As stated in the previous section, the formula Φ handled by SATRIS can be written
as ΦS ∧ ΦX where ΦS is a pure RIS-formula and ΦX is a X -formula. Right before
Algorithm 1 calls SATX , ΦS is in a particular form referred to as solved form. This
fact can be easily proved by inspecting the rewrite rules given in Section 3.2. The
constraints in solved form are selected as to allow trivial verification of satisfiability of
the formula as a whole.

Definition 4.8 (Solved form). Let ΦS be a pure admissible RIS-formula; let C̄, D̄
and Ē be either variables of sort Set or variable-RIS, X and Y be variables of sort Set
but not variable-RIS, and x a variable of sort X; let t be any term of sort X, and S any
term of sort Set but not a RIS. An atom p in ΦS is in solved form if it has one of the
following forms:
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(1) true
(2) X = S or X = {Y | φ • u}, and X does not occur in S nor in ΦS \ {p}
(3) {X | φ • u} = ∅ or ∅ = {X | φ • u}
(4) {X | φ1 • u1} = {Y | φ2 • u2}.
(5) X 6= S, and X does not occur in S nor as the domain of a RIS which is the argument

of a = or /∈ or un constraint in ΦS
3

(6) t /∈ D̄
(7) un(C̄, D̄, Ē), and if C̄, D̄ ∈ VS then C̄ 6≡ D̄
(8) C̄ ‖ D̄, and if C̄, D̄ ∈ VS then C̄ 6≡ D̄
(9) set(X), and no constraint isX (X) is in ΦS

(10) isX (X)

ΦS is in solved form if all its atoms are in solved form.

Example 4.9. The following are LRIS atoms in solved form, occurring in a formula
Φ (where X , D and Di are variables):

—X = {x : D | x 6= 0} and X does not occur elsewhere in Φ (note that X and D can be
the same variable)

— 1 /∈ {x : D | x 6= 0}
— {x : D1 | xmod 2 = 0 • (x, x)} = {x : D2 | x > 0 • (x, x + 2)}
— un(X, {D1 | F • P}, {D2 | G •Q}) and, for any t, there are no constraints D1 6= t nor

D2 6= t in Φ.

Right before Algorithm 1 calls SATX , ΦS is either false or it is in solved form, and in
this case it is satisfiable.

THEOREM 4.10 (SATISFIABILITY OF SOLVED FORM). Any (pure) RIS-formula in
solved form is satisfiable w.r.t. the interpretation structure of LRIS .

PROOF SKETCH. Basically, the proof of this theorem uses the fact that, given a
(pure) RIS-formula Φ in solved form, it is possible to guarantee the existence of a
successful assignment of values to all variables of Φ using pure sets only (in particu-
lar, the empty set for set variables), with the exception of the variables X occurring in
atoms of the form X = t.

Moreover, if ΦS is not false , the satisfiability of Φ depends only on ΦX .

THEOREM 4.11 (SATISFIABILITY OF ΦS ∧ΦX ). Let Φ be ΦS ∧ΦX right before Algo-
rithm 1 calls SATX . Then either ΦS is false or the satisfiability of Φ depends only on the
satisfiability of ΦX .

PROOF SKETCH. The proof is based on the observation that assigning values to
variables of sort X possibly occurring in ΦS does not affect the solved form of ΦS ,
i.e., ΦS remains in solved form, hence satisfiable, disregarding of the values assigned
to the X variables.

4.3. Equisatisfiability

In order to prove that Algorithm 1 is correct and complete, we prove that it preserves
the set of solutions of the input formula.

THEOREM 4.12 (EQUISATISFIABILITY). Let Φ be an admissible RIS-formula and
{Φi}ni=1 be the collection of RIS-formulas returned by SATRIS(Φ). Then

∨n
i=1 Φi is eq-

3This is guaranteed by procedure remove neq (see Section 3).
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uisatisfiable w.r.t. Φ, that is, every possible solution4 of Φ is a solution of one of {Φi}ni=1
and, vice versa, every solution of one of these formulas is a solution for Φ.

PROOF SKETCH. The proof rests on a series of lemmas each showing that the set
of solutions of left and right-hand sides of each rewrite rule is the same. For all cases
dealing with extensional set terms the proofs can be found in [Dovier et al. 2000]. The
proofs of equisatisfiability for the rules shown in Section 3 and in Appendix A can be
found in Appendix C.

Observe that Theorems 4.10 and 4.12 imply that SATRIS , not only determines
whether the input formula is satisfiable or not but also, when the input formula is
satisfiable, it computes a finite representation of all the (possibly infinitely many) so-
lutions.

4.4. Termination

Termination of SATRIS can be proved for admissible formulas as is stated by the fol-
lowing theorem.

THEOREM 4.13 (TERMINATION). The SATRIS procedure can be implemented in
such a way it terminates for every input admissibleRIS-formula Φ.

The termination of SATRIS and the finiteness of the number of non-deterministic
choices generated during its computation guarantee the finiteness of the number of
RIS-formulas non-deterministically returned by SATRIS . Therefore, SATRIS applied
to an admissible RIS-formula Φ always terminates, returning either false or a finite
collection of satisfiable RIS-formulas in solved form.

Thanks to Theorems 4.10, 4.12 and 4.13 we can conclude that, given an admissible
RIS-formula Φ, Φ is satisfiable with respect to the intended interpretation structure
R if and only if there is a non-deterministic choice in SATRIS(Φ) that returns a RIS-
formula ΦS ∧ ΦX where ΦS is in solved form—i.e., there is a choice that does not ter-
minate with false . Hence, SATRIS is a decision procedure for testing satisfiability of
admissible RIS-formulas.

Remark 4.14. Definition 4.5 gives only sufficient conditions. In fact, not all formu-
las classified as non-admissible are indeed formulas that our solver cannot deal with.
Given the formula:

{x : A | false • (x, y)} ⊆ A ∧ Y ∈ A (34)

any set A satisfying Y ∈ A is a solution of it. So, we should accept it. However, accord-
ing to Definition 4.5, this formula is classified as non-admissible. Note that the similar
formula where the filter is true admits only an infinite set solution and is (correctly)
classified as non-admissible.

Accepting or not formula (34) depends on the satisfiability of the RIS filter. Checking
the satisfiability of the filter, however, cannot be done, in general, by simple syntactic
analysis, i.e., without running the solver on it. Thus, when aiming at providing a syn-
tactic characterization of admissible formulas, we must classify formulas disregarding
the form of the RIS filters possibly occurring in them. Finer characterizations would
be feasible, however, considering special forms of RIS filters, such as false and true.

Remark 4.15. In practice many interesting theories are undecidable and only semi-
decision procedures exist for them. On the other hand, in fact, all of the theoretical
results presented so far apply provided RIS’ filters belong to a decidable fragment of

4More precisely, each solution of Φ expanded to the variables occurring in Φi but not in Φ, so to account for
the possible fresh variables introduced into Φi.
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the considered parameter theory, and a solver for this fragment is called from SATRIS .
Hence, the condition on the availability of a decision procedure for all X -formulas can
be often relaxed. Instead, the existence of some algorithm capable of deciding the sat-
isfiability of a significant fragment of X -formulas can be assumed. If such an algorithm
exists and the user writes formulas inside the corresponding fragment, all of our re-
sults still apply. For these reason, in coming sections, we sometimes give examples
where X is not necessarily a decidable theory.

4.5. Complexity

SATRIS strongly relies on set unification. Basically, rewrite rules dealing with RIS
“extract” one element at a time from the domain of a RIS by means of set unifica-
tion and construct the corresponding extensional set again through set unification.
Hence, complexity of our decision procedure strongly depends on complexity of set uni-
fication. As observed in [Dovier et al. 2006], the decision problem for set unification
is NP-complete. A simple proof of the NP-hardness of this problem has been given in
[Dovier et al. 1996]. The proof is based on a reduction of 3-SAT to a set unification
problem. Concerning NP-completeness, the algorithm presented here clearly does not
belong to NP since it applies syntactic substitutions. Nevertheless, it is possible to
encode this algorithm using well-known techniques that avoid explicit substitutions,
maintaining a polynomial time complexity along each non-deterministic branch of the
computation.

Besides, SATRIS deals not only with the decision problem for set unification but also
with the associated function problem (i.e., it can compute solutions for the problem at
hand). Since solving the function problem clearly implies solving the related decision
problem, the complexity of SATRIS can be no better than the complexity of the deci-
sion problem for set unification. Finally, since SATRIS is parametric w.r.t. SATX , its
complexity is at least the maximum between the complexity of both.

5. ENCODING RESTRICTED UNIVERSAL QUANTIFIERS AND PARTIAL FUNCTIONS

In this section we show how RIS can be used to encode restricted universal quantifiers
(Section 5.1) and partial functions (Section 5.2).

5.1. Restricted universal quantifiers

RIS can be used to encode restricted universal quantifiers. That is, if A is a finite set
and φ is a formula of some theory X , the formula:

∀x ∈ A : φ(x) (35)

is equivalent to the LRIS formula (see Proposition C.1 in the appendix):

A ⊆ {x : A | φ(x)} (36)

where ⊆ is a derived constraint based on un (see Section 2.4).
This formula lies inside of the decision procedure of LRIS . Therefore, LRIS is able

to reason about universally quantified formulas.
The following example illustrates a possible use of RIS to express a restricted uni-

versal quantification.

Example 5.1. The formula y ∈ S ∧ S ⊆ {x : S | y ≤ x} states that y is the minimum
of a set of integers S. If, for instance, S = {2, 4, 1, 6}, then y is bound to 1. The same
RIS can be used in conjunction with a partially specified S to properly constraint its
unknown elements. For instance, if S = {2, 4, z, 6}, then the LRIS solver returns either
y = 2 ∧ z ≥ 2 or y = z ∧ z ≤ 2, provided the underlying LX solver is able to manage
simple integer disequations. Similarly, if R is a variable and S = {1 ⊔R}, then the first

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:22 M. Cristiá and G. Rossi

All the even numbers in A foreach(x ∈ A, xmod 2 = 0)

Intersection of B with the less-than relation foreach((x, y) ∈ B, x ≤ y)

All the solutions of an equation with a free vari-
able in C

foreach(y ∈ C, 3x+ 2y − 14 = 0)

Intersection of D with the successor function foreach((x, y) ∈ D, y = x+ 1)

Fig. 6. Examples of decidable restricted quantified formulas over linear integer algebra

un(∅, {A | φ}, {A | φ})→ true (38)

un(Ā, {Ā | φ}, {Ā | φ})→ irreducible (39)

un({t ⊔ A}, {{t ⊔A} | φ}, {{t ⊔ A} | φ})→ φ(t) ∧ un(A, {A | φ}, {A | φ}) (40)

Fig. 7. Specialized rewrite rules to deal with restricted universal quantifiers

answer returned by LRIS will be y = 1 ∧ R ⊆ {x : R | 1 ≤ x}, where R represents the
set of all integer numbers less or equal to 1.

Restricted universal quantifiers can be exploited, for instance, in program verifi-
cation. As a matter of fact, many programs operate on finite, unbounded inputs and
states. Hence, if the formal specification of such a program uses an universally quan-
tified formula, indeed it can be replaced with a restricted universally quantified for-
mula. This implies that if theory X is decidable, then the formal verification of those
programs that can be specified as LRIS(X ) formulas, is decidable as well.

For the sake of convenience, we introduce the following derived constraint:

foreach(x ∈ A, φ) , A ⊆ {x : A | φ} , un(A, {x : A | φ}, {x : A | φ}) (37)

Hereafter, we will use foreach in place of the equivalent ⊆-constraint.

Example 5.2 (Linear integer algebra). It is a known fact that linear algebra over Z

is decidible; let us call this theory Z. Then, any admissible LRIS-formula including the
foreach-constraints listed in Table 6 fall inside the decision procedure of the restricted
quantified theory LRIS(Z).

Remark 5.3. Although the rules for un shown in Figure 3 can deal with the foreach
predicate, we introduce a set of specialized rewrite rules to process this specific kind of
predicates more efficiently (see Figure 7). The key rule is (40) because it corresponds
to the formula foreach(x ∈ {t⊔A}, φ(x)), where x is a variable. In turn, this formula can
be seen as an iterative program whose iteration variable is x, the range of iteration is
{t⊔A}, and the body is φ. In fact, rule (40) basically iterates over {t⊔A} and evaluates
φ for each element in that set. If one of these elements does not satisfy φ then the loop
terminates immediately, otherwise it continues until the empty set is found (i.e., rule
(38)) or a variable is found (i.e., rule (39)).

5.2. Partial functions

Another important use of RIS is to define (partial) functions by giving their domains
and the expressions that define them. In general, a RIS of the form

{x : D | F • (x, f(x))} (41)
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where f is any LX function symbol, defines a partial function. Such a RIS contains
ordered pairs whose first components belong to D which cannot have duplicates (be-
cause it is a set). Then, if no two pairs share the same first component, then the RIS is
a function. Given that RIS are sets, then, in LRIS , functions are sets of ordered pairs
as in Z and B. Therefore, through standard set operators, functions can be evaluated,
compared and point-wise composed; and by means of constraint solving, the inverse of
a function can also be computed. The following examples illustrate these properties.

Example 5.4. The square of 5 can be calculated by: (5, y) ∈ {x : D • (x, x ∗ x)},
yielding y = 25. The same RIS calculates the square root of a given number: (x, 36) ∈
{x : D • (x, x ∗ x)}, returning x = 6 and x = −6. Set membership can also be used for
the point-wise composition of functions. The function f(x) = x2 + 8 can be evaluated
on 5 as follows: (5, y) ∈ {x : D • (x, x ∗ x)} ∧ (y, z) ∈ {e : E • (e, e+ 8)} returning y = 25
and z = 33.

6. EXTENSIONS

The formula Φ of a (general) intensional set {x : Φ(x)} may depend on existentially
quantified variables, declared inside the set. For example, if R is a set of ordered pairs
and D is a set, then the subset of R where all the first components belong to D can be
denoted by

{p : ∃x, y(x ∈ D ∧ (x, y) ∈ R ∧ p = (x, y))}. (42)

We will refer to these existentially quantified variables as parameters.
Allowing parameters in RIS rises major problems when RIS have to be manipulated

through the rewrite rules considered in the previous section. In fact, if ~p is the vector
of parameters possibly occurring in a RIS, then literals of the form ¬φ(d), occurring in
the rules (e.g., (6)), should be replaced with the more complex universally quantified
formula ∀~p(¬φ(d, ~p)). This, in turn, would require that the theory X is equipped with a
solver able to deal with such kind of formulas.

In this section we describe two extensions to LRIS that increase its expressiveness
concerning the presence of parameters, without compromising decidability. The first
one deals with control terms (and patterns), while the second one deals with special
kinds of predicates occurring in RIS filters, called functional predicates.

Both extensions are supported by the implementation of LRIS within {log} (see Sec-
tion 7).

6.1. Control terms and patterns

The first of these extensions is the possibility to use more general forms of control
terms and patterns in RIS.

As stated in Definition 2.3, LRIS is designed to allow for terms of the form (x, y)
in place of the quantified control variable of set comprehensions. In effect, the idea of
allowing control terms (not just control variables) steams from the observation that
many uses of parameters can be avoided by a proper use of the control term of a RIS.

PROPOSITION 6.1. If ~p is a vector of existentially quantified variables declared in-
side an intensional set then:

S = {x : D1 | φ(x, ~p) ∧ ~p ∈ D2 • u(x, ~p)}

⇔ S = {(x, ~p) : D1 ×D2 | φ((x, ~p)) • u((x, ~p))}

This result can be applied to the example mentioned above.

Example 6.2. The intensional set (42) can be expressed with a RIS (hence, without
parameters) as follows: {(x, y) : R | x ∈ D}. If R is for instance {(a, 1), (b, 2), (a, 2)} and
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D is {a}, then the formula {(x, y) : R | x ∈ D} = {(a, 1), (a, 2)} is (correctly) found to be
satisfiable by SATRIS .

Therefore, it would be interesting to extend RIS to allow more general forms of con-
trol terms without loosing completeness of the solver. In this respect, it is important to
note that the proof of Theorem 4.12 relies on a particular relation between the control
term and the pattern of a RIS and a property that patterns allowed in the language
must verify. In order to state these conditions we need the following definitions.

Definition 6.3 (Bijective pattern). Let {x : D | φ(x) • u(x)} be a RIS, then its pattern
is bijective if u : {x : x ∈ D ∧ φ(x)} → Y is a bijective function, where Y is the set of
images of u.

Definition 6.4 (Co-injective patterns). Two patterns, u and v, are said to be co-
injective if for any x and y, if u(x) = v(y) then x = y.

Then, Theorem 4.12 can be proved provided all patterns are bijective and pairwise
co-injective.

Through Definition 2.3, LRIS is designed to guarantee that patterns verify those
conditions. In particular, when all the patterns are the corresponding control terms,
they verify the above conditions as they are trivially bijective and pairwise co-injective.
This is important because this subclass of RIS is used to encode restricted universal
quantifiers (see Section 5.1).

The bijectivity of a pattern depends on the form of the control term. For example, if
the control term is (x, y) and the pattern depends only on one between x and y, then it
cannot be bijective because for a given x or y there are many (x, y). Conversely, if x is
the control term, then any pattern of the form (x, ·) is bijective.

Besides the terms considered in Definition 2.3, however, others can be bijective pat-
terns, although they might not be pairwise co-injective.

Example 6.5.

— If c is any control term then a pattern of the form (·, c) is bijective. Further, these
patterns are also pairwise co-injective. However, if the language allows these pat-
terns in conjunction with patterns of the form (c, ·), then pairwise co-injectivity is
lost.

— If x is the control term and n is a constant, then x+n is a bijective pattern. However,
these patterns are not always pairwise co-injective.

— If x is the control term, then x ∗ x is not bijective as x and −x have x ∗ x as image,
while (x, x ∗ x) is indeed a bijective pattern, allowed in LRIS .

The intuitive reason to ask for bijective patterns is that if y belongs to a RIS whose
pattern, u, is not bijective then there may be two or more elements in the RIS domain,
say x1 and x2, such that u(x1) = u(x2) = y. If this is the case, then eliminating, say, x1

from the domain is not enough to eliminate y from the RIS. And this makes it difficult,
for instance, to prove the equality between a variable-RIS and a set (extensional or
RIS) having at least one element.

In turn pairwise co-injectivity is necessary to solve equations such as:

{x : X | γ • v} = {t ⊔ {y : X | φ • u}} (43)

in a finite number of iterations. Let’s assume for a moment that patterns of the form
x+ n (n constant) are allowed and (43) is instantiated as follows:

{x : X | true • x+ 2} = {5 ⊔ {y : X | true • y + 8}} (44)
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Over the integers, this equation is satisfiable only if X equals Z, as we ask for the non-
empty image of two different lines over the same domain to be equal. SATRIS would
be unable to conclude this in a finite number of iterations. Given that 5 must belong to
the l.h.s. set, then 3 ∈ X . But this implies that 11 belongs to the r.h.s. and so, to keep
the sets equal, it must belong to the l.h.s., then 9 ∈ X and so we have an infinite loop.
On the other hand, if we ask whether the two lines are equal or not:

{x : X | true • (x, x + 2)} = {(3, 5) ⊔ {y : X | true • (y, y + 8)}} (45)

SATRIS is able to give the right answer. Given that (3, 5) must belong to the l.h.s. set
then 3 ∈ X . But this implies that (3, 11) belongs to the r.h.s. and so, to keep the sets
equal, it must belong to the l.h.s. but this is impossible as (3, 11) is not a point in the
line with equation y = x+2. The difference between (44) and (45) is that in the former
patterns are not pairwise co-injective while in the latter they are.

