Skip to main content
Log in

Homology modeling, force field design, and free energy simulation studies to optimize the activities of histone deacetylase inhibitors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

As an effort to develop therapeutics for cancer treatments, a number of effective histone deacetylase inhibitors with structural diversity have been discovered. To gain insight into optimizing the activity of an identified lead compound, a computational protocol sequentially involving homology modeling, docking experiments, molecular dynamics simulation, and free energy perturbation calculations was applied for rationalizing the relative activities of known histone deacetylase inhibitors. With the newly developed force field parameters for the coordination environment of the catalytic zinc ion in hand, the computational strategy proved to be successful in predicting the rank orders for 12 derivatives of three hydroxamate-based inhibitor scaffolds with indole amide, pyrrole, and sulfonamide moieties. The results showed that the free energy of an inhibitor in aqueous solution should be an important factor in determining the binding free energy. Hence, in order to enhance the inhibitory activity by adding or substituting a chemical group, the increased stabilization in solution due to the structural changes must be overcome by a stronger enzyme-inhibitor interaction. It was also found that to optimize inhibitor potency, the hydrophobic head of an inhibitor should be elongated or enlarged so that it can interact with Pro29 and His28 that are components of the flexible loop at the top of the active site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jenuwein, T. and Allis, C.D., Science, 293 (2001) 1074.

    Google Scholar 

  2. Johnstone, R.W., Nat. Rev. Drug Discov., 1 (2002) 287.

    Google Scholar 

  3. Marks, P.A., Rifkind, R.A., Richon, V.M., Breslow, R., Miller, T. and Kelly, W.K., Nat. Rev. Cancer, 1 (2001) 194.

    Google Scholar 

  4. Gray, S.G. and Ekstrom, T.J., Exp. Cell Res., 262 (2001) 75.

    Google Scholar 

  5. Imai, S., Armstrong, C.M., Kaeberlein, M. and Guarente, L., Nature, 403 (2000) 795.

    Google Scholar 

  6. Finnin, M.S., Donigian, J.R. and Pavletich, N.P., Nat. Struct. Biol., 8 (2001) 621.

    Google Scholar 

  7. Finnin, M.S., Donigian, J.R., Cohen, A., Richon, V.M., Rifkind, R.A., Marks, P.A., Breslow, R. and Pavletich, N.P., Nature, 401 (1999) 188.

    Google Scholar 

  8. Lipscomb, W.N. and Sträter, N., Chem. Rev., 96 (1996) 2375.

    Google Scholar 

  9. Yoshida, M., Kijima, M., Akita, M. and Beppu, T., J. Biol. Chem., 265 (1990) 17174.

    Google Scholar 

  10. Kijima, M., Yoshida, M., Sugita, K., Horinouchi, S. and Beppu, T., J. Biol. Chem., 268 (1993) 22429.

    Google Scholar 

  11. Nakajima, H., Kim, Y.B., Terano, H., Yoshida, M. and Horinouchi, S., Exp. Cell. Res., 241 (1988) 126.

    Google Scholar 

  12. Darkin-Rattray, S., Gurnett, A.M., Myres, R.W., Dulski, P.M., Crumely, K.M., Allocco, J.J., Cannova, C., Meinke, P.T., Colletti, S.L., Bednarek, M.A., Singh, S.B., Goetz, M.A., Dombrowski, A.W., Polishook, J.D. and Schimatz, D.M., Proc. Natl. Acad. Sci. USA, 93 (1996) 13143.

    Google Scholar 

  13. Kelly, W.K., O'Connor, O.A. and Marks, P.A., Exp. Opin. Investig. Drugs, 11 (2001) 1695.

    Google Scholar 

  14. Dai, Y., Guo, Y., Guo, J., Pease, L.J., Li, J., Marcotte, P.A., Glaser, K.B., Tapang, P., Albert, D.H., Richardson, P.L., Davidsen, S.K. and Michaelides, M.R., Bioorg. Med. Chem. Lett., 13 (2003) 1897.

    Google Scholar 

  15. Bouchain, G., Leit, S., Frechette, S., Khalil, E.A., Lavoie, R., Moradei, O., Woo, S.H., Fournel, M., Yan, P.T., Kalita, A., Trachy-Bourget, M.-C., Beaulieu, C., Li, Z., Robert, M.F., MacLeod, A.R., Besterman, J.M. and Delorme, D., J. Med. Chem., 46 (2003) 820.