Unfortunately, these properties cannot be easily syntactically assessed. Thus we pre-
fer to restrict LRIS by adopting a more restrictive definition of admissible pattern that
can be syntactically checked. From a more practical point of view, however, other pat-
terns could be admitted instead of those given in Definition 2.3, with the assumption
that if they verify the conditions stated above the result is surely safe; while if they do
not, it is not safe.

6.2. Functional predicate symbols

Although in general is undecidable to assert the satisfiability of formulas of the form
∀~p(¬φ(x, ~p)), where φ is a formula of an arbitrary theory T , we have identified a non-
trivial fragment of T whose satisfiability can be decided. Intuitively, this fragment is
composed by those formulas where φ is of the form φp ∧ φr such that ∀~p(¬(φp(x, ~p) ∧
φr(x, ~p))) is equivalent to an existentially quantified formula.

Definition 6.6 (Functional predicate). Let p ∈ ΠX be a predicate symbol of X with
arity n ≥ 2 . p(x1, . . . , xn−1, y) is said to be a functional predicate if given x1, . . . , xn−1

there exists at most one y such that p(x1, . . . , xn−1, y) holds.

Functional predicates are a form of encoding functions in a logic language. Indeed,
if p(x, y) is a functional predicate then it is equivalent to p(x) = y if p is seen as a
function. Further, y can be seen as the name given to the expression p(x). In other
words, we can say that y is the definition of p(x).

Note that, for any functional predicate p and given x1, . . . , xn−1, it may be the case
that p(x1, . . . , xn−1, y) does not hold for all y. For this reason we define the following.

Definition 6.7 (Pre-condition of a functional predicate). Let p(x1, . . . , xn−1, y) be a
functional predicate. Let φq be an X -formula based on symbols in ΠX \ {p}, and ~x a
subset of x1, . . . , xn−1. φq is said to be the pre-condition of p(x1, . . . , xn−1, y) if and only
if for any given x1, . . . , xn−1:

φq(~x)⇔ ∃y(p(x1, . . . , xn−1, y))

The following proposition characterizes a class of formulas including an existential
quantification whose negation is free of universal quantifiers. See the proof in Ap-
pendix C.

PROPOSITION 6.8. Let φq be the precondition of a functional predicate
p(x1, . . . , xn−1, y). Let φr be an X -formula, and ~xq and ~xr subsets of x1, . . . , xn−1. Then
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given x1, . . . , xn−1 the following holds:

∀y(¬(p(x1, . . . , xn−1, y) ∧ φr(~xr, y)))

⇔ ¬φq(~xq) ∨ φq(~xq) ∧ ∃z(p(x1, . . . , xn−1, z) ∧ ¬φr(~xr , z))

If a RIS has a filter of the form ∃n(φ(x, n)) then its negation is of the form
∀n(¬φ(x, n)). However, if φ can be written as q(x) ∧ p(x, n) ∧ r(x, n) where q is the pre-
condition of the functional predicate symbol p, then Proposition 6.8 permits to trans-
form ∀n(¬φ(x, n)) into a formula free of universal quantifiers. In effect, we have:

∀n(¬φ(d, n))

⇔ ∀n(¬(q(x) ∧ p(x, n) ∧ r(x, n))) [by definition of F ]

⇔ ∀n(¬q(x) ∨ ¬(p(x, n) ∧ r(x, n))) [by distributivity]

⇔ ¬q(x) ∨ ∀n(¬(p(x, n) ∧ r(x, n))) [by q does not depend on n]

⇔ ¬q(x) ∨ ¬q(x) ∨ ∃z(q(x) ∧ p(x, z) ∧ ¬r(x, z)) [by Proposition 6.8]

⇔ ¬q(x) ∨ ∃z(q(x) ∧ p(x, z) ∧ ¬r(x, z))

Hence, this proposition applied to RIS’ filters considerably enlarges the fragment of
decidable LRIS formulas, as is shown by the following example.

Example 6.9. Recently Cristiá and Rossi extended CLP(SET ), and its {log} im-
plementation, to support binary relations and partial functions [Cristiá et al. 2015;
Cristiá and Rossi 2019]. In this theory, called BR, binary relations and functions are
sets of ordered pairs, and a number of relational operators are provided as constraints.
Such theory has been proved to be semi-decidable for formulas involving conjunctions,
disjunctions and negations of its constraints. Notwithstanding, in the remaining of
this paper, we will consider the instance of LRIS based on the decidable fragment of
BR implemented in {log}.

Among others, BR provides the following constraints, where F,G,H are binary
relations or partial functions: apply(F, x, y), whose interpretation is F (x) = y;
comp(F,G,H) which is interpreted as the composition of F and G, i.e., H = R ◦ T ;
and pfun(F ) which constrains set F to be a partial function.
apply(F, x, y) is a functional predicate with precondition pfun(F ) ∧

ncomp({(x, x)}, F, ∅), for any F and x, where ncomp is ¬comp (notice that, if F is
a partial function, ncomp({(x, x)}, F, ∅) is true iff x belongs to the domain of F ). Hence,
the following LRIS formula is decidable for any F , x1, x2 and x3:

F = {(x1, x2), (x1, x3)} ∧ {y : {1} | ∃z(apply(F, y, z) ∧ z 6= 0)} = ∅ (46)

as the negation of ∃z(apply(F, y, z) ∧ z 6= 0) can be turned into the following decidable
X -formula, due to Proposition 6.8:

¬(pfun(F )∧ncomp({(x, x)}, F, ∅))∨(pfun(F )∧ncomp({(x, x)}, F, ∅)∧apply (F, y, n)∧n = 0)

for some new n. Possible solutions for (46) are: x2 6= x3 (i.e., F is not a function), x1 6= 1
(i.e., 1 does not belong to the domain of F ); x1 = 1∧x2 = 0∧x3 = 0 (i.e., F = {(1, 0)}).

7. RIS IN PRACTICE

RIS have been implemented in Prolog as an extension of {log} [Rossi 2008], a
freely available implementation of BR [Cristiá and Rossi 2019] extended with FD-
constraints [Dal Palú et al. 2003]. In this case, the theory X is basically the theory of
hereditarily finite hybrid sets and binary relations, augmented with that of CLP(FD),
that is integer arithmetic over finite domains. This theory provides the same function
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symbols as LRIS for building extensional set terms (namely, ∅ and {·⊔ ·}), along with a
set of predicate symbols including those of LRIS , with the same interpretation. In addi-
tion, BR provides predicate symbols such as composition of binary relations, converse
of binary relations, domain, range, etc., and the usual function symbols representing
operations over integer numbers (e.g., +,−,mod, etc.), as well as the predicate symbols
size, representing set cardinality, and ≤, representing the order relation on the inte-
gers. One notable difference w.r.t. LRIS is that set elements can be either finite sets or
non-set elements of any sort (i.e., nested sets are allowed).

The theory underlying {log} is endowed with a constraint solver which is proved to
be a semi-decision procedure for its formulas. More precisely, the constraint solver is a
decision procedure for the subclass of BR-formulas not involving (two particular forms
of) relational composition [Cristiá and Rossi 2019].

Syntactic differences between the abstract syntax used in this paper and the con-
crete syntax used in {log} are made evident by the following examples.

Example 7.1. The RIS-formula:

{5} ∈ {x : {y ⊔ D} | x 6= ∅ ∧ 5 /∈ x • x}

is written in {log} as:

{5} in ris(X in {Y/D}, X neq {}& 5 ninX,X)

where ris is a function symbol whose arguments are: i) a constraint of the form X in A
where X is the control term and A the domain of the RIS; ii) the filter given as a {log}
formula; and iii) the pattern given as a {log} term. Filters and patterns can be omitted
as in LRIS . Variables must start with an uppercase letter; the set constructor symbols
for both LRIS and {log} sets terms are written as {·/·}. If this formula is provided to
{log} it answers no because the formula is unsatisfiable.

The following are more examples of RIS that can be written in {log}.

Example 7.2.

— The multiples of N belonging to D:

ris(X inD, 0 isX modN)

where is is the Prolog built-in predicate that forces the evaluation of the arithmetic
expression at its right-hand side.

— The sets belonging to D containing a given set A:

ris(S inD, subset(A,S))

— A function that maps integers to their squares:

ris([X,Y ] inD,Y isX ∗X)

where ordered pairs are written using [·, ·]; note that the pattern can be omitted
since it is the same as the control term, that is [X,Y ].

Actually {log} implements the extended version of LRIS described in Section 6. In
particular, in {log} a RIS can contain parameters, i.e., existentially quantified vari-
ables local to the RIS; and functional predicates can be conveniently declared. Param-
eters are listed as the second argument of the ris term, while functional predicates
must be located just after the pattern, as the last argument. Both parameters and
functional predicates are optional arguments of a RIS term.
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Example 7.3. A function that maps sets to their cardinalities provided they are
greater than 1:

ris(S inD, [C], C > 1, [S,C], size(S,C))

where C is a parameter and size(S,C) is a functional predicate, whose intuitive mean-
ing is C = |S|.

RIS patterns in {log} can be any term (including {·/·}). If they verify the conditions
given in Section 6.1, then the solver is guaranteed to be a decision procedure; otherwise
this may be not the case.

Example 7.4. The formula {x : [1, 4] • 2 ∗ x} = {2, 4, 6, 8} can be written in {log} as:

ris(X in int(1, 4), true, 2 ∗X) = {2, 4, 6, 8}

where int(1, 4) is the {log} syntax to denote the interval[1, 4]. If this formula is provided
to {log} it answers yes. Note that 2 ∗ X is a bijective pattern and since it is the only
pattern in the formula is trivially pairwise co-injective. Caution must be taken if this
pattern is mixed with others.

When the domain of a RIS is at least partially specified it is also possible to explicitly
enumerate the elements of the set denoted by the RIS by means of the is operator.

Example 7.5. When

Even is ris(X in int(1, 100), true, 2 ∗X)

is run on {log} it immediately answers Even = {2, 4, . . . , 200}.

In {log} the language of the RIS and the language of the parameter theory X are
completely amalgamated. Thus, it is possible for example to use literals of the latter
in formulas of the former, as well as to share variables of both. The following example
exploits this feature.

Example 7.6. A formula to find out whether N is prime or not:

N > 1 &MD isN div 2 & ris(X in int(2,MD), 0 isN modX) = ∅

The idea is to check if the set of proper divisors of N (i.e., {x : [2,MD ] | 0 = N mod x})
is empty or not. Then, if N is bound to, say, 20, {log} answers no; but if it is bound to
101 it answers N = 101,MD = 50.

Remark 7.7. In {log} checks for detecting non-admissible formulas (see Definition
4.5) are limited to atomic formulas (i.e., RIS-constraints). As a consequence, if the
solver has to deal with general non-admissible formulas, then there is a risk that it will
go into an infinite loop. As observed at the end of Section 4.1, however, these formulas
are quite “unusual”, hence this behavior is not perceived as a problem in practice.

7.1. Case studies

In this subsection we present two case studies showing the capabilities of {log} con-
cerning RIS. The first one shows how {log} can be used as an automated theorem
prover when restricted universal quantifiers are involved. In this case study a non-
trivial security property of a security model is proved. In the second case study RIS
are used to specify a simplified version of the grep program. There we show that RIS
provide a sort of second-order language because it is possible to iterate over sets of
sets.

Case study 1 (Bell-LaPadula’s security condition). Bell and LaPadula proposed a
security model of an operating system enforcing a security policy known as multi-level
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security [Bell and LaPadula 1973a; Bell and LaPadula 1973b]. The model is a state
machine described with set theory and first-order logic. This model verifies two state
invariants, one of which is called security condition. This condition can be stated as
follows:

∀(p, f) ∈ proctbl(scf (f) � scp(p)) (47)

where proctbl is the process table represented as a set of ordered pairs of the form (p, f)
where p is a process and f a file opened in read mode by p; and scf and scp are functions
returning the security class of files and processes, respectively. A security class is an
ordered pair of the form (l, C) where l ∈ N is called security level, and C is a set of
categories. Security classes are partially ordered by the dominates relation (�) defined
as: (l1, C1) � (l2, C2)⇔ l1 ≤ l2 ∧ C1 ⊆ C2.

Bell-LaPadula’s security condition is expressible in {log} using a foreach constraint
as follows (recall Example 6.9):

secCond(Scf , Scp, Proctbl) ,

foreach([P, F ] ∈ Proctbl, apply(Scf , F, Sf ) & apply(Scp, P, Sp) & dominates(Sf , Sp))
(48)

where Sf and Sp are parameters (cf. Section 6.2). Since apply(G,X, Y ) is a functional
predicate, formula (48) lies inside of the results given in Section 6.25. In turn, the
dominates relation can be defined easily:

dominates(S1, S2) , S1 = [L1, C1] & S2 = [L2, C2] & L1 ≤ L2 & C1 ⊆ C2 (49)

More importantly, although {log} implements a semi-decision procedure for formu-
las involving partial functions, it can be used to (automatically) prove whether or not a
given operation in Bell-LaPadula’s model preserves the security condition. For exam-
ple, the operation describing process P requesting file F to be opened in read mode can
be described with a {log} formula:

openRead(Scf , Scp, Proctbl, P, F, Proctbl′) ,

[P, F ] /∈ Proctbl & apply(Scf , F, Sf ) & apply(Scp, P, Sp) & dominates(Sf , Sp)

& Proctbl′ = {[P, F ] ⊔ Proctbl}

(50)

where Proctbl′ represents the value of Proctbl in the next state (as is usual in formal
notations such as B and Z).

Hence, the proof obligation asserting that openRead preserves secCond as an invari-
ant is, informally:

secCond is true of Proctbl

∧ openRead is called on Proctbl, thus returning Proctbl′

=⇒ secCond is true of Proctbl′

However, if {log} is going to be used to discharge this proof obligation, it should be
submitted in negated form:

secCond(Scf , Scp, Proctbl)

& openRead(Proctbl, P, F, Proctbl′) (51)

& nforall([P, F ] in Proctbl′, apply(Scf , F1, Sf) & apply(Scp, P1, Sp) & dominates(Sf , Sp))

in which case in ≈ .5 s {log} answers false, as expected.

5Observe that, if f and g are two functional predicates of arity 2, then we can introduce a new predicate h,
h(x1, x2, w) ⇔ w = (n1, n2) ∧ f(x1, n1) ∧ g(x2, n2), where h(x1, x2, w) is trivially a functional predicate.
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Besides, assume the specifier makes a mistake in openRead such that the security
condition is no longer preserved. For instance, (s)he forgets dominates(Sf , Sp) as a pre-
condition. When (s)he attempts to discharge (51), {log} will return a counterexample
showing why the security condition has been violated6:

Scf = {[F1, [Lf, {N6 ⊔ N5}]] ⊔ N4},

ScP = {[P1, [Lp,Cp]] ⊔ N2},

P roctbl′ = {[P1, F1] ⊔ Proctbl},

Constraint: N6 /∈ Cp

That is, the security class of P1 does not dominate the security class of F1 because N6

does not belong to Cp.
The source code of this case study can be found in Appendix B.

In LRIS it is possible to iterate or quantify over sets whose elements are other sets—
i.e., LRIS offers a sort of second-order language. Differently from previous versions of
{log}, however, quantified set variables can be also intensional sets (namely, RIS),
not only extensional sets. In other words, in LRIS intensional sets are real first-class
citizens of the constraint language. The following case study illustrates this feature of
LRIS .

Case study 2 (A simple grep program). We can model a text file as a set of lines
and each line as a set of words, i.e., the file is modeled as a collection of sets. With this
representation it is easy to implement a basic version of the usual find function using
a formula based on set unification:

find(File,Word) , File = {{Word/Line}/Rest} (52)

However, no formula based on set unification can describe the grep program which
collects all the lines of the file where a given word is found. The reason is that it
requires to inspect all the lines of the file—i.e., all the sets of a set. For such program
a RIS can do the job:

grep(File,Word, Result) , Result = ris(Line in File,Word in Line) (53)

Furthermore, by adding a parameter to the definition of grep we can implement the
-v option which reverses the search:

grep(Opt, F ile,Word , Result) ,

Opt = ’ ’ &Result = ris(Line in File,Word in Line)

orOpt = ’v’ &Result = ris(Line in File,Word nin Line)

(54)

In this way grep is both a program and a formula. This means that we can use {log}
to run grep and to prove properties of it. For instance, we can run:

grep(’ ’, {{hello,world}, {to, be, or, not, to, be}, {i, said, hello, sir}}, hello, R) (55)

and the answer will be:

R = {{i, said, hello, sir}, {hello,world}} (56)

Now we can use {log} to prove the following two general properties of grep:

grep(’ ’, F,W,R1) ∧ grep(’v’, F,W,R2) =⇒ un(R1, R2, F ) (57)

grep(’ ’, F,W,R1) ∧ grep(’v’, F,W,R2) =⇒ disj(R1, R2) (58)

6Only the core of the counterexample is shown.
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which, as always, should be submitted to {log} in negated form:

grep(’ ’, F,W,R1) & grep(’v’, F,W,R2) & un(R1, R2, F ) (59)

grep(’ ’, F,W,R1) & grep(’v’, F,W,R2) & ndisj(R1, R2) (60)

in which case {log} answers false , as expected.

This is a significant extension w.r.t. previous versions of {log}. In fact, in those ver-
sions it was possible to give a definition such as (53) by using general intensional sets;
but, in that case, the solver would fail to prove the unsatisfiability of a general formula
such as (59), simply because it tries to replace the intensional sets with the correspond-
ing extensional definitions, instead of solving the relevant constraints directly over the
intensional sets, as it does when RIS are used.

8. EMPIRICAL EVALUATION

The goal of this empirical evaluation is to provide experimental evidence that the {log}
implementation of SATRIS works in practice. To this end we selected 176 problems
from the SET collection of the TPTP library [Sutcliffe 2009]. The selected problems
are those representing quantifier-free, first-order set theory results involving conjunc-
tions, disjunctions and negations of set equality, membership, union, intersection, dif-
ference, disjointness and complement that can be encoded in {log}. The TPTP.SET
problem collection has been used to empirically evaluate previous versions of {log}
[Cristiá and Rossi 2019].

From these 176 formulas we generated two larger collections of formulas involving
RIS: the NEGATIVE collection, where formulas are expected to be unsatisfiable; and
the POSITIVE collection, where formulas are expected to be satisfiable, although a few
of them are not.

The NEGATIVE collection was generated as follows. Let Θ be the formula of one of
the selected 176 problems. Let vars(Θ) be the set of free variables of Θ. Then Θ is
transformed into:

Θ′
∧

A∈vars(Θ)

A = ris(X inDA, [V],F,P,C)

where: X and DA are variables; Θ′ is obtained from Θ by replacing every occurrence of
{} by ris(X inD, [ ],F∅); and D, F∅, V, F, P and C are instantiated as depicted in Table
I. This means that for each instance of V, F and C, an instance of P and an instance
of D and F∅ are selected. Besides, note that for each A ∈ vars(Θ) a different domain
variable is generated (i.e., DA). In this way, the initial 176 formulas are transformed
into 5813 formulas where all variables and every occurrence of the empty set are RIS
terms.

In turn, the POSITIVE collection is generated as follows. First, one RIS-constraint
of each of the 176 original formulas is negated (specifically, it is replaced by its negated
version). In general this turns the formula from unsatisfiable to satisfiable. However,
27 formulas become trivial and so were removed. Then, if Θ is one of the remaining
149 formulas is transformed as follows:

Θ′
∧

A∈vars(Θ)

A = ris(X inDA, [V],F,P,C) ∧DA neq {}

where the same considerations of the NEGATIVE collection apply. The last conjunct
implies that every non-empty RIS has at least one element. In this way the POSITIVE

collection has 4728 problems.
The union of the NEGATIVE and POSITIVE collections makes a 10541 problems

benchmark to evaluate the automated processing of RIS.
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Table I. Domain, filter, pattern and functional predicates used to generate RIS formulas. Recall that in {log} the
fifth argument of a RIS term is used to specify the functional predicates possibly occurring in the RIS.

INSTANCES OF V, F AND C

Bi and D are new variables for each instance

ris(X inD, [ ], true,P, true) ris(X inD, [ ],X inB,P, true)
ris(X inD, [ ],X ninB,P, true) ris(X inD, [B],X inB,P, un(B1, B2, B))
ris(X inD, [B],X ninB,P, un(B1, B2, B)) ris(X inD, [ ], disj(X,B1),P, true)
ris(X inD, [ ], ndisj(X,B1),P, true) ris(X inD, [ ],X = B1,P, true)
ris(X inD, [ ],X neq B1),P, true)

INSTANCES OF P

X is the control variable and V is a new variable for each instance

X [X, V ]

INSTANCES OF D AND F∅

Bi are new variables for each instance

ris(X in {}, [ ], false) ris(X in {}, [ ], true)
ris(X in {B1/B2}, [ ],X neq B1 &X ninB2)

Table II. Summary of the empirical evaluation

COLLECTION PROBLEMS SOLVED PERCENTAGE AVERAGE TIME

FIRST EXPERIMENT (2 SECONDS TIMEOUT)

NEGATIVE 5813 4837 83% 0.069 s
POSITIVE 4728 4142 88% 0.035 s

SECOND EXPERIMENT (60 SECONDS TIMEOUT)

NEGATIVE 976 266 27% 13.718 s
POSITIVE 586 173 30% 13.680 s

SUMMARY 10541 9418 89% 0.690 s

We run two experiments to empirically assess the effectiveness and efficiency of {log}
on the automated processing of RIS. In these experiments we measure the number of
formulas that {log} solves before a given timeout and the average time in doing so.

The results of these experiments are summarized in Table II. In the first experiment
the timeout is 2 seconds; in the second experiment the timeout is 60 seconds but only
the unsolved formulas of the first experiment are considered. That is, the 976 ‘negative’
formulas and the 586 ‘positive’ formulas used in the 60 seconds experiment are those
that remain unsolved in the 2 seconds experiment. The last row of the table shows a
summary of both experiments.

According to these figures, it can be said that augmenting the timeout from 2 seconds
to 60 seconds produces a modest gain in the number of solved formulas, but given
that most of the formulas are solved in a few milliseconds, setting a higher timeout
would not be harmful. Finally, considering both experiments {log} solves 89% of the
benchmark in just below three quarters of a second in average.

Although these results are good, there is room for improvements. One such improve-
ment is a more efficient implementation of derived constraints (cf. Section 2.4). In a
previous work [Cristiá and Rossi 2019], we have used the initial 176 formulas (that is,
formulas where set variables are not bound to RIS terms) to assess a version of {log}
where intersection, subset and difference are implemented as derived constraints.
That is, for instance, an inters constraint is rewritten as a formula based on un and
disj instead of being processed by an ad-hoc rewriting procedure. When these formulas
are run on that version of {log}, it solves 94% in 0.078 seconds in average; but when
just intersection and subset are processed by ad-hoc rewriting procedures, {log} solves
all of them. In the current version of {log}, intersection, subset and difference on RIS
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terms are treated as derived constraints. Based on the results obtained with the pre-
vious work, it is reasonable to assume that extending the ad-hoc rewriting procedures
for these constraints to RIS terms might yield significantly better results than those
reported in Table II.

8.1. Technical details of the empirical evaluation

The experiments were performed on a Latitude E7470 (06DC) with a 4 core Intel(R)
CoreTM i7-6600U CPU at 2.60GHz with 8 Gb of main memory, running Linux Ubuntu
18.04.3 (LTS) 64-bit with kernel 4.15.0-65-generic. {log} 4.9.6-17i over SWI-Prolog
(multi-threaded, 64 bits, version 7.6.4) was used during the experiments.

Each {log} formula was run within the following Prolog program:

use_module(library(dialect/sicstus/timeout)).
consult(’setlog.pl’).
consult_lib.
set_prolog_flag(toplevel_print_options,[quoted(true),portray(true)]).
get_time(Tini).
time_out(setlog(<FORMULA>), <TIMEOUT>, _RES).
get_time(Tend).

where <FORMULA> is replaced by each formula and <TIMEOUT> is either 2000 or 60000
depending on the experiment. Each of these programs was run from the command line
as follows:

prolog -q < <PROG>

The execution time for each problem is calculated as Tend - Tini.
The full data set containing all these Prolog programs can be downloaded from

https://www.dropbox.com/s/d1ysiq3eji2xg9a/exTOPLAS.tar.gz?dl=0.

9. RELATED WORK

As mentioned in Section 1, some form of intensional sets is offered by the CLP language
CLP(SET ). Specifically, CLP(SET ) supports general intensional sets by implementing
set-grouping on top of the language itself (i.e., not as a primitive feature of the lan-
guage). Hence, formulas involving intensional sets fall outside the scope of CLP(SET )’s
decision procedure. As an example, the formula A ∩ B 6= {x : x ∈ A ∧ x ∈ B}, which is
written in CLP(SET ) as

inters(A,B,C) &D = {X : X inA&X inB}& C neqD

is (wrongly) found to be true by the CLP(SET ) resolution procedure. Conversely, the
same formula but written using RIS is (correctly) found to be unsatisfiable by SATRIS .

A very general proposal providing real intensional set constraints, where inten-
sional set processing is embedded within a general set constraint solver, is CLP({D})
[Dovier et al. 2003]. CLP({D}) is a CLP language offering arbitrarily nested exten-
sional and intensional sets of elements over a generic constraint domain D. No work-
ing implementation of this proposal, however, has been developed. As observed in
[Dovier et al. 2003], the presence of undecidable constraints such as {x : p(x)} = {x :
q(x)} (where p and q can have an infinite number of solutions) “prevents us from de-
veloping a parametric and complete solver”. Conversely, this problem can be “approx-
imated” using RIS as {x : D1 | p(x)} = {x : D2 | q(x)}, D1, D2 variables. For SATRIS ,
this is a solved form formula admitting at least one solution, namely D1 = D2 = ∅;
hence, it is simply returned unchanged by the solver. Generally speaking, finding a
fragment of intensional sets that is both decidable and expressive is a key issue for the
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development of an effective tool for reasoning with intensional sets. RIS, as presented
here, may be one step toward this goal.

The usefulness of “a direct support for reasoning about set comprehension” in the
context of SMT solvers has been also recently advocated by Lam and Cervesato
[Lam and Cervesato 2014]. In their approach, however, no ad-hoc solver for intensional
set constraints is indeed developed; rather, the satisfiability problem for formulas fea-
turing intensional sets over a standard theory (e.g., linear integer arithmetic) is re-
duced to solving satisfiability constraints over this same theory, extended with an un-
interpreted sort for sets and an uninterpreted binary predicate encoding set member-
ship.

A number of works in the area of Computable Set Theory (CST) have studied the
satisfiability problem of different fragments of set theory with quantifiers. Clearly,
the availability of quantifiers plus set constraints opens the door to intensional sets.
Cantone and Zarba [Cantone and Zarba 2000] introduce the language 2LS(L) which
is parametric w.r.t. a first-order language L. 2LS(L) extends L with set constants,
functional symbols, standard Boolean set operators, set membership and equality. The
authors show that, if the first-order theory underlying L, T , is ground-decidable and
the collection of ground terms of T is finite, then the T -satisfiability problem for ∃∀-
sentences of 2LS(L), i.e., formulas where all terms not involving any set-theoretic sym-
bol are ground, is decidable.

In another work Cantone and Longo present the ∀π0,2 language
[Cantone and Longo 2014]. ∀π0,2 is a two-sorted quantified fragment of set theory
which allows restricted quantifiers of the forms (∀x ∈ A), (∃x ∈ A), (∀(x, y) ∈ R),
(∃(x, y) ∈ R) and literals of the forms x ∈ A, (x, y) ∈ R, A = B, R = S, where A and B
are set variables (i.e., variables ranging over sets) and R and S are relation variables
(i.e., variables ranging over binary relations). ∀π0,2-formulas can be conjunctions of
RUQ and conjunctions of Restricted Existential Quantifiers (REQ), with some mild
restrictions. This language is expressive enough as to describe all the Boolean set
operators and disequalities of relational operators such as composition, domain and
relational image (e.g., R ◦ S ⊆ T but not T ⊆ R ◦ S). Although ∀π0,2 is not parametric
w.r.t. a first-order language, certain forms of intensional sets can be described as well.
Cantone and Longo show that ∀π0,2 is decidable.

One important difference between our work and those on CST is that the later
is mainly concerned with decidability results for fragments of set theory, while the
rewriting systems used in our works are also able to generate a finite representation
of all the (possibly infinitely many) solutions of each input formula.

Several logics (e.g., [Dragoi et al. 2014; Veanes and Saabas 2008; Wies et al. 2009])
provide some forms of intensional sets. However, in some cases, for the formula to be in-
side the decision procedure, the intensional sets must have a ground domain; in others,
set operators do not include set equality; and in others, they present a semi-decision
procedure. Handling intensional sets can be related also to handling universal quanti-
fiers in a logical setting, since intensional sets “hide” a universal quantifier. Tools such
as SMT solvers deal with this kind of problems (see, e.g., [Deharbe et al. 2011] and
[Bjørner et al. 2013]), although in general they are complete only in quite restricted
cases [Ge and de Moura 2009]. Recently, a language admitting some forms of quanti-
fied formulas over sets was proven to be decidable in the context of separation logic
[Gao et al. 2019].

Our decision procedure finds models for formulas with finite but unbounded do-
mains, i.e., their cardinalities are not constrained by a fixed value. The field of finite
model finding faces a similar problem but usually with bounded domains. There are
two basic styles of model finding: the MACE-style in which the formula is transformed
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into a SAT problem [Claessen and Sörensson 2003]; and the SEM-style which uses
constraint solving techniques [Zhang and Zhang 1996]. Our approach is closer to the
SEM-style as it is based on constraint programming. However, since both styles do not
deal with quantified domains as sets, then they cannot reduce the domain every time
an element is identified, as we do with RIS—for instance, in rule (5). Instead, they set
a size for the domain and try to find a model at most as large as that.

Ideas from finite model finding were taken as inspiration by Reynolds et al.
[Reynolds et al. 2013] for handling universal quantifiers in SMT. These authors pro-
pose to find finite models for infinite universally quantified formulas by considering
finite domains. In particular, Reynolds et al. make use of the cardinality operator for
the sorts of quantified variables and propose a solver for a theory based on this opera-
tor. Then, they make a guess of the cardinality for a quantified sort and use the solver
to try to find a model there. In the default strategy, the initial guess is 1 and it is in-
cremented in 1. Note that our approach does not need a cardinality operator because
it operates directly over a theory of sets.

10. CONCLUDING REMARKS

In this paper we have shown a decision procedure for an expressive class of intensional
sets, called Restricted Intensional Sets (RIS). Key features of this procedure are: it re-
turns a finite representation of all possible solutions of the input formula; it allows
set elements to be variables; it is parametric with respect to any first-order theory
endowed with a decision procedure; and it is implemented as part of the {log} tool.
Besides, we have shown through a number of examples and two case studies that, al-
though RIS are a subclass of general intensional sets, they are still sufficiently expres-
sive as to encode and solve many interesting problems. Finally, an extensive empirical
evaluation provides evidence that the tool can be used in practice.

We foresee some promising lines of work concerning RIS:

— Some set-theoretic operators (e.g., intersection), which are provided in LRIS as de-
rived constraints, are first rewritten into a LRIS formula and then SATRIS is ap-
plied to the resulting formula. This threatens the efficiency of SATRIS . Hence, a
future work is to implement specific rewriting procedures for some widely used con-
straints such as intersection.

— The relational operators available in BR could be extended to allow for RIS as argu-
ments.

— As it is now, LRIS admits only RUQ of the form ∀x ∈ A(φ(x)), that is, a single bound
variable and its domain. Extending LRIS to allow multiple bound variables, each
with its own domain, would require to admit certain RIS-formulas as RIS filters.
For example, ∀x ∈ A(∀y ∈ B(φ(x, y))) can be encoded as:

A ⊆ {x : A | B ⊆ {y : B | φ(x, y)}}

but this is not a RIS-formula because the filter of the outermost RIS is a RIS-
formula. Our intuition is that this would not only be decidable but relatively efficient
too, which, in the end, would be aligned with some results of CST.
An alternative way of encoding RUQ with multiple variables is by allowing the re-
cently added Cartesian products [Cristiá and Rossi 2018] as RIS domains. We plan
to assess both approaches.
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Patricia M. Hill and John W. Lloyd. 1994. The Gödel programming language. MIT Press. I–XX, 1–348 pages.

Daniel Jackson. 2006. Software Abstractions: Logic, Language, and Analysis. The MIT Press.

Edmund S. L. Lam and Iliano Cervesato. 2014. Reasoning About Set Comprehensions. In Proceedings of
the 12th International Workshop on Satisfiability Modulo Theories, SMT 2014, affiliated with the 26th
International Conference on Computer Aided Verification (CAV 2014), the 7th International Joint Con-
ference on Automated Reasoning (IJCAR 2014), and the 17th International Conference on Theory and
Applications of Satisfiability Testing (SAT 2014), Vienna, Austria, July 17-18, 2014. (CEUR Workshop
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A. REWRITE RULES

This section lists all the LRIS rewrite rules for =, 6=, ∈ and /∈ constraints not given
in Section 3.2, along with the rules for set and isX constraints; rules for un and disj
constraints are instead all shown in Section 3.2 and are not repeated here. Many of
the rules listed in this appendix are borrowed directly from [Dovier et al. 2000].

We adopt the following notational conventions: s, t, u (possibly subscripted) stand
for arbitrary X -terms; A,B,C,D stand for arbitrary RIS-terms of sort Set (either ex-
tensional or intensional, variable or not); D̄, Ē represent either variables of sort Set
or variable-RIS; X,N are variables of sort Set representing extensional sets (not RIS)
while x is a variable of sort X; ∅ represents either ∅ or a RIS with empty domain (e.g.,
{∅ | φ •u}); finally, X represents either the variable X or a set term containing X as its
innermost variable set part, i.e., {t1, . . . , tn⊔X}. Note that, when n = 0, {t1, . . . , tn⊔X}
is just X .

In all rules, variables appearing in the right-hand side but not in the left-hand side
are assumed to be fresh variables.

Besides, recall that: a) the rules are given for RIS whose domain is not another RIS
(see Appendix A.1 for further details); b) the control term of RIS terms is assumed to
be a variable in all cases (see Appendix A.2 for further details); c) φ(d), γ(d), u(d) and
v(d) are shorthands for φ[x 7→ d], γ[x 7→ d], u[x 7→ d] and v[x 7→ d], respectively, where
[x 7→ d] represents variable substitution; and d) we use = and ∈ in place of =X and ∈X
whenever it is clear from the context.

Equality

∅ = ∅ −→ true (=1)

X = X −→ true (=2)

If S ≡ X or S ≡ {c : X | φ • u} with c ≡ u:

X = {t0, . . . , tk ⊔ S} −→ X = {t0, . . . , tk ⊔ S[X 7→ N ]} (=3)

If X occurs in other constraints in the input formula and A 6≡ {{d ⊔D} | φ • u}:

X = A −→ X = A and substitute X by A in the rest of the formula (=4)

∅ = {t ⊔ A} −→ false (=5)
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If (R ≡ X and S ≡ X) or (R ≡ {c : X | φ • u} and S ≡ X) or

(R ≡ {c : X | φ • u} and S ≡ {d : X | γ • v}) with c ≡ u and d ≡ v:

{t0, . . . , tm ⊔ R} = {s0, . . . , sk ⊔ S} −→

t0 = sj

∧ {t0 ⊔ N1} = R ∧ t0 /∈ N1 ∧ {t0 ⊔ N2} = S ∧ t0 /∈ N2

∧ {t1, . . . , tm ⊔ N1} = {s0, . . . , sj−1, sj+1, . . . , sk ⊔ N2}

∨ t0 = sj

∧ t0 /∈ R ∧ t0 /∈ S

∧ {t1, . . . , tm ⊔ R} = {s0, . . . , sj−1, sj+1, . . . , sk ⊔ S}

∨ t0 = sj

∧ {t0 ⊔ N} = R ∧ t0 /∈ N ∧ t0 /∈ S

∧ {t1, . . . , tm ⊔ N} = {s0, . . . , sj−1, sj+1, . . . , sk ⊔ S}

∨ t0 = sj

∧ t0 /∈ R ∧ {sj ⊔ N} = S ∧ sj /∈ N

∧ {t1, . . . , tm ⊔ R} = {s0, . . . , sj−1, sj+1, . . . , sk ⊔ N}

∨ t0 = sj ∧ {t1, . . . , tm ⊔ R} = {s0, . . . , sk ⊔ S}

∨ t0 = sj ∧ {t0, . . . , tm ⊔ R} = {s0, . . . , sj−1, sj+1, . . . , sk ⊔ S}

∨X = {t0 ⊔ N}

∧ if S ≡ X then true else γ(t0)

∧ {t1, . . . , tm ⊔ R[X 7→ N ]} = {s0, . . . , sk ⊔ S[X 7→ N ]}

(=6)

If R ≡ X and S ≡ {d : X | γ • v} with d ≡ v:

{t0, . . . , tm ⊔ R} = {s0, . . . , sk ⊔ S} −→ {s0, . . . , sk ⊔ S} = {t0, . . . , tm ⊔ R} (=7)
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If R ≡ {c : X | φ • u} and S ≡ {d : X | γ • v} with c 6≡ u and d 6≡ v :

{t0, . . . , tm ⊔ R} = {s0, . . . , sk ⊔ S} −→

t0 = sj

∧ {t0 ⊔ N1} = R ∧ t0 /∈ N1 ∧ {t0 ⊔ N2} = S ∧ t0 /∈ N2

∧ {t1, . . . , tm ⊔ N1} = {s0, . . . , sj−1, sj+1, . . . , sk ⊔ N2}

∨ t0 = sj

∧ t0 /∈ R ∧ t0 /∈ S

∧ {t1, . . . , tm ⊔ R} = {s0, . . . , sj−1, sj+1, . . . , sk ⊔ S}

∨ t0 = sj

∧ {t0 ⊔ N} = R ∧ t0 /∈ N ∧ t0 /∈ S

∧ {t1, . . . , tm ⊔ N} = {s0, . . . , sj−1, sj+1, . . . , sk ⊔ S}

∨ t0 = sj

∧ t0 /∈ R ∧ {sj ⊔ N} = S ∧ sj /∈ N

∧ {t1, . . . , tm ⊔ R} = {s0, . . . , sj−1, sj+1, . . . , sk ⊔ N}

∨ t0 = sj ∧ {t1, . . . , tm ⊔ R} = {s0, . . . , sk ⊔ S}

∨ t0 = sj ∧ {t0, . . . , tm ⊔ R} = {s0, . . . , sj−1, sj+1, . . . , sk ⊔ S}

∨X = {n ⊔ N} ∧ γ(n) ∧ t0 = v(n)

∧ (¬φ(n) ∨ (φ(n) ∧ u(n) /∈ {s0, . . . , sk} ∧ t0 = u(n)))

∧ {t1, . . . , tm ⊔ R[X 7→ N ]} = {s0, . . . , sk ⊔ S[X 7→ N ]}}

∨X = {n ⊔ N} ∧ γ(n) ∧ t0 = v(n) ∧ φ(n) ∧ u(n) = sj

∧ {u(n), t1, . . . , tm ⊔ R[X 7→ N ]} = {s0, . . . , sk ⊔ S[X 7→ N ]}}

(=8)

{t⊔A} = {s ⊔ B} −→

(t = s ∧ A = {s ⊔ B}) ∨ (t = s ∧ {s ⊔ A} = B)

∨ (t = s ∧ A = B) ∨ (A = {s ⊔ N} ∧ {t ⊔ N} = B)

(=9)

(rule (5) of Fig. 1)

{{t ⊔ D} | φ • u} = ∅ −→ ¬φ(t) ∧ {D | φ • u} = ∅ (=10)

(rule (6) of Fig. 1)

{{t ⊔ D} | φ • u} = B −→

(φ(t) ∧ {u(t) ⊔ {D | φ • u}} = B) ∨ (¬φ(t) ∧ {D | φ • u} = B)
(=11)

If S ≡ X or S ≡ {c : X | φ • u} with c ≡ u and d ≡ v:

{d :X | γ • v} = {t0, t1, . . . , tk ⊔ S} −→

X = {t0 ⊔ N} ∧ γ(t0) ∧ {d : N | γ • v} = {t1, . . . , tk ⊔ S[X 7→ N ]}
(=12)

If S ≡ {c : X | φ • u} with c 6≡ u and d 6≡ v:

{d :X | γ • v} = {t0, t1, . . . , tk ⊔ S} −→

X = {n ⊔ N} ∧ γ(n) ∧ t0 = v(n) ∧ (¬φ(n) ∨ t0 = u(n))

∧ {d : N | γ • v} = {t1, . . . , tk ⊔ S[X 7→ N ]}

(=13)
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(rule (7) of Fig. 1)

{D̄ | φ • u} = {t ⊔ A} −→

D̄ = {n ⊔ N} ∧ φ(n) ∧ t = u(n) ∧ {N | φ • u} = A
(=14)

There is a symmetric rule for each of the following: (=3), (=4), (=5), (=10), (=11), (=12),
(=13) and (=14). That is, these rules apply when the l.h.s. and the r.h.s. are switched.