    Google Scholar 

  16. Mai, A., Massa, S., Ragno, R., Cerbara, I., Jesacher, F., Loidl, P. and Brosch, G., J. Med. Chem., 46 (2003) 512.

    Google Scholar 

  17. Uesato, S., Kitagawa, M., Nagaoka, Y., Maeda, T., Kuwajima, H. and Yamori, T., Bioorg. Med. Chem. Lett., 12 (2002) 1347.

    Google Scholar 

  18. Remiszewski, S.W., Sambucetti, L.C., Atadja, P., Bair, K.W., Cornell, W.D., Green, M.A., Howell, K.L., Jung, M., Kwon, P., Trogani, N. and Walker, H., J. Med. Chem., 45 (2002) 753.

    Google Scholar 

  19. Mai, A., Massa, S., Ragno, R., Esposito, M., Sbardella, G., Nocca, G., Scatena, R., Jesacher, F., Loidl, P. and Brosch, G., J. Med. Chem., 45 (2002) 1778.

    Google Scholar 

  20. Wittich, S., Scherf, H., Xie, C., Brosch, G., Loidl, P., Gerhauser, C. and Jung, M., J. Med. Chem., 45 (2002) 3296.

    Google Scholar 

  21. Phiel, C.J., Zhang, F., Huang, E.Y., Guenther, M.G., Lazar, M.A. and Klein, P.S., J. Biol. Chem., 276 (2001) 36734.

    Google Scholar 

  22. Göttlicher, M., Minucci, S., Zhu, P., Krämer, O.H., Schimpf, A., Giavara, S., Sleeman, J.P., Coco, F.L., Nervi, C., Pelicci, P.G. and Heinzel, T., EMBO J., 20 (2001) 6969.

    Google Scholar 

  23. Saito, A., Yamashita, T., Mariko, Y., Nosaka, Y., Tsuchiya, K., Ando, T., Suzuki, T., Tsuruo, T. and Nakanishi, O., Proc. Natl. Acad. Sci. USA, 96 (1999) 4592.

    Google Scholar 

  24. Frey, R.R., Wada, C.K., Garland, R.B., Curtin, M.L., Michaelides, M.R., Li, J., Pease, L.J., Glaser, K.B., Marcotte, P.A., Bouska, J.J., Murphy, S.S. and Davison, S.K., Bioorg. Med. Chem. Lett., 12 (2002) 3443.

    Google Scholar 

  25. Kapustin, G.V., Fejer, G., Gronlund, J.L., McCafferty, D.G., Seto, E. and Etzkorn, F.A., Org. Lett., 5 (2003) 3053.

    Google Scholar 

  26. Pina, I.C., Gautschi, J.T., Wang, G.-Y.-S., Sanders, M.L., Schmitz, F.J., France, D., Cornell-Kennon, S., Sambucetti, L.C., Remiszewski, S.W., Perez, L.B., Bair, K.W. and Crews, P., J. Org. Chem., 68 (2003) 3866.

    Google Scholar 

  27. Wada, C.K., Frey, R.R., Ji, Z., Curtin, M.L., Garland, R.B., Holms, J.H., Li, J., Pease, L.J., Guo, J., Glaser, K.B., Marcotte, P.A., Richardson, P.L., Murphy, S.S., Bouska, J.J., Tapang, P., Magoc, T.J., Albert, D.H., Davidsen, S.K. and Michaelides, M.R., Bioorg. Med. Chem. Lett., 13 (2003) 3331.

    Google Scholar 

  28. Baker, D. and Sali, A., Science, 294 (2001) 93.

    Google Scholar 

  29. Evers, A. and Klebe, G., Angew. Chem. Int. Ed. Engl., 43 (2004) 248.

    Google Scholar 

  30. Bairoch, A. and Apweiler, R., Nucleic Acids Res., 27 (1999)

  31. Sonnhammer, E.L.L., Eddy, S.R. and Durbin, R., Proteins, 28 (1997) 405.

    Google Scholar 

  32. Thompson, J.D., Higgins, D.G. and Gibson, T.J., Nucleic Acids Res., 22 (1994) 4673.

    Google Scholar 

  33. Sali, A. and Blundell, T.L., J. Mol. Biol., 234 (1993) 779.

    Google Scholar 

  34. Fiser, A., Do, R.K.G. and Sali, A., Protein Sci., 9 (2000) 1753.

    Google Scholar 

  35. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K. and Olson, A.J., J. Comput. Chem., 19 (1998) 1639.