All other admissible =-constraints are in solved form; hence, they are dealt with as
irreducible constraints (see Section 4.2).

Remark A.1.

— Rules (=1) and (=5) include rules (3) and (4) of Figure 1 as special cases.
— The condition A 6≡ {{d⊔D} | φ •u} in rule (=4) is motivated by the fact that the case

where A ≡ {{d ⊔D} | φ • u} is dealt with by rule (=11).
— The set part of an extensional set can be also a RIS term. All rules listed in this

section still continue to work also in these cases. In particular, rule (=3) deals also
with constraints of the form X = {t0, . . . , tn⊔{X | φ•u}}where the domain of the RIS
is the same variable occurring in the left-hand side of the equality. This constraint is
rewritten to X = {t0, . . . , tn⊔{N | φ•u}}where N is a fresh variable. For example, the
equality X = {a, b⊔{x : X | true•x}} is rewritten to X = {a, b⊔{x : N | true•x}}. Note
that, if N = ∅, then X = {a, b}, which is clearly a solution of the given constraint.

— Rules (=12) and (=13) (resp., (=6), (=7) and (=8)) are motivated by the observation
that rule (=14) (resp., (=9)) does not work satisfactory (it loops forever) whenever the
same variable X occurs in both sides of the equation. As an example, the rewriting
of the simple constraint {x : D • x} = {1 ⊔ D} does not terminate using rule (=14),
though it has the obvious solution D = {1 ⊔N}, N a fresh variable. Thus, rules (=12)
and (=13) (resp., (=6), (=7) and (=8)) are introduced to deal with these special cases.
Note that these rules are, in a sense, the analogous of rule (=3) which deals with
equations of the form X = {t0, . . . , tn ⊔ X} where the same variable X occurs in both
sides of the equation. In turn, rule (=3) is a generalization to RIS of rule (6) listed
in Figure 3 of [Dovier et al. 2000].

Inequality

∅ 6= ∅ −→ false ( 6=1)

X 6= X −→ false ( 6=2)

If A is neither a variable nor a RIS:

A 6= X −→ X 6= A ( 6=3)

∅ 6= {t ⊔ A} −→ true ( 6=4)

If S ≡ X or S ≡ {D | φ • u}:

X 6={t0, . . . , tn ⊔ S} −→

(n ∈ X ∧ n /∈ {t0, . . . , tn ⊔ S}) ∨ (n /∈ X ∧ n ∈ {t0, . . . , tn ⊔ S})
( 6=5)

{t⊔A} 6= {s ⊔ B} −→

(n ∈ {t ⊔ A} ∧ n /∈ {s ⊔ B}) ∨ (n /∈ {t ⊔ A} ∧ n ∈ {s ⊔ B})
( 6=6)
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(rule (8) of Fig. 1)

{D |φ • u} 6= A −→

(n ∈ {D | φ • u} ∧ n /∈ A) ∨ (n /∈ {D | φ • u} ∧ n ∈ A)
( 6=7)

There is a symmetric rule for each of the following: ( 6=4) and ( 6=7). That is, these rules
apply when the l.h.s. and the r.h.s. are switched.

All other admissible 6=-constraints are in solved form (see Section 4.2).

Remark A.2. The fact that X 6= {D | φ•u} (rule ( 6=7)) and X 6= {t0, . . . , tn⊔{D | φ•u}}
(rule ( 6=5)) are not considered in solved form as it is X 6= S when S is not a RIS term
is motivated by the observation that, while determining the satisfiability of X 6= S is
immediate, the satisfiability of of the inequalities involving RIS depends on D, φ and
u, and hence requires further simplification of the constraint.

Set membership

t ∈ ∅ −→ false (∈1)

t ∈ {s ⊔ A} −→ t = s ∨ t ∈ A (∈2)

t ∈ X −→ X = {t ⊔ N} (∈3)

(rule (10) of Fig. 2)

t ∈ {D | φ • u} −→ n ∈ D ∧ φ(n) ∧ t = u(n) (∈4)

No other admissible ∈-constraint.

Not set membership

t /∈ ∅ −→ true (/∈1)

t /∈ {s ⊔ A} −→ t 6= s ∧ t /∈ A (/∈2)

(rule (12) of Fig. 2)

t /∈ {{d ⊔ D} | φ • u} −→

(φ(d) ∧ t 6= u(d) ∧ t /∈ {D | φ • u}) ∨ (¬φ(d) ∧ t /∈ {D | φ • u})
(/∈3)

All other admissible /∈-constraints are in solved form (see Section 4.2).

Remark A.3 (Membership/not membership). Rules (∈1) and (/∈1) include rules (9)
and (11) of Figure 2 as special cases.

Sort constraints

set(∅) −→ true (set1)

set({t ⊔ A}) −→ set(A) (set2)

set({D | φ • u}) −→ true (set3)

set(t) −→ false (set4)
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isX (∅) −→ false (isX 1)

isX (t ⊔ A} −→ false (isX 2)

isX ({D | φ • u}) −→ false (isX 3)

isX (t) −→ true (isX 4)

Remark A.4. In Algorithm 1 (see Section 3), SATRIS calls SATX only once, at the
end of the computation. SATX is called by passing it the whole collection of X literals
previously accumulated in the current formula Φ by the repeated applications of the
rewrite rules within STEP. Alternatively, and more efficiently, SATX could be called
repeatedly in the inner loop of the solver, just after the STEP procedure has been
called. This would allow possible inconsistencies to be detected as soon as possible
instead of being deferred to the last step of the decision procedure. For example, if Φ
contains the equation {1} = {2}, which is rewritten by STEP as 1 =X 2, calling SATX

just after STEP ends allows the solver to immediately detect that Φ is unsatisfiable.
Similarly, variable substitutions entailed by equalities possibly returned by SATX are
propagated to the whole formula Φ as soon as possible.

A.1. Nested RIS domains

According to the syntax of LRIS (see Section 2), RIS domains can be a nested chain
of RIS, ending in a variable or an extensional set. On the other hand, the rewrite
rules presented in Section 3.2 and Appendix A apply only to RIS whose domain is not
another RIS. We do so because the rewrite rules for the most general case are more
complex, thus they would hinder understanding of the decision procedure.

These more general rules, however, can be easily generated from the rules for the
simpler case. In this section we show how this generalization can be done by showing
how one of the rules presented in Section 3.2, namely rule (6), is adapted to deal with
the more general case. All other rewrite rules can be generalized in the same way.

Consider a non-variable RIS whose domain is a nested chain of RIS where the inner-
most domain is an extensional set. The generalization of rule (6) to a RIS of this form
is a follows:

{{. . . {{d ⊔ D} | φ1 • u1} . . . | φm−1 • um−1} | φm • um} = B −→

{. . . {{d ⊔ D} | φ1 • u1} . . . | φm−1 • um−1} = {n ⊔ N}

∧ (φ(n) ∧ {um(n) ⊔ {N | φm • um}} = B

∨ ¬φ(n) ∧ {N | φm • um} = B)

where n and N are two new variables. Note that the first element n of the domain
of the outermost RIS is obtained by the recursive application of the same rules for
equality, over the domain itself (possibly another RIS) and the extensional set {n ⊔N}.
Note also that when m = 1 this rule boils down to rule (6) of Figure 1.

A.2. Control Terms

As with nested RIS domains, we preferred not to show the rewrite rules when the
control term is not a variable, as these rules are somewhat more complex than the
others.

According to Definition 2.3, when the control term is not a variable then it is an
ordered pair of the form (x, y) where both components are variables. Consider the fol-
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lowing RIS:

{(x, y) : {(1, 2), 55} | φ • u}

The problem with this RIS is that (x, y) does not unify with 55, for all x and y. The
semantics of RIS stipulates that 55 must not be considered as a possible value on
which evaluate φ and u.

As this example shows, it is necessary to consider one more case (i.e., one more non-
deterministic choice) in each rewriting rule. For example, if in rule (6) we consider a
general control term c, and not just a variable, the rule is split into two rules:

If c ∈ V or d ∈ V or (c ≡ f(x1, . . . , xn) and d ≡ f(t1, . . . , tn)):

{c : {d ⊔ D} | φ • u} = B −→

c = d ∧ φ(d) ∧ {u(d) ⊔ {c : D | φ • u}} = B

∨ c = d ∧ ¬φ(d) ∧ {c : D | φ • u} = B

If c ≡ f(x1, . . . , xn) and d ≡ g(t1, . . . , tm) and (f 6≡ g or n 6≡ m):

{c : {d ⊔ D} | φ • u} = B −→ {c : D | φ • u} = B

Note how the second rule simply skips d.

B. SOURCE CODE OF THE BELL-LAPADULA CASE STUDY

:- int_solver(clpq).

dominates([L1,C1],[L2,C2]) :-
subset(C1,C2) & L1 =< L2.

openRead(ScF,ScP,Proctbl,P,F,Proctbl_) :-
[P,F] nin Proctbl &
apply(ScF,F,[Lf,Cf]) &
apply(ScP,P,[Lp,Cp]) &
dominates([Lf,Cf],[Lp,Cp]) &
Proctbl_ = {[P,F]/Proctbl}.

seccond(ScF,ScP,Proctbl) :-
foreach([Pi,Fi] in Proctbl,

[Lf1,Cf1,Lp1,Cp1],
subset(Cf1,Cp1) & Lf1 =< Lp1,
apply(ScF,Fi,[Lf1,Cf1]) & apply(ScP,Pi,[Lp1,Cp1])
).

openReadPreservesSeccond(ScF,ScP,Proctbl) :-
seccond(ScF,ScP,Proctbl) &
openRead(ScF,ScP,Proctbl,P,F,Proctbl_) &
nforeach([Pi,Fi] in Proctbl_,

[Lf1,Cf1,Lp1,Cp1],
subset(Cf1,Cp1) & Lf1 =< Lp1,
apply(ScF,Fi,[Lf1,Cf1]) & apply(ScP,Pi,[Lp1,Cp1])

).
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C. DETAILED PROOFS

This section contains detailed proofs of the theorems stated in the main text, along
with some results that justify some of our claims. We start with the justification that
RIS can be used to encode restricted universal quantifiers.

PROPOSITION C.1.

D ⊆ {x : D | F} ⇔ ∀x(x ∈ D =⇒ F )

PROOF.
=⇒)

x ∈ D

=⇒ x ∈ {x : D | F} [by H]

=⇒ x ∈ D ∧ F (x) [by RIS def.]

=⇒ F (x)

⇐=)

x ∈ D

=⇒ F (x) [by H]

=⇒ x ∈ D ∧ F (x)

=⇒ x ∈ {x : D | F} [by RIS def.]

The following proposition supports the claim that to force a RIS to be empty it is
enough to consider its filter.

PROPOSITION C.2. If D is a non-empty set, then:

{x : D | φ • u} = ∅ ⇔ ∀x(x ∈ D =⇒ ¬φ(x))

PROOF.

{x : D | φ • u} = ∅

⇔ {y : ∃d(x ∈ D ∧ φ ∧ y = u)} = ∅

⇔ ∀y(¬∃d(d ∈ D ∧ φ ∧ y = u))

⇔ ∀y(∀d(d /∈ D ∨ ¬φ(d) ∨ y 6= u(d)))

⇔ ∀d(d ∈ D =⇒ ¬φ(d))

The following proposition supports the claim that many RIS parameters can be
avoided by a convenient control term.

PROOF OF PROPOSITION 6.1.
=⇒)

a ∈ S

⇔ ∃x, ~p(x ∈ D ∧ ~p ∈ D2 ∧ F (x,~v, ~p) ∧ P (x,~v, ~p) = a) [by H; RIS def.]

⇔ ∃x, ~p((x, ~p) ∈ D ×D2 ∧ F (x,~v, ~p) ∧ P (x,~v, ~p) = a) [by × def.]

⇔ a ∈ {(x, ~p) : D1 ×D2 | F ((x, ~p), ~v) • P ((x, ~p), ~v)} [by RIS def.]

⇐=) Similar to the previous case.
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Now we prove Proposition 6.8 which gives the conditions to eliminate existential
quantifiers appearing in RIS filters in relation to functional predicates.

PROOF OF PROPOSITION 6.8. Note that:

∀y(¬(p(x1, . . . , xn−1, y) ∧ φr(~xr, y)))

⇔ ∀y(¬p(x1, . . . , xn−1, y) ∨ ¬φr(~xr, y)) (1)

Now we divide the proof into two implications.

=⇒) If φq(~xq) does not hold the conclusion is proved. Now assume φq(~xq) holds. Then
p(x1, . . . , xn−1, z) holds for some z due to the hypothesis and Definition 6.7. Hence for
(1) to be true, φr(~xr, z) must be false (because otherwise the disjunction would be true
for z). So in this case we have φq(~xq) ∧ p(x1, . . . , xn−1, z) ∧ ¬φr(~xr, z), which proves the
conclusion.

⇐=) If φq(~xq) does not hold then p(x1, . . . , xn−1, y) does not hold for all y due to the
hypothesis and Definition 6.7. Hence the conclusion.

Now assume z is such that φq(~xq) ∧ p(x1, . . . , xn−1, z) ∧ ¬φr(~xr, z) is true. Then the
conclusion is true for z because φr(~xr , z) is false. Now consider any y 6= z. Given that p
is a functional predicate symbol (hypothesis), then we have ¬p(x1, . . . , xn−1, y) because
p can hold for at most one value of its last parameter (and we know it holds for z). So
the conclusion.

The next subsections provide the proofs of the theorems stated in the main text. All
these proofs concern the base LRIS language, not the possible extensions discussed in
Section 6 nor those presented in Appendixes A.1 and A.2.

C.1. Satisfiability of the solved form (Theorem 4.10)

Basically, the proof of this theorem uses the fact that, given a pure RIS-formula Φ
verifying the conditions of the theorem, it is possible to guarantee the existence of a
successful assignment of values to all variables of Φ using pure sets only, with the
only exception of the variables X occurring in terms of the form X = u—which are
obviously already assigned. In particular, the solved forms involving variable RIS ver-
ify the following (Xi are variables; Ri are variables or variable-RIS whose domain is
variable Xi):

— t /∈ {X1 | φ • u}
— {X1 | φ • u} = ∅

— {X1 | φ1 • u1} = {X2 | φ2 • u2}
— un(R3, R4, R5)
—R3 ‖ R4

are solved with Xi = ∅ and Ri = ∅ for those Ri that are variables.
In the proof we use the auxiliary function find :

find(x, t) =







∅ if t = ∅, x 6= ∅

{0} if t = x

{1 + n : n ∈ find(x, y)} if t = {y ⊔ ∅}

{1 + n : n ∈ find(x, y)} ∪ find(x, s) if t = {y ⊔ s}, s 6= ∅

which returns the set of ‘depths’ at which a given element x occurs in the set t.

PROOF. Consider a pure RIS-formula Φ in solved form. The proof is basically the
construction of a mapping for the variables of Φ of sort Set into the interpretation
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domain DSet (see Section C.2 to see how variables of sort X are managed). The con-
struction is divided into two parts by dividing Φ as Φ= ∧Φr, where Φ= is a conjunction
of equalities whose l.h.s is a variable, and Φr is the rest of Φ. In the first part Φ= is not
considered. A solution for Φr is computed by looking for valuations7 of the form:

Xi 7→ {· · · {
︸ ︷︷ ︸

ni

∅} · · · } (2)

fulfilling all 6= and /∈ constraints. We will briefly refer to the r.h.s. of (2) as {∅}ni. In
particular, RIS domains are mapped onto ∅ (ni = 0) and the numbers ni for the other
variables are computed choosing one possible solution of a system of integer equations
and disequations, that trivially admits solutions. Such system is obtained by analyzing
the ‘depth’ of the occurrences of the variables in the terms. Then, all the variables
occurring in Φ only in r.h.s. of equations of Φ= are bound to ∅ and the mappings for the
variables of the l.h.s. are bound to the uniquely induced valuation.

In detail, let X1, . . . , Xm be all the variables occurring in Φ, save those occurring
in the l.h.s. of equalities, and let X1, . . . , Xh, h ≤ m, be those variables occurring as
domains of RIS terms. Let n1, . . . , nm be auxiliary variables ranging over N. We build
the system Syst as follows:

— For all i ≤ h, add the equation ni = 0.
— For all h < i ≤ m, add the following disequations:

ni 6= nj + c ∀Xi 6= t in Φ and c ∈ find(Xj , t)
ni 6= c ∀Xi 6= t in Φ and t ≡ {∅}c

ni 6= nj + c+ 1 ∀t /∈ Xi in Φ and c ∈ find(Xj , t)
ni 6= c+ 1 ∀t /∈ Xi in Φ and t ≡ {∅}c

If m = h, then ni = 0 for all i = 1, . . . ,m is the unique solution of Syst. Otherwise, it
is easy to observe that Syst admits infinitely many solutions. Let:

— {n1 = 0, . . . , nh = 0, nh+1 = n̄h+1, . . . , nm = n̄m} be one arbitrarily chosen solution of
Syst.

— θ be the valuation such that θ(Xi) = {∅}ni for all i ≤ m.
— Y1, . . . , Yk be all the variables of Φ which appear only in the l.h.s. of equalities of the

form Yi = ti.
— σ be the valuation such that σ(Yi) = θ(ti).

We prove that R |= Φ[θσ] by case analysis on the form of the atoms in Φ:

— Yi = ti It is satisfied, since σ(Yi) has been defined as a ground term and equal to
θ(ti).

—Xi 6= t If t is a ground term, then we have two cases: if t is not of the form {∅}c,
then it is immediate that θ(Xi) 6= t; if t is of the form {∅}c, for some c, then we have
ni 6= c, by construction, and hence θ(Xi) 6= t.
If t is not ground, then if θ(Xi) = θ(t), then there exists a variable Xj in t such that
n̄i = n̄j + c for some c ∈ find(Xj , t); this cannot be the case since we started from a
solution of Syst.

— t 6∈ Xi Similar to the case above.
— {Xi | φ • u} = ∅ This means that n̄i = 0 and θ(Xi) = θ(Xj) = θ(Xk) = ∅.
— {Xi | φ1 • u1} = {Xj | φ2 • u2} This means that n̄i = n̄j = 0 and θ(Xi) = θ(Xj) = ∅.