    Google Scholar 

  36. Hoops, S.C., Anderson, K.W. and Merz, K.M., Jr., J. Am. Chem. Soc., 113 (1991) 8262.

    Google Scholar 

  37. Ryde, U., Proteins, 21 (1995) 40.

    Google Scholar 

  38. Stote, R.H. and Karplus, M., Proteins, 23 (1995) 12.

    Google Scholar 

  39. Fox, T. and Kollman, P.A., Phys. Chem. B, 102 (1998) 8070.

    Google Scholar 

  40. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Jr., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Cald-well, J.W. and Kollman, P.A., J. Am. Chem. Soc., 117 (1995) 5179.

    Google Scholar 

  41. Bayly, C.A., Cieplak, P., Cornell, W.D. and Kollman, P.A., J. Phys. Chem., 97 (1993) 10269.

    Google Scholar 

  42. Vanommeslaeghe, K., Alsenoy, C.V., Proft, F.D., Martins, J.C., Tourwe, D. and Geerlings, P., Org. Biol. Chem., 1 (2003) 2951.

    Google Scholar 

  43. Case, D.A., Pearlman, D.A., Caldwell, J.W., Cheatham, T.E., Ross, W.S., Simmerling, C., Darden, T., Merz, K.M., Jr., Stanton, R.V., Cheng, A., Vincent, J.J., Crowley, M., Tsui, V., Radmer, R., Duan, Y., Pitera, J., Massova, I., Seibel, G.L., Singh, U.C., Weiner, P. and Kollman, P.A., AMBER 7, University of California, San Francisco, 2002.

    Google Scholar 

  44. Zwanzig, R.J., J. Chem. Phys., 22 (1954) 1420.

    Google Scholar 

  45. Beveridge, D.L. and DiCapua, F.M., Annu. Rev. Biophys. Biophys. Chem., 18 (1989) 431.

    Google Scholar 

  46. Bash, P.A., Singh, U.C., Brown, F.K., Langridge, R. and Kollman, P.A., Science, 235 (1987) 574.

    Google Scholar 

  47. Merz, K.M., Jr. and Kollman, P.A., J. Am. Chem. Soc., 111 (1989) 5649.

    Google Scholar 

  48. Rao, B.G., Tilton, R.F. and Singh, U.C., J. Am. Chem. Soc., 114 (1992) 4447.

    Google Scholar 

  49. Rastelli, G., Thomas, B., Kollman, P.A. and Santi, D.V., J. Am. Chem. Soc., 117 (1995) 7213.

    Google Scholar 

  50. Essex, J.W., Severance, D.L., Tirado-Rives, J. and Jorgensen, W.L., J. Phys. Chem. B., 101 (1997) 9663.

    Google Scholar 

  51. Reddy, M.R. and Erion, M.D., J. Am. Chem. Soc., 123 (2001) 6246.

    Google Scholar 

  52. Guimaraes, C.R.W. and Bicca de Alencastro, R., J. Med. Chem., 45 (2002) 4995.

    Google Scholar 

  53. Berendsen, H.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A. and Haak, J.R., J. Chem. Phys., 81 (1984) 3684.

    Google Scholar 

  54. Ryckaert, J.P., Ciccotti, G. and Berendsen, H.C., J. Comput. Phys., 23 (1977) 327.

    Google Scholar 

  55. Laskowski, R.A., MacArthur, M.W., Moss, D.S. and Thornton, J.M., J. Appl. Crystallogr., 26 (1993) 283.

    Google Scholar 

  56. Munagala, N., Basus, V.J. and Wang, C.C., Biochemistry, 40 (2001) 4303.

    Google Scholar 

  57. Gill, H.S., Pfluegl, G.M.U. and Eisenberg, D., Biochemistry, 41 (2002) 9863.

    Google Scholar 

  58. Huntley, J.J.A., Scrofani, S.D.B., Osborne, M.J., Wright, P.E. and Dyson, H.J., Biochemistry, 39 (2000) 13356.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, H., Lee, S. Homology modeling, force field design, and free energy simulation studies to optimize the activities of histone deacetylase inhibitors. J Comput Aided Mol Des 18, 375–388 (2004). https://doi.org/10.1007/s10822-004-2283-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-004-2283-3

Navigation