7A valuation σ of a Σ-formula ϕ is an assignment of values from the interpretation domain DX to the free
variables of ϕ which respects the sorts of the variables.
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— un(Ri, Rj , Rk) Recall that Ri, Rj , Rk can be either variables or variable-RIS whose
domain are variables Xi, Xj, Xk, respectively. Now, those R that are variables are
replaced by a corresponding X and for those that are not the valuation is computed
for the domains (which are variables, by construction). For example, if Ri and Rk

are variable-RIS and Rj is a variable, we have un(Ri, Xj , Rk), Xi is the domain of
Ri, Xk is the domain of Rk and the valuation is computed for Xi, Xj and Xk. Also
recall that from item 5 of Definition 4.8, there are no 6= constraints involving any of
the X participating of the un constraint. Then, this means that n̄i = n̄j = n̄k = 0
and θ(Xi) = θ(Xj) = θ(Xk) = ∅.

—Ri ‖ Rj Similar considerations for Ri and Rj to the previous case apply. Then:
— If i, j ≤ h, then θ(Xi) = θ(Xj) = ∅
— If i > h (the same if j > h), then n̄i 6= n̄j and so θ(Xi) = {∅}ni is disjoint from

θ(Xj) = {∅}nj .

C.2. Satisfiability of ΦS ∧ ΦX (Theorem 4.11)

The satisfiability of ΦX is determined by SATX . Since SATX is a decision procedure for
X -formulas, if ΦX is unsatisfiable, then SATX returns false; hence, Φ is unsatisfiable.
If ΦX is satisfiable, then SATX rewrites ΦX into an X -formula in a simplified form
which is guaranteed to be satisfiable w.r.t. the interpretation structure of LX . This
rewriting, however, may cause non-set variables in ΦX , i.e., variables of sort X, to get
values for which the formula is satisfied. These variables can occur in both ΦX and ΦS .
Given that, at this point, ΦS is in solved form, variables of sort X can only appear in
constraints that are in solved form. Specifically, if x is a variable of sort X, the following
are all solved form constraints that may contain x:

(1) X = S(x) or X = {Y | φ(x) • u(x)} (i.e., x is a free variable in the RIS)
(2) {X | φ(x) • u(x)} = ∅ or ∅ = {X | φ(x) • u(x)}
(3) {X | φ1(x) • u1(x)} = {Y | φ2(x) • u2(x)}.
(4) X 6= S(x)
(5) t(x) /∈ D̄
(6) un(C̄, D̄, Ē) and C̄ or D̄ or Ē are of the form {X | φ(x) • u(x)}
(7) C̄ ‖ D̄, and C̄ or D̄ are of the form {X | φ(x) • u(x)}

All these constraints remains in solved form regardless of the value bound to x. Hence,
Φ is satisfiable.

C.3. Termination of SATRIS (Theorem 4.13)

In order to prove termination of SATRIS we use the rules give in Appendix A for
equality, inequality, set membership, and not set membership, and those for union and
disjointness given in Figures 3 and 4 in the main text.

First of all, it is worth noting that the requirement that the set of variables ranging
on RIS-terms (i.e., variables of sort Set) and the set of variables ranging on X -terms
(i.e., variables of sort X) are disjoint sets prevents us from creating recursively defined
RIS, which could compromise the finiteness property of the sets we are dealing with.
In fact, a formula such as X = {D | F (X) • P}, where F contains the variable X , is
not an admissible RIS-constraint, since the outer X should be of sort Set whereas the
inner X should be of sort X (recall that the filter is a X -formula). Note that, on the
contrary, a formula such as X = {D(X) | F • P} is an admissible formula, which, in
many cases, is suitably handled by our decision procedure.

Let a rewriting procedure for π be the repeated application of the rewrite rules for
a specific RIS-constraint π until either the initial formula becomes false or no rules
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(=9)

(=3)(=12) (=13)

(=11)

(=14)

(=6)(=8)

Fig. 8. Calls relation between rules of the =-rewriting procedure

(19)

(17) (18)

(20)

(un-a)

Fig. 9. Calls relation between rules of the un-rewriting procedure

(24)

(25)

(26)

(27)

Fig. 10. Calls relation between rules of the ‖-rewriting procedure

for π apply. Following [Dovier et al. 2000], we begin by proving that each individual
rewriting procedure, applied to an admissible formula, is locally terminating, that is
each call to such procedures will stop in a finite number of steps. For all the rules
inherited from CLP(SET ) we assume the results in [Dovier et al. 2000]. Then we prove
local termination only for the new rules dealing with RIS.

The following are non-recursive rules thus they terminate trivially: (=1), (=2), (=3),
(=4), (=5), (=7), ( 6=1), ( 6=2), ( 6=3), ( 6=4), ( 6=5), ( 6=6), ( 6=7), (∈1), (∈3), (∈4), (/∈1), (13), (14),
(15), (16), (21), (22) and (23).

Now we consider rules which contain direct recursive calls or calls to other rules of
the same rewriting procedure and involve at least one RIS. Figures 8-10 show what
rewrite rule calls other rewrite rules of the same rewriting procedure, for =, un and ‖,
respectively. We only depict these because the other rewriting procedures are simpler.
We will pay special attention to the possible loops that can be seen in all three graphs.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Automated Reasoning with RIS A:51

Rule (=6). In all branches, the recursive call is made with at least one argument
whose size is strictly smaller than the one of the input formula. In particular, in the
last branch the size of X will not affect the size of the arguments of the recursive
call because X is a variable so it cannot add elements to N , N is a variable itself
and X is removed from the recursive call.
Rule (=8). In the first seven branches, the recursive call is made with at least one
argument whose size is strictly smaller than the one of the input formula. In the
last branch, the recursive call is made with arguments whose size is equal to those
of the input formula. Indeed, we remove t0 from the l.h.s. set but we add u(n)
while variable X is substituted by the new variable N . However, we now know
that u(n) = sj for some j ∈ [0, k]. Hence, the recursive call will be processed by one
of the first seven branches which we know reduce the size of at least one of their
arguments.
Rule (=9). We will prove termination of this rule by describing a particular ab-
stract implementation.
(1) If the set parts of A and B are not RIS, then the results of [Dovier et al. 2000]

apply.
(2) If the set part of either A or B are RIS, then:

(a) ‘Empty’ their domains. This means that if one of the RIS is of the form:

{{d1, . . . , dk ⊔ D} | φ • u}

then rewrite this set into:

{u(d1) ⊔ {{d2, . . . , dk ⊔ D} | φ • u}}

or

{{d2, . . . , dk ⊔ D} | φ • u}

depending on whether φ(d1) holds or not. Continue with this rewriting un-
til all the di have been processed. This process will transform the initial
RIS into a number of sets of the form:

{u(di1), . . . , u(dim) ⊔ {D | φ • u}} (3)

with {di1 , . . . , dim} ⊆ {d1, . . . , dk} and D variable or the empty set.
Hence, at the end of this process the domains of the RIS so generated are
either the empty set or a variable.

(b) If the domain of one of the RIS obtained in the previous step is the empty
set then substitute the RIS by the empty set. Then RIS of the form (3)
become {u(di1), . . . , u(dim) ⊔ ∅} which is equal to {u(di1), . . . , u(dim)}.
Hence, at the end of this process the domains of the RIS so generated are
variables.

(c) Substitute the RIS by new variables. Formally (when at both sides there
are RIS):

{t0, . . . , tm ⊔ {D | φ • u}} = {s0, . . . , sk ⊔ {E | γ • v}}

−→

{t0, . . . , tm ⊔ N1} = {s0, . . . , sk ⊔ N2} (a)

∧N1 = {D | φ • u} ∧N2 = {E | γ • v}

Note that might be no more RIS at this point, so there is nothing to substi-
tute.

(3) Now apply rule (=9) only to the first conjunct of (a) as in [Dovier et al. 2000]
until it terminates, delaying the processing of the remaining conjuncts in (a).
As no RIS are in the first conjunct of (a) the results of [Dovier et al. 2000] apply.
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(4) Once rule (=9) applied to the first conjunct terminates, variables Ni are substi-
tuted back by the corresponding RIS, thus obtaining equalities of the following
forms:

{D | φ • u} = {E | γ • v}

{D | φ • u} = {· ⊔ N}

{D | φ • u} = {· ⊔ {E | γ • v}}

where D and E are variables (due to the process described in step 2).
Note that, without RIS, the final formulas returned by (=9) would be in solved
form as their l.h.s. would be variables.

(5) As can be seen, by the form of the returned equalities and by Figure 8, these
equalities are processed by some of the rules added to deal with RIS.

So (=9) either terminates as in [Dovier et al. 2000], or calls other rules for equality
(which is an added behavior compared to [Dovier et al. 2000]).
Rule (=10). The recursive call is made with one argument whose size is strictly
smaller than in the initial formula, since t is removed from the domain of the RIS.
Rule (=11). In the first branch there is no recursion on the same rule because the
l.h.s. of the equality constraint is no longer a RIS but an extensional set. In par-
ticular, the size of the arguments are the same w.r.t. the initial ones. However, the
rules that can be fired in this case (see Figure 8 and the analysis for the corre-
sponding rules), all reduces the size of at least one of its arguments. In particular,
if rules (=9) or (=14) are called, if they call this rule back, it will be done with
strictly smaller arguments. Then, this loop will run a finite number of times.
In the second branch the recursive call is made with one argument whose size is
strictly smaller than in the initial formula, since t is removed from the domain of
the RIS.
Rule (=12). The size of the r.h.s. argument of the equality constraint is strictly
smaller than the one of the input formula because t0 has been removed. Further-
more, the size of X will not affect the size of the arguments of the recursive call
because X is a variable so it cannot add elements to N , N is a variable itself and
X is removed from the recursive call.
Rule (=13). Same arguments of previous rule apply.
Rule (=14). The recursive call is made with one argument whose size is strictly
smaller than in the initial formula, since t is removed from the r.h.s. The size of D
can affect the size of the arguments of the recursive call only if D is the set part of
A. However, this case is processed by one of the following rules: (=12) or (=13).
Rule (∈2). The recursive call is made with a r.h.s. argument whose size is strictly
smaller than the initial one because s is removed from the set.
Rule (/∈2). Same arguments of previous rule apply.
Rule (/∈3). In either branch the recursive call is made with a r.h.s. argument whose
size is strictly smaller than the initial one because d is removed from the domain
of the RIS.
Rule (17). In the first branch the recursive call is made with a first argument
whose size is strictly smaller than the initial one because t is removed from it.
In the second branch, it is both arguments whose sizes are strictly smaller than
the initial ones because t is effectively removed from A given that we know that
t ∈ A.
Note that in Figure 9 this rule may call rule (20), which in turn may call back this
rule or rules (18) and (19), thus possibly generating an infinite loop. However, this
rule can call (20) only when the first or second argument is a non-variable RIS. In
that case, rule (20) removes one element of the domain of the RIS but it does not
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necessarily reduces the size of the arguments. This may fire the callback to this
rule. But this rule reduces the size of its arguments, so after a finite number of
calls the loop finishes. This shows how the arrow labeled (un-a) in Figure 9 can be
traversed only a finite number of times.
See below for an analysis of rule (20).
Rule (18). Symmetric arguments to previous rule apply.
Rule (19). In all branches the size of the third argument of the recursive call is
strictly smaller than the initial one because t is removed from it.
Rule (20). Consider the non-variable RIS arguments of this rule. The rule trans-
forms these RIS into either extensional sets or new RIS.
(1) If all such arguments are transformed into extensional sets, then the rule does

not recur on itself (but calls other rules of the un constraint).
(2) If all such arguments are transformed into variable RIS, then the rule does not

recur on itself (but calls other rules of the un constraint or, possibly, is in solved
form).

(3) If at least one of such arguments is still a non-variable RIS, then there is a
recursive call but the size of that argument is strictly smaller than the initial
one. In effect, this case occurs when the initial argument in question is of the
following form {x : {a, b ⊔ D} | φ • u} with a 6= b and ¬φ(a). That is, the initial
argument is a non-variable RIS with at least two elements in its domain but
the “first” one does not satisfy the filter. Then, u(a) does not belong to the RIS
and so it is equal to {x : {b ⊔ D} | φ • u}. Precisely, this last RIS is used as the
argument to the recursive call. Hence, at least one argument of the recursive
call is strictly smaller than the initial one.
Nevertheless, if φ(a) holds, then a is removed from the domain but the RIS
becomes the set part of an extensional set with u(a) as its element part. In this
case, the size of this argument is equal to the initial one. However, in this case,
there is no recursive call but a call to one of rules (17), (18) and (19), which
effectively reduce the size of one of its.

Rule (24). The recursive call is made with a r.h.s. argument whose size is strictly
smaller than the initial one because t is removed from the set.
Rule (25). Symmetric arguments of previous rule apply.
Rule (26). In either branch the recursive call is made with a r.h.s. argument whose
size is strictly smaller than the initial one because d is removed from the domain
of the RIS.
Rule (27). Symmetric arguments of previous rule apply.
Therefore, the loops shown in Figure 10 end in a finite number of times since rules
(24)-(27) reduce the size of at least one of their arguments every time they are
called.

Local termination of each individual procedure, however, does not guarantee global
termination of SATRIS , since the different procedures may be dependent on each
other. However, we observe that rewrite rules not involving RIS in their left-hand sides
do not construct any new RIS term in their right-hand sides. They simply treat RIS
terms as any other term. Hence the presence of RIS terms do not affect their termi-
nation, which has been proved in [Dovier et al. 2000]. Hence, it is enough to consider
only the new rules involving RIS terms.

Rules involving RIS generate both RIS- and X -formulas. The SATX solver solves
the X -formulas without producingRIS-formulas. Then, for each constraint π and each
recursive rewrite rule for it, we will analyze what RIS-constraints other than π are
generated. In this way we will see if there are cycles between rewriting procedures. We
proceed by rule inspection.
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6= ∈ =

‖ /∈

un

Fig. 11. Calls relation between rewriting procedures

(1) Rules ( 6=5), ( 6=6) and ( 6=7) generate ∈- and /∈-constraints.
(2) Rule (∈3) generates =-constraints.
(3) Rules (17), (18) and (19) generate =-constraints.
(4) Rules (24), (25), (26) and (27), generate /∈-constraints.

This is depicted in Figure 11. Hence, as can be seen, there are no loops between the
rewriting procedures.

C.4. Equisatisfiability (Theorem 4.12)

This section contains the detailed proofs on the equisatisfiability of the rewrite rules
involving RIS presented in Sect. 3.2 and Appendix A; the equisatisfiability of the re-
maining rules has been proved elsewhere [Dovier et al. 2000]. Hence, these proofs use
the rules considering that the control expression is a variable and that the domain of
RIS are not other RIS. These proofs can be easily extended to the more general case.

In the following theorems and proofs, φ, γ, u and v are shorthands for F (x), P (x),
G(x) and Q(x), respectively. Moreover, note that a set of the form {P (x) : F (x)} (where
pattern and filter are separated by a colon (:), instead of a bar (|), and the pattern is
before the colon) is a shorthand for {y : ∃x(P (x) = y∧F (x))}. That is, the set is written
in the classic notation for intensional sets used in mathematics. Finally, H denotes the
current hypothesis.
u and v are assumed to be bijective patterns. Recall that all patterns allowed in
LRIS fulfill this condition. The condition on the bijection of patterns is necessary to
prove equisatisfiability for rule (7).

The proof of Theorem 4.12 rests on a series of lemmas each of which shows that the
set of solutions of left and right-hand sides of each rewrite rule is the same.

LEMMA C.3 (EQUIVALENCE OF RULE (=1)). We consider only the following case; all
the others covered by this rule are either symmetric or trivial.

{x : ∅ | φ • u} = ∅

PROOF.

{x : ∅ | φ • u}

= {u(x) : x ∈ ∅ ∧ φ(x)}

= {u(x) : false ∧ φ(x)}

= {u(x) : false}

= ∅

PROPOSITION C.4.

∀d,D :

{x : {d ⊔ D} | φ • u} = {u(d) | φ(d)} ∪ {u(x) | x ∈ D ∧ φ(x)}
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PROOF. Taking any d and D we have:

{x : {d ⊔ D} | φ • u}

= {u(x) : x ∈ {d ⊔ D} ∧ φ(x)}

= {u(x) : (x = d ∨ x ∈ D) ∧ φ(x)}

= {u(x) : (x = d ∧ φ(x)) ∨ (x ∈ D ∧ φ(x))}

= {u(x) : x = d ∧ φ(x)} ∪ {u(x) | x ∈ D ∧ φ(x)}

= {u(d) : φ(d)} ∪ {u(x) | x ∈ D ∧ φ(x)}

LEMMA C.5 (EQUIVALENCE OF RULE (=3)). We will consider only the case where
S ≡ {c : X | φ • u} with c ≡ u, because the other one is proved in [Dovier et al. 2000]:

∀X,t0, . . . , tk :

X = {t0, . . . , tk ⊔ {c : X | φ • u}}

⇔ X = {t0, . . . , tk ⊔ {c : X[X/N ] | φ • u}}

where N is a new variable.

PROOF. Taking any X, t0, . . . , tk we have:

X = {t0, . . . , tk ⊔ {c : X | φ • u}} [by def. of X with a ≥ 0]

⇔ X = {t0, . . . , tk} ∪ {c : {s1, . . . , sa ⊔ X} | φ • u} [by def. ⊔]

⇔ X = {t0, . . . , tk} ∪ {c : {s1, . . . , sa} ∪X | φ • u} [by prop. intensional sets]

⇔ X = {t0, . . . , tk} ∪ {c : {s1, . . . , sa} | φ • u} ∪ {c : X | φ • u}

Now note that if c ≡ u, then:

{c : X | φ • u} ⊆ X

If {c : X | φ • u} = X , then:

X = {t0, . . . , tk} ∪ {c : {s1, . . . , sa} | φ • u} ∪ {c : X | φ • u} [by A = B ∪ A ⇔ B ⊆ A]

⇔ {t0, . . . , tk} ∪ {c : {s1, . . . , sa} | φ • u} ⊆ {c : X | φ • u}
[by exists N completing {c : X | φ • u}]

⇔ {t0, . . . , tk} ∪ {c : {s1, . . . , sa} | φ • u} ∪ {c : N | φ • u} = {c : X | φ • u}

⇔ {t0, . . . , tk} ∪ {c : {s1, . . . , sa ⊔ N} | φ • u} = {c : X | φ • u}

⇔ X = {t0, . . . , tk} ∪ {c : {s1, . . . , sa ⊔ N} | φ • u}

⇔ X = {t0, . . . , tk} ∪ {c : X[N/X ] | φ • u}

If {c : X | φ•u} ⊂ X , then let N be the (proper) subset of X such that {c : N | φ•u} =
{c : X | φ • u}. Hence:

X = {t0, . . . , tk} ∪ {c : {s1, . . . , sa} | φ • u} ∪ {c : X | φ • u}

⇔ X = {t0, . . . , tk} ∪ {c : {s1, . . . , sa} | φ • u} ∪ {c : N | φ • u}

⇔ X = {t0, . . . , tk} ∪ {c : {s1, . . . , sa ⊔ N} | φ • u}

⇔ X = {t0, . . . , tk} ∪ {c : X[N/X ] | φ • u}

In the following lemma, the case where R ≡ X and S ≡ X is covered in
[Dovier et al. 2000]. Besides, given that the case where R ≡ {c : X | φ•u} and S ≡ X is
covered by the case where R ≡ {c : X | φ • u} and S ≡ {d : X | γ • v}, we will prove only
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the last one. Indeed, given that c ≡ u, d ≡ v, we have {d : X | γ • v} ⊆ X . Then, the last
case covers the second case when {d : X | γ • v} = X . In fact, in this and the following
lemma we will write {s ⊔ X} instead of X, where s denotes zero or more elements; if s

denotes zero elements then {s ⊔ X} is just X .

LEMMA C.6 (EQUIVALENCE OF RULE (=6)). If c ≡ u and d ≡ v:

∀X,t0, . . . , tm, s0, . . . , sk :

{t0, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} = {s0, . . . , sk ⊔ {d : X | γ • v}}

⇔ t0 = sj

∧ {t0 ⊔ N1} = {c : {s ⊔ X} | φ • u} ∧ t0 /∈ N1

∧ {t0 ⊔ N2} = {d : X | γ • v} ∧ t0 /∈ N2

∧ {t1, . . . , tm ⊔ N1} = {s0, . . . , sj−1, sj+1, . . . , sk ⊔ N2}

∨ t0 = sj

∧ t0 /∈ {c : {s ⊔ X} | φ • u} ∧ t0 /∈ {d : X | γ • v}

∧ {t1, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} = {s0, . . . , sj−1, sj+1, . . . , sk ⊔ {d : X | γ • v}}

∨ t0 = sj

∧ {t0 ⊔ N} = {c : {s ⊔ X} | φ • u} ∧ t0 /∈ N ∧ t0 /∈ {d : X | γ • v}

∧ {t1, . . . , tm ⊔ N} = {s0, . . . , sj−1, sj+1, . . . , sk ⊔ {d : X | γ • v}}

∨ t0 = sj

∧ t0 /∈ {c : {s ⊔ X} | φ • u} ∧ {sj ⊔ N} = {d : X | γ • v} ∧ sj /∈ N

∧ {t1, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} = {s0, . . . , sj−1, sj+1, . . . , sk ⊔ N}

∨ t0 = sj

∧ {t1, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} = {s0, . . . , sk ⊔ {d : X | γ • v}}

∨ t0 = sj

∧ {t0, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} = {s0, . . . , sj−1, sj+1, . . . , sk ⊔ {d : X | γ • v}}

∨X = {t0 ⊔ N} ∧ γ(t0)

∧ {t1, . . . , tm ⊔ {c : {s ⊔ N} | φ • u}} = {s0, . . . , sk ⊔ {d : N | γ • v}}

PROOF.
=⇒ )
By H, t0 must belong the the r.h.s. set. We will divide the proof in the following cases
each of which corresponds to one of the branches at the r.h.s. Note that the disjunction
of all the preconditions covers all possible cases.

— t0 ∈ {s0, . . . , sk}, then t0 = sj , for some j
— t0 /∈ {s0, . . . , sj−1, sj+1, . . . , sk}

— sj /∈ {t1, . . . , tm}
— First branch: {t0 ⊔N1} = {c : {s⊔X} | φ •u}∧{t0 ⊔N2} = {d : X | γ • v}∧ t0 /∈

N1 ∧ t0 /∈ N2.

{t1, . . . , tm ⊔ N1} = {s0, . . . , sj−1, sj+1, . . . , sk ⊔ N2}

⇔ [by assumptions t0 does not belong to either set]

{t0, t1, . . . , tm ⊔ N1} = {s0, . . . , sj−1, t0, sj+1, . . . , sk ⊔ N2}

⇔ [by absorption on the left, semantics of ⊔ and sj = t0]

{t0, . . . , tm ⊔ {t0 ⊔ N1}} = {s0, . . . , sj−1, sj , sj+1, . . . , sk ⊔ {t0 ⊔ N2}}

⇔ [by assumptions of this branch]
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{t0, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} = {s0, . . . , sk ⊔ {d : X | γ • v}}

Since the last equality is H then the first equality holds.
— Second branch: t0 /∈ {c : {s ⊔ X} | φ • u} ∧ t0 /∈ {d : X | γ • v}

{t1, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} = {s0, . . . , sj−1, sj+1, . . . , sk ⊔ {d : X | γ • v}}

⇔ [by assumptions t0 does not belong to either set]

{t0, t1, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} = {s0, . . . , sj−1, t0, sj+1, . . . , sk ⊔ {d : X | γ • v}}

⇔ [by sj = t0]

{t0, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} = {s0, . . . , sj−1, sj , sj+1, . . . , sk ⊔ {d : X | γ • v}}

Since the last equality is H then the first equality holds.
— Third branch: {t0 ⊔ N} = {c : {s ⊔ X} | φ • u} ∧ t0 /∈ {d : X | γ • v} ∧ t0 /∈ N .

{t1, . . . , tm ⊔ N} = {s0, . . . , sj−1, sj+1, . . . , sk ⊔ {d : X | γ • v}}

⇔ [by assumptions t0 does not belong to either set]

{t0, t1, . . . , tm ⊔ N} = {s0, . . . , sj−1, t0, sj+1, . . . , sk ⊔ {d : X | γ • v}}

⇔ [by absorption on the left, semantics of ⊔ and sj = t0]

{t0, t1, . . . , tm ⊔ {t0 ⊔ N}} = {s0, . . . , sj−1, sj, sj+1, . . . , sk ⊔ {d : X | γ • v}}

⇔ [by assumption of this branch]

{t0, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} = {s0, . . . , sk ⊔ {d : X | γ • v}}

Since the last equality is H then the first equality holds.
— Fourth branch: t0 /∈ {c : {s ⊔ X} | φ • u} ∧ {sj ⊔ N} = {d : X | γ • v} ∧ sj /∈ N .

{t1, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} = {s0, . . . , sj−1, sj+1, . . . , sk ⊔ N}

⇔ [by assumptions t0 does not belong to either set]

{t0, t1, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} = {s0, . . . , sj−1, t0, sj+1, . . . , sk ⊔ N}

⇔ [by sj = t0]

{t0, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} = {s0, . . . , sj−1, sj , sj+1, . . . , sk ⊔ N} ⇔
[by absorption on the left and semantics of ⊔]

{t0, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} = {s0, . . . , sj−1, sj , sj+1, . . . , sk ⊔ {sj ⊔ N}}

⇔ [by assumption of this branch]

{t0, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} = {s0, . . . , sk ⊔ {d : X | γ • v}}

Since the last equality is H then the first equality holds.

— sj ∈ {t1, . . . , tm}
Now we consider the fifth branch.
Given that sj = t0 and that sj ∈ {t1, . . . , tm}, then t0 ∈ {t1, . . . , tm}.

{t1, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} [by t0 ∈ {t1, . . . , tm}]

= {t0, t1, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} [by H]

= {s0, . . . , sk ⊔ {d : X | γ • v}}

— t0 ∈ {s0, . . . , sj−1, sj+1, . . . , sk}
Now we consider the sixth branch.
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Given that sj = t0 and that t0 ∈ {s0, . . . , sj−1, sj+1, . . . , sk}, then sj ∈
{s0, . . . , sj−1, sj+1, . . . , sk}.

{s0, . . . , sj−1, sj+1, . . . , sk ⊔ {d : X | γ • v}} [by sj ∈ {s0, . . . , sj−1, sj+1, . . . , sk}]

= {s0, . . . sk ⊔ {d : X | γ • v}} [by H]

= {t0, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}}

— t0 /∈ {s0, . . . , sk}
Now we consider the last branch.
Given that t0 /∈ {s0, . . . , sk}, then necessarily t0 ∈ {d : X | γ • v}, then t0 ∈ X and
γ(t0) holds. Now, the proof is divided in two cases.
— t0 ∈ {t1, . . . , tm} ∪ {s} ∧ φ(t0)

In this case we take N = X . Then {t0 ⊔N} = {t0⊔X} = X , where the last equality
holds because t0 ∈ X . Now:

{t1, . . . , tm ⊔ {d : {s ⊔ N} | φ • u}} [by t0 ∈ {t1, . . . , tm} ∪ {s} ∧ φ(t0)]

= {t0, t1, . . . , tm ⊔ {d : {s ⊔ N} | φ • u}} [by N = X]

= {t0, t1, . . . , tm ⊔ {d : {s ⊔ X} | φ • u}} [by H]

= {s0, . . . , sk ⊔ {d : X | γ • v}} [by N = S]

= {s0, . . . , sk ⊔ {d : N | γ • v}}

— t0 /∈ {t1, . . . , tm} ∪ {s} ∨ ¬φ(t0)
In this case we take N = X \ {t0}, then X = {t0 ⊔ N} because t0 ∈ X . Besides
t0 /∈ N . Now we start from H.

{t0, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} = {s0, . . . , sk ⊔ {d : X | γ • v}}

⇔ [by X = {t0 ⊔ N}]

{t0, . . . , tm ⊔ {c : {s ⊔ {t0 ⊔ N}} | φ • u}} = {s0, . . . , sk ⊔ {d : {t0 ⊔ N} | γ • v}}

⇔ [by properties of ⊔ and intensional sets]

{t0, . . . , tm ⊔ {c : {s ⊔ N} | φ • u}} ∪ {c : {t0} | φ • u}

= {s0, . . . , sk ⊔ {d : N | γ • v}} ∪ {d : {t0} | γ • v}

⇔ [by subtract {t0} on both sides]

({t0, . . . , tm ⊔ {c : {s ⊔ N} | φ • u}} ∪ {c : {t0} | φ • u}) \ {t0}

= ({s0, . . . , sk ⊔ {d : N | γ • v}} ∪ {d : {t0} | γ • v}) \ {t0}

⇔ [by \ distributes over ∪]

({t0, . . . , tm ⊔ {c : {s ⊔ N} | φ • u}} \ {t0}) ∪ ({c : {t0} | φ • u} \ {t0})

= ({s0, . . . , sk ⊔ {d : N | γ • v}} \ {t0}) ∪ ({d : {t0} | γ • v} \ {t0})

⇔ [by t0 /∈ {t1, . . . , tm} ∪ {s}, t0 /∈ N , t0 /∈ {s0, . . . , sk}]

{t1, . . . , tm ⊔ {c : {s ⊔ N} | φ • u}} = {s0, . . . , sk ⊔ {d : N | γ • v}}

⇐=)
We will consider each branch and will prove that the equality holds.

— First branch.

{t0, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} [by H]

= {t0, . . . , tm ⊔ {t0 ⊔ N1}} [by properties of ⊔]

= {t0, t0, . . . , tm ⊔ N1} [by absorption on the left]

= {t0, . . . , tm ⊔ N1}
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= {t0} ∪ {t1, . . . , tm ⊔ N1} [by H]

= {t0} ∪ {s0, . . . , sj−1, sj+1, . . . , sk ⊔ N2} [by semantics of ⊔]

= {t0, s0, . . . , sj−1, sj+1, . . . , sk ⊔ N2} [by absorption on the left]

= {t0, s0, . . . , sj−1, t0, sj+1, . . . , sk ⊔ N2} [by H]

= {s0, . . . , sj−1, sj , sj+1, . . . , sk ⊔ {t0 ⊔ N2}} [by H]

= {s0, . . . , sk ⊔ {d : X | γ • v}}

— Second branch.

{t0, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} [by semantics of ⊔]

= {t0} ∪ {t1, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} [by H]

= {t0} ∪ {s0, . . . , sj−1, sj+1, . . . , sk ⊔ {d : X | γ • v}} [by semantics of ⊔]

= {s0, . . . , sj−1, t0, sj+1, . . . , sk ⊔ {d : X | γ • v}} [by H]

= {s0, . . . , sj−1, sj , sj+1, . . . , sk ⊔ {d : X | γ • v}}

= {s0, . . . , sk ⊔ {d : X | γ • v}}

— Third branch.

{t0, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} [by H]

= {t0, . . . , tm ⊔ {t0 ⊔ N}} [by properties of ⊔]

= {t0, t0, . . . , tm ⊔ N} [by absorption on the left]

= {t0, . . . , tm ⊔ N}

= {t0} ∪ {t1, . . . , tm ⊔ N} [by H]

= {t0} ∪ {s0, . . . , sj−1, sj+1, . . . , sk ⊔ {d : X | γ • v}} [by semantics of ⊔]

= {s0, . . . , sj−1, t0, sj+1, . . . , sk ⊔ {d : X | γ • v}} [by H]

= {s0, . . . , sj−1, sj , sj+1, . . . , sk ⊔ {d : X | γ • v}} [by H]

= {s0, . . . , sk ⊔ {d : X | γ • v}}

— Fourth branch.

{s0, . . . , sk ⊔ {d : X | γ • v}} [by H]

= {s0, . . . , sk ⊔ {sj ⊔ N}} [by properties of ⊔]

= {sj, s0, . . . , sk ⊔ N} [by absorption on the left]

= {s0, . . . , sk ⊔ N} [by semantics of ⊔]

= {sj} ∪ {s0, . . . , sj−1, sj+1, . . . , sk ⊔ N} [by H]

= {sj} ∪ {t1, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} [by semantics of ⊔]

= {sj, t1, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} [by H]

= {t0, t1, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}}

— Fifth branch.

{t0, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} [by semantics of ⊔]

= {t0} ∪ {t1, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} [by H]

= {t0} ∪ {s0, . . . , sk ⊔ {d : X | γ • v}} [by semantics of ⊔]

= {t0, s0, . . . , sk ⊔ {d : X | γ • v}} [by H]

= {sj, s0, . . . , sk ⊔ {d : X | γ • v}} [by absorption on the left]

= {s0, . . . , sk ⊔ {d : X | γ • v}}
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— Sixth branch.

{t0, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} [by absorption on the left]

= {t0, t0, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} [by semantics of ⊔]

= {t0} ∪ {t0, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} [by H]

= {t0} ∪ {s0, . . . , sj−1, sj+1, . . . , sk ⊔ {d : X | γ • v}} [by semantics of ⊔]

= {s0, . . . , sj−1, t0, sj+1, . . . , sk ⊔ {d : X | γ • v}} [by H]

= {s0, . . . , sj−1, sj , sj+1, . . . , sk ⊔ {d : X | γ • v}}

= {s0, . . . , sk ⊔ {d : X | γ • v}}

— Seventh (last) branch.

{t0, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} [by H]

= {t0, . . . , tm ⊔ {c : {s ⊔ {t0 ⊔ N}} | φ • u}} [by semantics of ⊔, property intensional sets]

= {t0} ∪ {c : {t0} | φ • u} ∪ {t1, . . . , tm ⊔ {c : {s ⊔ N} | φ • u}} [by H]

= {t0} ∪ {c : {t0} | φ • u} ∪ {s0, . . . , sk ⊔ {d : N | γ • v}} [by {c : {t0} | φ • u} ⊆ {t0}]

= {t0} ∪ {s0, . . . , sk ⊔ {d : N | γ • v}} [by semantics of ⊔]

= {t0, s0, . . . , sk ⊔ {d : N | γ • v}} [by semantics of ⊔]

= {s0, . . . , sk ⊔ {t0 ⊔ {d : N | γ • v}}} [by H, semantics of ⊔ and property of intensional sets]

= {s0, . . . , sk ⊔ {d : {t0 ⊔ N} | γ • v}} [by H]

= {s0, . . . , sk ⊔ {d : X | γ • v}}
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LEMMA C.7 (EQUIVALENCE OF RULE (=8)). If c 6≡ u and d 6≡ v:

∀X,t0, . . . , tm, s0, . . . , sk :

{t0, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} = {s0, . . . , sk ⊔ {d : X | γ • v}}

⇔ t0 = sj

∧ {t0 ⊔ N1} = {c : {s ⊔ X} | φ • u} ∧ t0 /∈ N1

∧ {t0 ⊔ N2} = {d : X | γ • v} ∧ t0 /∈ N2

∧ {t1, . . . , tm ⊔ N1} = {s0, . . . , sj−1, sj+1, . . . , sk ⊔ N2}

∨ t0 = sj

∧ t0 /∈ {c : {s ⊔ X} | φ • u} ∧ t0 /∈ {d : X | γ • v}

∧ {t1, . . . , tm ⊔ {c : X | φ • u}} = {s0, . . . , sj−1, sj+1, . . . , sk ⊔ {d : X | γ • v}}

∨ t0 = sj

∧ {t0 ⊔ N} = {c : {s ⊔ X} | φ • u} ∧ t0 /∈ N ∧ t0 /∈ {d : X | γ • v}

∧ {t1, . . . , tm ⊔ N} = {s0, . . . , sj−1, sj+1, . . . , sk ⊔ {d : X | γ • v}}

∨ t0 = sj

∧ t0 /∈ {c : {s ⊔ X} | φ • u} ∧ {sj ⊔ N} = {d : X | γ • v} ∧ sj /∈ N

∧ {t1, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} = {s0, . . . , sj−1, sj+1, . . . , sk ⊔ N}

∨ t0 = sj

∧ {t1, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} = {s0, . . . , sk ⊔ {d : X | γ • v}}

∨ t0 = sj

∧ {t0, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} = {s0, . . . , sj−1, sj+1, . . . , sk ⊔ {d : X | γ • v}}

∨X = {n ⊔ N} ∧ γ(n) ∧ t0 = v(n) ∧ φ(n) ∧ u(n) /∈ {s0, . . . , sk}

∧ t0 = u(n) ∧ {t1, . . . , tm ⊔ {c : {s ⊔ N} | φ • u}} = {s0, . . . , sk ⊔ {d : N | γ • v}}

∨X = {n ⊔ N} ∧ γ(n) ∧ t0 = v(n) ∧ φ(n) ∧ u(n) = sj

∧ {u(n), t1, . . . , tm ⊔ {c : {s ⊔ N} | φ • u}} = {s0, . . . , sk ⊔ {d : N | γ • v}}

∨X = {n ⊔ N} ∧ γ(n) ∧ t0 = v(n) ∧ ¬φ(n)

∧ {t1, . . . , tm ⊔ {c : {s ⊔ N} | φ • u}} = {s0, . . . , sk ⊔ {d : N | γ • v}}

PROOF. The first six branches of this lemma are proved exactly as in the previous
lemma, in both directions, because those branches are equal in both lemmas. Hence,
we will prove only the last three branches, in both directions.
=⇒ )
In order to prove these branches we need to recall that u and v are ordered pairs whose
first component is the control variable and whose second component is a X -term. Then,
from now on we will take u(x) = (x, fu(x)) for some term fu and v(x) = (x, fv(x)), for
some term fv.

Besides, all these branches are proved under the assumption as in the previous
lemma:

t0 /∈ {s0, . . . , sk} (4)

The first step in the proof is that we can conclude that t0 must belong the the r.h.s.
set, by H. Hence, due to (4), t0 must belong to {d : X | γ • v}, which means that
there exists n ∈ X , γ(n) holds and t0 = v(n). Observe that t0 = v(n) means that
t0 = (n, fv(n)).
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Now, note that the following conditions of the branches under consideration:

φ(n) ∧ u(n) /∈ {s0, . . . , sk}

φ(n) ∧ u(n) = sj

¬φ(n)

are mutually exclusive. Since n ∈ X then in the first two cases we have u(n) ∈ {c :
{s ⊔ X} | φ • u}, which implies that u(n) belongs to the l.h.s. set. If u(n) belongs to the
l.h.s. set of H, then it must belong to the r.h.s. of H. Then, in the first case we assume
u(n) belongs to {d : X | γ • v} while in the second we assume is one of the si.

Hence, in order to prove each branch we will assume the corresponding condition
and we will prove the remaining predicates of the conclusion.

— Assume φ(n) ∧ u(n) /∈ {s0, . . . , sk}.
Will we prove that t0 = u(n) by contradiction. We know that u(n) ∈ {c : {s⊔X} | φ•u}.
So:

(n, fu(n)) ∈ {c : {s ⊔ X} | φ • u} ∧ t0 6= (n, fu(n)) [by assumption of this branch]

=⇒ (n, fu(n)) ∈ {d : X | γ • v} ∧ fv(n) 6= fu(n) [by semant. intensional sets, def. of v]

=⇒ γ(n) ∧ (n, fu(n)) = (n, fv(n)) ∧ fv(n) 6= fu(n) [by drop γ(n) and equality of pairs]

=⇒ fu(n) = fv(n) ∧ fv(n) 6= fu(n)

which is clearly a contradiction. Hence, t0 = u(n).

Now we will prove that {t1, . . . , tm ⊔ {c : N | φ • u}} = {s0, . . . , sk ⊔ {d : N | γ • v}}, by
dividing the proof in two cases.
— t0 ∈ {t1, . . . , tm} ∪ {c : s | φ • u}

In this case we take N = X . Then {n ⊔N} = {n ⊔X} = X , where the last equality
holds because n ∈ X .

— t0 ∈ {t1, . . . , tm}

{s0, . . . , sk ⊔ {d : N | γ • v}} [by N = X]

= {s0, . . . , sk ⊔ {d : X | γ • v}} [by H]

= {t0, t1, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} [by t0 ∈ {t1, . . . , tm}, left absorption]

= {t1, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} [by X = N ]

= {t1, . . . , tm ⊔ {c : {s ⊔ N} | φ • u}}

— t0 ∈ {c : {s} | φ•u}. Note that in this case {c : {s⊔X} | φ•u} = {t0⊔{c : {s⊔X} |
φ • u}}.

{s0, . . . , sk ⊔ {d : N | γ • v}} [by N = X]

= {s0, . . . , sk ⊔ {d : X | γ • v}} [by H]

= {t0, t1, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} [by semantics of ⊔]

= {t1, . . . , tm ⊔ {t0 ⊔ {c : {s ⊔ X} | φ • u}}} [by t0 ∈ {c : {s} | φ • u}]

= {t1, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} [by X = N ]

= {t1, . . . , tm ⊔ {c : {s ⊔ N} | φ • u}}

— t0 /∈ {t1, . . . , tm} ∪ {c : s | φ • u}
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In this case we take N = X \{n}, then X = {n⊔N} because n ∈ X . Besides n /∈ N .
Now we start from H.

{t0, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} = {s0, . . . , sk ⊔ {d : X | γ • v}}

⇔ [by X = {n ⊔ N}]

{t0, . . . , tm ⊔ {c : {s ⊔ {n ⊔ N}} | φ • u}} = {s0, . . . , sk ⊔ {d : {n ⊔ N} | γ • v}}

⇔ [by properties of ⊔ and intensional sets]

{t0, . . . , tm ⊔ {c : {s ⊔ N} | φ • u}} ∪ {c : {n} | φ • u}

= {s0, . . . , sk ⊔ {d : N | γ • v}} ∪ {d : {n} | γ • v}

⇔ [by subtract {t0} at both sides]

({t0, . . . , tm ⊔ {c : {s ⊔ N} | φ • u}} ∪ {c : {n} | φ • u}) \ {t0}

= ({s0, . . . , sk ⊔ {d : N | γ • v}} ∪ {d : {n} | γ • v}) \ {t0}

⇔ [by \ distributes over ∪]

({t0, . . . , tm ⊔ {c : {s ⊔ N} | φ • u}} \ {t0}) ∪ ({c : {n} | φ • u} \ {t0})

= ({s0, . . . , sk ⊔ {d : N | γ • v}} \ {t0}) ∪ ({d : {n} | γ • v} \ {t0})

⇔ [by (†)]

{t1, . . . , tm ⊔ {c : {s ⊔ N} | φ • u}} = {s0, . . . , sk ⊔ {d : N | γ • v}}

The justification of (†) is the following:
(1) Note that {c : {n} | φ • u} = {u(n)} = {t0} [by assumption of this branch and because in

this branch u(n) = t0], then {c : {n} | φ • u} \ {t0} = ∅.
(2) {d : {n} | γ • v} = {t0} [by γ(n) ∧ t0 = v(n)], then {d : {n} | γ • v} \ {t0} = ∅.
(3) t0 /∈ {c : N | φ • u} because if it does then there exists n′ ∈ N such that φ(n′)

holds and t0 = u(n′). But, t0 = u(n′) ⇔ t0 = (n′, fu(n
′)). On the other hand

t0 = (n, fv(n)) and so (n, fv(n)) = (n′, fu(n
′)) which implies that n = n′. But this

is impossible because we have n′ ∈ N and n /∈ N .
(4) {t0, . . . , tm ⊔ {c : {s ⊔ N} | φ • u}} \ {t0} = {t1, . . . , tm ⊔ {c : {s ⊔ N} | φ • u}} [by

assumption: t0 /∈ {t1, . . . , tm} ∪ {c : s | φ • u}; and by t0 /∈ {c : N | φ • u}].
(5) {s0, . . . , sk ⊔ {d : N | γ • v}} \ {t0} = {s0, . . . , sk ⊔ {d : N | γ • v}} [by t0 /∈ {s0, . . . , sk}

and n /∈ N ].
— Assume φ(n) ∧ u(n) = sj .

We have to prove that {u(n), t1, . . . , tm ⊔ {c : {s ⊔ N} | φ • u}} = {s0, . . . , sk ⊔ {d : N |
γ • v}}. We proceed as with the previous branch. In fact, the first case is identical
(note that there we used assumptions that are also available in this branch). In
the second case, we take the same value for N and start from H as in the previous
branch.

{t0, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} = {s0, . . . , sk ⊔ {d : X | γ • v}}

⇔ [by X = {n ⊔ N}]

{t0, . . . , tm ⊔ {c : {s, n ⊔ N} | φ • u}} = {s0, . . . , sk ⊔ {d : {n ⊔ N} | γ • v}}

⇔ [by properties of ⊔ and intensional sets and φ(n) holds]

{t0, . . . , tm ⊔ {u(n) ⊔ {c : {s ⊔ N} | φ • u}}}

= {s0, . . . , sk ⊔ {d : N | γ • v}} ∪ {d : {n} | γ • v}

⇔ [by semantics of ⊔]

{u(n), t0, . . . , tm ⊔ {c : {s ⊔ N} | φ • u}} = {s0, . . . , sk ⊔ {d : N | γ • v}} ∪ {d : {n} | γ • v}

⇔ [by subtract {t0} at both sides]

{u(n), t0, . . . , tm ⊔ {c : {s ⊔ N} | φ • u}} \ {t0}
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= ({s0, . . . , sk ⊔ {d : N | γ • v}} ∪ {d : {n} | γ • v}) \ {t0}

⇔ [by \ distributes over ∪]

{u(n), t0, . . . , tm ⊔ {c : {s ⊔ N} | φ • u}} \ {t0}

= ({s0, . . . , sk ⊔ {d : N | γ • v}} \ {t0}) ∪ ({d : {n} | γ • v} \ {t0})

⇔ [by (†)]

{u(n), t1, . . . , tm ⊔ {c : {s ⊔ N} | φ • u}} = {s0, . . . , sk ⊔ {d : N | γ • v}}

The justification of (†) is the following:
(1) {d : {n} | γ • v} = {t0} [by γ(n) ∧ t0 = v(n)], then {d : {n} | γ • v} \ {t0} = ∅.
(2) t0 6= u(n) because if not then t0 = sj which is in contraction with (4).
(3) t0 /∈ {c : N | φ • u} because if it belongs then there exists n′ ∈ N such that

φ(n′) holds and t0 = u(n′). But, t0 = u(n′) ⇔ t0 = (n′, fu(n
′)). On the other hand

t0 = (n, fv(n)) and so (n, fv(n)) = (n′, fu(n
′)) which implies that n = n′. But this

is impossible because we have n′ ∈ N and n /∈ N .
(4) {u(n), t0, . . . , tm⊔{c : {s⊔N} | φ•u}}\{t0} = {u(n), t1, . . . , tm⊔{c : {s⊔N} | φ•u}}

[by assumption: t0 /∈ {t1, . . . , tm} ∪ {c : s | φ • u}; by t0 6= u(n); and by t0 /∈ {c : N | φ • u}].
(5) {s0, . . . , sk ⊔ {d : N | γ • v}} \ {t0} = {s0, . . . , sk ⊔ {d : N | γ • v}} [by t0 /∈ {s0, . . . , sk}

and n /∈ N ].
— Assume ¬φ(n).

We have to prove that {t1, . . . , tm ⊔ {c : {s ⊔ N} | φ • u}} = {s0, . . . , sk ⊔ {d : N |
γ • v}}.We proceed as in the first branch considered in this lemma. In fact, the first
case is identical (note that there we used assumptions that are also available in this
branch). In the second case, we take the same value for N and proceed in the same
way. The only difference is in the first item of the justification of (†) because now we
have {c : {n} | φ • u} = ∅ because ¬φ(n).

⇐=)
We will consider only the last three branches and will prove that the equality holds.

Note that when φ(n) holds then {c : {n} | φ • u} = {u(n)}; and when φ(n) does not
hold then {c : {n} | φ • u} = ∅.

— First branch.

{t0, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} [by H]

= {t0, . . . , tm ⊔ {c : {s ⊔ {n ⊔ N}} | φ • u}} [by semantics of ⊔; property of intensional sets]

= {t0} ∪ {c : {n} | φ • u} ∪ {t1, . . . , tm ⊔ {c : {s ⊔ N} | φ • u}} [by H]

= {t0} ∪ {c : {n} | φ • u} ∪ {s0, . . . , sk ⊔ {d : N | γ • v}} [by {c : {n} | φ • u} = {t0}]

= {t0} ∪ {s0, . . . , sk ⊔ {d : N | γ • v}} [by semantics of ⊔]

= {t0, s0, . . . , sk ⊔ {d : N | γ • v}} [by semantics of ⊔]

= {s0, . . . , sk ⊔ {t0 ⊔ {d : N | γ • v}}} [by H, semantics of ⊔ and property of intensional sets]

= {s0, . . . , sk ⊔ {d : {n ⊔ N} | γ • v}} [by H]

= {s0, . . . , sk ⊔ {d : X | γ • v}}

— Second branch.

{t0, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} [by semantics of ⊔ and X = {n ⊔ N}]

= {t0} ∪ {t1, . . . , tm ⊔ {c : {s, n ⊔ N} | φ • u}} [by φ(n) holds, properties of intensional sets]

= {t0} ∪ {t1, . . . , tm ⊔ {u(n) ⊔ {c : {s ⊔ N} | φ • u}}} [by semantics of ⊔]

= {t0} ∪ {u(n), t1, . . . , tm ⊔ {c : {s ⊔ N} | φ • u}} [by H]
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= {t0} ∪ {s0, . . . , sk ⊔ {d : N | γ • v}} [by semantics of ⊔]

= {t0, s0, . . . , sk ⊔ {d : N | γ • v}} [by semantics of ⊔]

= {s0, . . . , sk ⊔ {t0 ⊔ {d : N | γ • v}}} [by H, semantics of ⊔ and property of intensional sets]

= {s0, . . . , sk ⊔ {d : {n ⊔ N} | γ • v}} [by H]

= {s0, . . . , sk ⊔ {d : X | γ • v}}

— Third branch.

{t0, . . . , tm ⊔ {c : {s ⊔ X} | φ • u}} [by H]

= {t0, . . . , tm ⊔ {c : {s ⊔ {n ⊔ N}} | φ • u}} [by semantics of ⊔; property of intensional sets]

= {t0} ∪ {c : {n} | φ • u} ∪ {t1, . . . , tm ⊔ {c : {s ⊔ N} | φ • u}} [by H]

= {t0} ∪ {c : {n} | φ • u} ∪ {s0, . . . , sk ⊔ {d : N | γ • v}} [by {c : {n} | φ • u} = ∅ by ¬φ(n)]

= {t0} ∪ {s0, . . . , sk ⊔ {d : N | γ • v}} [by semantics of ⊔]

= {t0, s0, . . . , sk ⊔ {d : N | γ • v}} [by semantics of ⊔]

= {s0, . . . , sk ⊔ {t0 ⊔ {d : N | γ • v}}} [by H, semantics of ⊔ and property of intensional sets]

= {s0, . . . , sk ⊔ {d : {n ⊔ N} | γ • v}} [by H]

= {s0, . . . , sk ⊔ {d : X | γ • v}}

The equivalence of rule (=9) has been proved previously for any finite set (exten-
sional or intensional) [Dovier et al. 2000].

LEMMA C.8 (EQUIVALENCE OF RULE (=10)). We consider only the following case
because the others covered by this rule are similar.

∀d,D :

{x : {d ⊔ D} | φ • u} = ∅

⇔ ¬φ(d) ∧ {x : D | φ • u} = ∅

PROOF. Taking any d and D we have:

{x : {d ⊔ D} | φ • u} = ∅ [by Prop. C.4]

⇔ {u(d) : φ(d)} ∪ {u(x) : x ∈ D ∧ φ(x)} = ∅

⇔ {u(d) : φ(d)} = ∅ ∧ {u(x) : x ∈ D ∧ φ(x)} = ∅

⇔ ¬φ(d) ∧ {x : D | φ • u} = ∅

LEMMA C.9 (EQUIVALENCE OF RULE (=11)).

∀d,D,B :

{x : {d ⊔ D} | φ • u} = B

⇔φ(d) ∧ {u(d) ⊔ {x : D | φ • u}} = B

∨ ¬φ(d) ∧ {x : D | φ • u} = B

PROOF. Taking any d, D and B we have:

{x : {d ⊔ D} | φ • u} = B [by Prop. C.4]

⇔ {u(d) : φ(d)} ∪ {u(x) : x ∈ D ∧ φ(x)} = B

⇔ {u(d) : φ(d)} ∪ {x : D | φ • u} = B
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Now assume φ(d), then:

{u(d) : φ(d)} ∪ {x : D | φ • u} = B

⇔ {u(d)} ∪ {x : D | φ • u} = B [by semantics of ⊔]

⇔ {u(d) ⊔ {x : D | φ • u}} = B

Now assume ¬φ(d), then:

{u(d) : φ(d)} ∪ {x : D | φ • u} = B

∅ ∪ {x : D | φ • u} = B

{x : D | φ • u} = B

which finishes the proof.

Remark C.10. Note that in Theorem C.9 when B is:

— An extensional set of the form {y ⊔A}, then the equality in the first disjunct becomes
an equality between two extensional sets:

{u(d) ⊔ {x : D | φ • u}} = {y ⊔ A}

which is solved by the rules described in [Dovier et al. 2000]. In turn, the equality in
the second disjunct becomes an equality between a RIS and an extensional set:

{x : D | φ • u} = {y ⊔ A}

This equality is managed by either rule (=11) itself (if D is not a variable) or by rule
(=14) (if D is a variable).

— A non-variable RIS of the form {x : {e ⊔ E} | γ • v}, then the equality in the first
disjunct becomes an equality between an extensional set and a non-variable RIS:

{u(d) ⊔ {x : D | φ • u}} = {x : {e ⊔ E} | γ • v}

which is managed again by rule (=11). In turn, the equality in the second disjunct
becomes an equality between a RIS and a non-variable RIS:

{x : D | φ • u} = {x : {e ⊔ E} | γ • v}

which is managed by the same rule once more.
Moreover, note that in this case there can be up to four cases (and thus up to four
solutions) considering all the possible combinations of truth values of φ and γ

— A variable RIS of the form {x : E | γ • v}, then the equality in the first disjunct
becomes an equality between an extensional set and a variable RIS:

{u(d) ⊔ {x : D | φ • u}} = {x : E | γ • v}

which is managed by rule (=14). In turn, the equality in the second disjunct becomes
an equality between a RIS and a variable RIS:

{x : D | φ • u} = {x : E | γ • v}

which is no further processed (if D is a variable) or is processed by rule (=11) again
(if D is not a variable).

For the following rule we only consider the case where S ≡ {c : X | φ•u} because the
other one covered by the rule corresponds to results presented in [Dovier et al. 2000].
In this and the following lemma we will write {s ⊔ X} instead of X, where s denotes
zero or more elements; if s denotes zero elements then {s ⊔ X} is just X .
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LEMMA C.11 (EQUIVALENCE OF RULE (=12)). If c ≡ u and d ≡ v:

∀X, t0, t1, . . . , tk :

{d : X | γ • v} = {t0, t1, . . . , tk ⊔ {c : {s ⊔ X} | φ • u}}

⇔ X = {t0 ⊔ N} ∧ γ(t0) ∧ {d : N | γ • v} = {t1, . . . , tk ⊔ {c : {s ⊔ N} | φ • u}}

PROOF. In order to simplify the proof we will not write u and v in the intensional
sets because c ≡ u and d ≡ v.

=⇒ )
Clearly, t0 must belong to {d : X | γ}, then t0 ∈ X and γ(t0) holds.

If t0 ∈ {t1, . . . , tk} ∪ {s} ∧ φ(t0) we take N = X . In this case we have: {t0 ⊔ N} =
{t0 ⊔ X} = X because t0 ∈ X . Now we prove the the last conjunct:

— t0 ∈ {t1, . . . , tk}

{t1, . . . , tk ⊔ {c : {s ⊔ N} | φ}} [by {t0, t1, . . . , tk} = {t1, . . . , tk} and X = N ]

= {t0, t1, . . . , tk ⊔ {c : {s ⊔ X} | φ}} [by H]

= {d : X | γ} [by X = N ]

= {d : N | γ}

— t0 ∈ {s}. Note that in this case {c : {s ⊔N} | φ} = {t0 ⊔ {c : {s ⊔N} | φ}} because φ(t0)
holds by assumption.

{t1, . . . , tk ⊔ {c : {s ⊔ N} | φ}} [by {s} = {t0, s}, φ(t0) holds and X = N ]

= {t0, t1, . . . , tk ⊔ {t0 ⊔ {c : {s ⊔ N} | φ}}} [by H]

= {t0, t1, . . . , tk ⊔ {c : {s ⊔ N} | φ}} [by semantics of ⊔]

= {d : X | γ} [by X = N ]

= {d : N | γ}

If t0 /∈ {t1, . . . , tk}∪{s}∨¬φ(t0) we take N to be X \{t0}. Then, X = {t0 ⊔N}. Besides,
t0 /∈ N . Now we will prove the last conjunct by double inclusion.

Take any x ∈ {d : N | γ}, then x ∈ N and γ(x) holds. Hence, x ∈ {d : X | γ} because
N ⊆ X [by construction]. Now x ∈ {t0, t1, . . . , tk ⊔ {c : {s ⊔ X} | φ}} [by H]. If x = t0 then
there is a contradiction with the fact that x ∈ N because t0 /∈ N . So x cannot be t0.
If x = ti (i 6= 0), then x trivially belongs to {t1, . . . , tk ⊔ {c : {s ⊔ N} | φ}. Finally, if
x ∈ {c : {s ⊔ X} | φ}, then φ(x) holds. But x ∈ N so x ∈ {c : {s ⊔ N} | φ}.

Now the other inclusion. Take any x ∈ {t1, . . . , tk ⊔ {c : {s ⊔ N} | φ}}. If x = ti, then
x ∈ {t1, . . . , tk ⊔ {c : {s ⊔ X} | φ}} and so x ∈ {d : X | γ} [by H], which implies x ∈ X and
γ(x) holds. Given that x 6= t0 [by t0 /∈ {t1, . . . , tk}] and x ∈ X , then x ∈ N [by construction].
Since x ∈ N and γ(x) holds, then x ∈ {d : N | γ}. If x ∈ {c : {s ⊔ N} | φ} then φ(x) holds
and x 6= t0 [by assumption]. Now x ∈ {t0, . . . , tk ⊔ {c : {s ⊔ X} | φ}} [by N ⊆ X]. Then, by
H, x ∈ {d : X | γ} which means that x ∈ X and γ(x) holds. Since x 6= t0, then x ∈ X
implies x ∈ N . Then x ∈ {d : N | γ}.

⇐=)

{t0, t1, . . . , tk ⊔ {c : {s ⊔ X} | φ}} [by H]

= {t0, t1, . . . , tk ⊔ {c : {s ⊔ {t0 ⊔ N}} | φ}} [by semantics of ⊔]

= {t0, t1, . . . , tk ⊔ {c : {s, t0 ⊔ N} | φ}} [by properties of intensional sets and semantics ⊔]

= {t0, t1, . . . , tk ⊔ {c : {s ⊔ N} | φ}} ∪ {c : {t0} | φ} [by semantics of ⊔]
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= {t0} ∪ {t1, . . . , tk ⊔ {c : {s ⊔ N} | φ}} ∪ {c : {t0} | φ} [by {c : {t0} | φ} ⊆ {t0}]

= {t0} ∪ {t1, . . . , tk ⊔ {c : {s ⊔ N} | φ}} [by H]

= {t0} ∪ {d : N | γ} [by semantics ⊔]

= {t0 ⊔ {d : N | γ} [by H, semantics of ⊔ and properties of intensional sets]

= {d : {t0 ⊔ N} | γ} [by H]

= {d : X | γ}

LEMMA C.12 (EQUIVALENCE OF RULE (=13)). If c 6≡ u and d 6≡ v:

∀X, t0, t1, . . . , tk :

{d : X | γ • v} = {t0, t1, . . . , tk ⊔ {c : {s ⊔ X} | φ • u}}

⇔ X = {n ⊔ N} ∧ γ(n) ∧ t0 = v(n) ∧ (φ(n) =⇒ t0 = u(n))

∧ {d : N | γ • v} = {t1, . . . , tk ⊔ {c : {s ⊔ N} | φ • u}}

PROOF. In order to prove this lemma we need to recall that u and v are ordered
pairs whose first component is the control variable and whose second component is
an X -term. Then, from now on we will take u(x) = (x, fu(x)) for some term fu and
v(x) = (x, fv(x)), for some term fv.
=⇒ )
Clearly, t0 must belong to {d : X | γ • v}, which means that there exists n ∈ X , γ(n)
holds and t0 = v(n). Observe that t0 = v(n) means that t0 = (n, fv(n)).

Now will we prove that φ(n) =⇒ t0 = u(n). So assume, φ(n) holds but t0 6= u(n):

φ(n) ∧ t0 6= u(n) [by n ∈ X and definitions of t0 and u]

=⇒ (n, fu(n)) ∈ {c : {s ⊔ X} | φ • u} ∧ (n, fv(n)) 6= (n, fu(n))
[by H: {c : {s ⊔ X} | φ • u} ⊆ {d : X | γ • v}]

=⇒ (n, fu(n)) ∈ {d : X | γ • v} ∧ fv(n) 6= fu(n) [by semantics intensional sets and def. of v]

=⇒ γ(n) ∧ (n, fu(n)) = (n, fv(n)) ∧ fv(n) 6= fu(n) [by drop γ(n) and equality of pairs]

=⇒ fu(n) = fv(n) ∧ fv(n) 6= fu(n)

which is clearly a contradiction. Hence, if φ(n) holds then t0 = u(n).
Finally, we will prove {d : N | γ•v} = {t1, . . . , tk⊔{c : {s⊔N} | φ•u}} by distinguishing

two cases. In the first case, we assume t0 ∈ {t1, . . . , tk}∪{c : {s} | φ •u}, and so we take
N = X which guarantees that X = {n ⊔ N} [by X = N and n ∈ X]. Now we prove the set
equality (last conjunct):

— t0 ∈ {t1, . . . , tk}

{d : N | γ • v} [by N = X]

= {d : X | γ • v} [by H]

= {t0, t1, . . . , tk ⊔ {c : {s ⊔ X} | φ • u}} [by t0 ∈ {t1, . . . , tk}, left absorption]

= {t1, . . . , tk ⊔ {c : {s ⊔ X} | φ • u}} [by X = N ]

= {t1, . . . , tk ⊔ {c : {s ⊔ N} | φ • u}}

— t0 ∈ {c : {s} | φ•u}. Note that in this case {c : {s⊔X} | φ•u} = {t0⊔{c : {s⊔X} | φ•u}}.

{d : N | γ • v} [by N = X]

= {d : X | γ • v} [by H]

= {t0, t1, . . . , tk ⊔ {c : {s ⊔ X} | φ • u}} [by semantics of ⊔]

= {t1, . . . , tk ⊔ {t0 ⊔ {c : {s ⊔ X} | φ • u}}} [by t0 ∈ {c : {s} | φ • u}]
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= {t1, . . . , tk ⊔ {c : {s ⊔ X} | φ • u}} [by X = N ]

= {t1, . . . , tk ⊔ {c : {s ⊔ N} | φ • u}}

In the second case, we assume t0 /∈ {t1, . . . , tk} ∪ {c : {s} | φ • u}, and so we take
N = X \ {n}. This means that X = {n ⊔ N} [by n ∈ X] and n /∈ N .

Now we proceed by double inclusion. Take any (x, fv(x)) ∈ {d : N | γ • v}, then x ∈ N
and γ(x) holds. As x ∈ N then x 6= n and so (x, fv(x)) 6= (n, fv(n)) = t0. Given that N ⊆
X , then (x, fv(x)) ∈ {d : X | γ•v} and so (x, fv(x)) ∈ {t0, t1, . . . , tk⊔{c : {s⊔X} | φ•u}} [by

H]. Given that (x, fv(x)) 6= t0, then (x, fv(x)) ∈ {t1, . . . , tk⊔{c : {s⊔X} | φ•u}}. But x 6= n
and so if (x, fv(x)) ∈ {c : {s ⊔ X} | φ • u} then it actually belongs to {c : {s ⊔ N} | φ • u}.
Hence (x, fv(x)) ∈ {t1, . . . , tk ⊔ {c : {s ⊔ N} | φ • u}}.

Now the other inclusion. Take any x ∈ {t1, . . . , tk ⊔ {c : {s ⊔ N} | φ • u}}. If x = ti (for
some i 6= 0) then x 6= t0, and x ∈ {d : X | γ • v} [by H]. So we have n′ ∈ X such that γ(n′)
holds and x = (n′, fv(n

′)). Now if n′ = n then we have x = (n′, fv(n
′)) = (n, fv(n)) = t0,

which is a contradiction with x 6= t0. Hence, n′ must be different from n and so n′ ∈ N
[by n′ ∈ X = {n ⊔ N} [by construction] and n′ 6= n]. Since n′ ∈ N and γ(n′) holds we have
x = (n′, fv(n

′)) ∈ {d : N | γ • v}. Finally, if x ∈ {c : {s ⊔ N} | φ • u} then x = (n′, fu(n
′))

with n′ ∈ {s ⊔ N} and φ(n′) holds. If n′ = n then n′ ∈ {s} because n /∈ N , and in this
case we would have t0 ∈ {c : {s} | φ • u} because φ(n′) holds, but this a contradiction
with the assumption. Hence n′ 6= n. On the other hand, x ∈ {c : {s ⊔ N} | φ • u}
implies that x = (n′, fu(n

′)) ∈ {c : {s ⊔ N} | φ • u} [by N ⊆ X], which in turn implies
x = (n′, fu(n

′)) ∈ {d : X | γ • v} [by H]. Then n′ ∈ X and γ(n′) holds. Now n′ ∈ X
iff n′ ∈ {n ⊔ N} [by construction], but we have proved that n′ 6= n, so actually n′ ∈ N .
Therefore, we have n′ ∈ N and γ(n′) holds so we have x = (n′, fu(n

′)) ∈ {d : N | γ • v}.

⇐=)

{d : X | γ • v} [by H]

= {d : {n ⊔ N} | γ • v} [by semantics of ⊔ and properties of intensional sets]

= {d : {n} | γ • v} ∪ {d : N | γ • v} [by H]

= {t0} ∪ {d : N | γ • v} [by H]

= {t0} ∪ {t1, . . . , tk ⊔ {c : {s ⊔ N} | φ • u}} [by semantics of ⊔]

= {t0, t1, . . . , tk ⊔ {c : {s ⊔ N} | φ • u}} [by left absorption]

= {t0, t0, t1, . . . , tk ⊔ {c : {s ⊔ N} | φ • u}} [by semantics of ⊔]

= {t0, t1, . . . , tk ⊔ {t0 ⊔ {c : {s ⊔ N} | φ • u}}} [by v(x) = (x, fv(x)) and H: v(n) = t0]

= {t0, t1, . . . , tk ⊔ {(n, fv(n)) ⊔ {c : {s ⊔ N} | φ • u}}}
[by H: φ(n) =⇒ u(n) = t0 ; see (†) below]

= {t0, t1, . . . , tk ⊔ {c : {n ⊔ {s ⊔ N}} | φ • u}}} [by semantics of ⊔]

= {t0, t1, . . . , tk ⊔ {c : {n, s ⊔ N} | φ • u}}} [by semantics of ⊔]

= {t0, t1, . . . , tk ⊔ {c : {s ⊔ {n ⊔ N}} | φ • u}}} [by H]

= {t0, t1, . . . , tk ⊔ {c : {s ⊔ X} | φ • u}}}

(†) Note that if φ(n) does not hold then {c : {n⊔{s⊔N}} | φ•u} = {c : {s⊔N} | φ•u}; and
if φ(n) holds then {c : {n⊔{s⊔N}} | φ•u} = {(n, fu(n))}∪{c : {s⊔N} | φ•u} = {t0}∪{c :
{s ⊔ N} | φ • u}. Besides if φ(n) holds then fu(n) = fv(n) because t0 = v(n) = u(n).
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LEMMA C.13 (EQUIVALENCE OF RULE (=14)).

∀D, y,A :

{x : D | φ • u} = {y ⊔ A}

⇔ ∃d,E : D = {d ⊔ E} ∧ φ(d) ∧ y = u(d) ∧ {x : E | φ • u} = A

PROOF.
=⇒ )
By H, y ∈ {x : D | φ • u}; then:

∃d : d ∈ D ∧ φ(d) ∧ u(d) = y (∃1)

Then we have proved that φ(d) ∧ u(d) = y holds.
It remains to be proved the existence of E and {x : E | φ • u} = A. To this end, the

proof is divided in two cases.
In the first case we assume y /∈ A. Hence, take E = D\{d}, which verifies D = {d⊔E}.

We will prove {x : E | φ • u} = A by proving that:

{x : E | φ • u} ⊆ A ∧A ⊆ {x : E | φ • u}

— {x : E | φ • u} ⊆ A. Take any w ∈ {x : E | φ • u}; then

∃a : a ∈ E ∧ φ(a) ∧ u(a) = w (∃2)

As D = {d⊔E} then a ∈ D which implies w ∈ {x : D | φ•u} which implies w ∈ {y⊔A},
by H. Since u is a bijective pattern, then u(a) 6= u(d) because a 6= d because a ∈ E =
D \ {d}. Given that u(d) = y [by (∃1)] and u(a) = w [by (∃2)], then w 6= y, which implies
that w ∈ A.

— A ⊆ {x : E | φ • u}. Take any w ∈ A; then, by assumption of this case, w 6= y (∗) and
w ∈ {x : E | φ • u}. Hence:

∃a : a ∈ D ∧ φ(a) ∧ u(a) = w (∃3)

So we need to prove that a ∈ E, which by (∃3) will imply that w ∈ {x : E | φ • u},
which will prove this branch.
Given that D = {d⊔E} and that a ∈ D, then a ∈ E iff a 6= d. If a = d then u(a) = u(d),
then w = y because u(a) = w [by (∃3)] and u(d) = y [by (∃1)]. And if w = y then there is
a contradiction with (∗). Therefore, a 6= d and so a ∈ E.

In the second case we assume y ∈ A. Hence, take E = D, then {d ⊔E} = {d ⊔D} = D
because d ∈ D. If y ∈ A, then {y ⊔ A} = A [by semantics of ⊔]. So, by H, we have:

{x : D | φ • u} = {y ⊔ A}

⇔ [by {y ⊔ A} = A]

{x : D | φ • u} = A

⇔ [by D = E]

{x : E | φ • u} = A

⇐=)
By H, let d and E be such that:

D = {d ⊔ E} ∧ φ(d) ∧ u(d) = y ∧ {x : E | φ • u} = A (5)
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Now:

{x : D | φ • u} = {y ⊔ A}

⇔ {x : {d ⊔ E} | φ • u} = {y ⊔ A} [by D = {d ⊔ E} in (5)]

⇔ {u(d) : φ(d)} ∪ {x : E | φ • u} = {y ⊔ A} [by Lemma C.4]

⇔ {u(d)} ∪ {x : E | φ • u} = {y ⊔ A} [by φ(d) in (5)]

⇔ {y} ∪ A = {y ⊔ A} [by {x : E | φ • u} = A in (5)]

⇔ true

The equivalence of the rule for 6= (i.e., rule (8)) is trivial because this rule applies the
definition of set disequality which is given in terms of ∈ and /∈.

LEMMA C.14 (EQUIVALENCE OF RULE (∈4)).

∀D, y :

y ∈ {x : D | φ • u} ⇔ ∃d : d ∈ D ∧ φ(d) ∧ y = u(d)

PROOF. The proof is trivial since this is the definition of set membership w.r.t. an
intensional set.

LEMMA C.15 (EQUIVALENCE OF RULE (/∈3)).

∀t, d,D :

t /∈ {{d ⊔ D} | φ • u}

⇔φ(d) ∧ t 6= u(d) ∧ t /∈ {D | φ • u}

∨ ¬φ(d) ∧ t /∈ {D | φ • u}

PROOF.

t /∈ {{d ⊔ D} | φ • u}

⇔ ∀x : x ∈ {d ⊔ D} ∧ φ(x) ∧ t 6= u(x) [by RIS semantics]

⇔ ∀x :φ(d) ∧ t 6= u(d) ∧ x ∈ D ∧ φ(x) ∧ t 6= u(x)

∨ ¬φ(d) ∧ x ∈ D ∧ φ(x) ∧ t 6= u(x)
[by single out d]

⇔φ(d) ∧ t 6= u(d) ∧ ∀x : x ∈ D ∧ φ(x) ∧ t 6= u(x)

∨ ¬φ(d) ∧ ∀x : x ∈ D ∧ φ(x) ∧ t 6= u(x)

⇔φ(d) ∧ t 6= u(d) ∧ t /∈ {D | φ • u}

∨ ¬φ(d) ∧ t /∈ {D | φ • u}

Concerning the un constraint, since rules (13)-(19) are extensions of the rules pre-
sented by [Dovier et al. 2000], the corresponding proofs are trivial. Rule (20) is the only
one that truly processes non-variable RIS.

LEMMA C.16 (EQUIVALENCE OF RULE (20)). If at least one of A,B,C is not a vari-
able nor a variable-RIS:

un(A,B,C)⇔ un(S(A),S(B),S(C)) ∧ C(A) ∧ C(B) ∧ C(C)
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A:72 M. Cristiá and G. Rossi

where S is a set-valued function and C is a constraint-valued function

S(σ) =

{
Nσ if σ ≡ {{d ⊔D} | φ • u}

σ otherwise

C(σ) =







Nσ = ({u(d) ⊔ {D | φ • u}} ∧ φ(d)) if σ ≡ {{d ⊔D} | φ • u}

∨ (Nσ = {D | φ • u} ∧ ¬φ(d))

true otherwise

PROOF. Actually, this rule covers several cases that could have been written as dif-
ferent rules. Indeed, this rule applies whenever at least one of its arguments is a non
variable-RIS. This means that there are seven cases where this rule is applied.

We will prove the equivalence for one of this seven cases because all the other are
proved in a similar way. The case to be considered is the following:

un({{d ⊔D} | φ • u}, B, {{e⊔ E} | γ • v}) (6)

that is, the first and third arguments are non-variable RIS while the second is a vari-
able.

In this case the rule rewrites (6) as follows:

un(S({{d ⊔D} | φ • u}),S(B),S({{e ⊔ E} | γ • v}))

∧ C({{d ⊔D} | φ • u})

∧ C(B)

∧ C({{e ⊔ E} | γ • v})⇔ [by applying the definition of S and C]

un(N1, B,N2)

∧ (N1 = {u(d) ⊔ {D | φ • u}} ∧ φ(d) ∨N1 = {D | φ • u} ∧ ¬φ(d))

∧ true

∧ (N2 = {v(e) ⊔ {E | γ • v}} ∧ γ(e) ∨N2 = {E | γ • v} ∧ ¬γ(e))

Hence, after performing some trivial simplifications we have:

φ(d) ∧ γ(e) ∧ un({u(d) ⊔ {D | φ • u}}, B, {v(e) ⊔ {E | γ • v}})

∨

φ(d) ∧ ¬γ(e) ∧ un({u(d) ⊔ {D | φ • u}}, B, {E | γ • v})

∨

¬φ(d) ∧ γ(e) ∧ un({D | φ • u}, B, {v(e) ⊔ {E | γ • v}})

∨

¬φ(d) ∧ ¬γ(e) ∧ un({D | φ • u}, B, {E | γ • v})

That is, S and C simply transform each non variable-RIS into an extensional set or
another RIS depending on whether the ‘first’ element of each domain is true of the
corresponding filter or not. In this way, a disjunction covering all the possible combi-
nations is generated.

As with union, the only rules for disj that truly deal with non trivial RIS terms are
(26) and (27). However, given that they are symmetric, we only prove the equivalence
for the first one.

LEMMA C.17 (EQUIVALENCE OF RULE (26)).

A ‖{{d ⊔D} | φ • u} ⇔

φ(d) ∧ u(d) /∈ A ∧ A ‖ {D | φ • u} ∨ ¬φ(d) ∧ A ‖ {D | φ • u}
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PROOF.

A ‖ {{d ⊔D} | φ • u}

⇔ A ‖ ({u(d) | φ(d)} ∪ {u(x) | x ∈ D ∧ φ(x)}) [by Lemma C.4]

⇔ A ‖ {u(d) | φ(d)} ∧ A ‖ {u(x) | x ∈ D ∧ φ(x)} [by distribution]

⇔ (φ(d) ∧A ‖ {u(d)} ∨ ¬φ(d) ∧ A ‖ ∅) ∧ A ‖ {u(x) | x ∈ D ∧ φ(x)}
[by singleton comprehension]

⇔ (φ(d) ∧ u(d) /∈ A ∨ ¬φ(d) ∧ A ‖ ∅) ∧ A ‖ {u(x) | x ∈ D ∧ φ(x)}
[by disjointness singleton]

⇔ φ(d) ∧ u(d) /∈ A ∧A ‖ {u(x) | x ∈ D ∧ φ(x)} [by distribution]

∨ ¬φ(d) ∧ A ‖ {u(x) | x ∈ D ∧ φ(x)} [by RIS semantics]

⇔ φ(d) ∧ u(d) /∈ A ∧A ‖ {D | φ • u} ∨ ¬φ(d) ∧ A ‖ {D | φ • u}

The last theorems concern the specialized rules for RUQ given in Figure 7. As can
be seen the only one that does not have a trivial proof is the following.

LEMMA C.18 (EQUIVALENCE OF RULE (40)).

∀t, A : t /∈ A =⇒

{t ⊔A} ∪ {x : {t ⊔ A} | φ} = {x : {t ⊔ A} | φ} ⇔ φ(t) ∧ A ∪ {x : A | φ} = {x : A | φ}

PROOF. First note that

t /∈ A =⇒ {t} ‖ A ∧ {t} ‖ {A | φ} (7)

and

{x : {t} | φ} ⊆ {t} (8)

and

{x : {t} | φ} = {t} ⇔ φ(t) (9)

{t ⊔A} ∪ {x : {t ⊔ A} | φ} = {x : {t ⊔ A} | φ}

⇔ {t} ∪ A ∪ {x : {t} | φ} ∪ {x : A | φ} = {x : {t} | φ} ∪ {x : A | φ}
[by Lemma C.4; semantics ⊔]

⇔ {t} ∪ A ∪ {x : A | φ} = {x : {t} | φ} ∪ {x : A | φ} [by (8); {t} in left-hand side]

⇔ φ(t) ∧ {t} ∪ A ∪ {x : A | φ} = {t} ∪ {x : A | φ} [by (9)]

⇔ φ(t) ∧ A ∪ {x : A | φ} = {x : A | φ} [by (7); basic property disjointedness and union]
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