Skip to main content

Advertisement

Log in

Tuning of hydrogen bond strength using substituents on phenol and aniline: A possible ligand design strategy

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Using Density Functional Theory, the hydrogen bonding energy is calculated for the interaction of phenol and aniline with four model compounds representing the protein backbone and various amino acid site chain residues. The models are methanol, protonated methylamine, formaldehyde and acetate anion. The H-bond energies for the uncharged species are ∼2.5kcalmol−1, whereas the charged model compounds bind with much higher energies of ∼20kcalmol−1. The effect of para-substitution on the hydrogen bond energies is determined. Substitution has little effect on the H-bond energy of the neutral complexes (<2kcalmol−1), but for the positively and negatively charged systems substitution drastically alters the binding energies, e.g., 14.3kcalmol−1 for para-NO2. In the context of protein–ligand binding, relatively small changes in binding energy can cause large changes in affinity due to their exponential relationship. This means that for –NO2 an enormous change of 10 orders of magnitude for the affinity constant is predicted. These calculations allow prediction of H-bonds, using different substituents, in order to fine-tune and optimize ligand–protein interactions in the search for drug candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pauling, L., Corey, R.B. and Branson, H.R., Proc. Natl. Acad. Sci. USA, 37 (1951) 205.

    Google Scholar 

  2. Pauling, L. and Corey, R.B., Proc. Natl. Acad. Sci. USA, 37 (1951) 729.

    Google Scholar 

  3. Böhm, H.J. and Klebe, G., Angew. Chem. Int. Ed. Engl., 35 (1996) 2588.

    Google Scholar 

  4. Klebe, G. and Böhm, H.J., Recept. Signal Transduction Res., 17 (1997) 459.

    Google Scholar 

  5. Höltje, H.D., Sippl, W., Rognan, D. and Folkers, G., Molecular Modeling, Second Edition. Wiley-VCH, Weinheim, Germany, 2003.

    Google Scholar 

  6. An analog of the highly successful Glivec kinase inhibitor interacts with the protein through hydrogen bonds, some of which confer specificity [7].

  7. Schindler, T., Bornmann, W., Pellicena, P., Miller, W.T., Clarkson, B. and Kuriyan, J., Science, 289 (2000) 1938.

    Google Scholar 

  8. Very weak correlation has been found between the number of contributing H-bonds to binding affinity [3].

  9. Ward, W.H.J. and Holdgate, G.A., In King, F.D. and Oxford, A.W. (Eds.), Progress in Medicinal Chemistry, Vol. 38.Elsevier Science, 2001, pp. 309-376.

  10. Roberts, D.A. and Ward, W.H.J., In King, F.D. (Ed.), Medicinal Chemistry:Principles and Practice, Royal Society of Chemistry, Cambridge, UK, 2002, pp. 64-90.

    Google Scholar 

  11. Abraham, M.H. and Platts, J.A., J. Org. Chem., 66 (2001) 3484.

    Google Scholar 

  12. Ahn, D., Park, S., Lee, S. and Kim, B., J. Phys. Chem. A, 107 (2003) 131.

    Google Scholar 

  13. Pejov, L., Chem.Phys., 285 (2002) 177.

    Google Scholar 

  14. Koch, W. and Holthausen, M.C., A Chemist 's Guide to Density Functional Theory. Wiley-VCH, Weinheim, Germany, 1999.

    Google Scholar 

  15. Reynisson, J. and Steenken, S., J. Mol. Struct. (Theochem), 635 (2003) 133.

    Google Scholar 

  16. Reynisson, J. and Steenken, S., Phys. Chem. Chem. Phys., 4 (2002) 5353.

    Google Scholar 

  17. Abdali, S., Jalkanen, K.J., Cao, X., Nafie, L.A. and Bohr, H., Phys. Chem. Chem. Phys., 6 (2004) 2434.

    Google Scholar 

  18. Tuma, C. and Sauer, J., Chem. Phys. Lett., 387 (2004) 388.

    Google Scholar 

  19. Shishkin, O.V., Elstner, M., Frauenheim, T. and Suhai, S., Int. J. Mol. Sci., 4 (2003) 537.

    Google Scholar 

  20. Guerra, C.F., Bickelhaupt, F.M., Snijders, J.G. and Baerends, E.J., J. Am. Chem. Soc., 122 (2000) 4117.

    Google Scholar 

  21. Braida, B., Hiberty, P.C. and Savin, A., J. Phys. Chem. A, 102 (1998) 7872.

    Google Scholar 

  22. Pollet, R., Savin, A., Leininger, T. and Stoll, H., J. Chem. Phys., 116 (2002) 1250.

    Google Scholar 

  23. Kamiya, M., Tsuneda, T. and Hirao, K., J. Chem. Phys., 117 (2002) 6010.

    Google Scholar 

  24. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., J.A. Montgomery, J., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., N. Rega, G.A. Petersson, Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C. and Pople, J.A. GAUSSIAN 03 (B.3). Gaussian, Inc., Pittsburgh, PA, 2003.

    Google Scholar 

  25. Lee, C., Yang, W. and Parr, R.G., Phys. Rev. B., 37 (1988) 785.

    Google Scholar 

  26. Becke, A.D., Phys. Rev. A., 38 (1988) 3098.

    Google Scholar 

  27. Becke, A.D., J. Chem. Phys., 98 (1993) 5648.

    Google Scholar 

  28. Frisch, M.J., Pople, J.A. and Binkley, J.S., J. Chem. Phys., 80 (1984) 3265.

    Google Scholar 

  29. Wong, M.W., Chem. Phys. Lett., 256 (1996) 391.

    Google Scholar 

  30. Boys, S.F. and Bernardi, F., Mol. Phys., 19 (1970) 553.

    Google Scholar 

  31. Duijneveldt, F.B.v., Rijdt, J.G.C.M.v.D.-v.d. and Lenthe, J.H.v., Chem. Rev., 94 (1994) 1873.

    Google Scholar 

  32. It also applies to some extent to arginine. In general, we do not try to cover all of the amino acids but focus on the most interesting ones in our opinion.

  33. Here the consequences on the entropy term are ignored in order to keep the model simple. The qualitative effects on entropy are discussed later in the paper.

  34. Desiraju, G.R. and Steiner, T., The Weak Hydrogen Bond. University Press, Oxford, UK, 1999, p. 12.

    Google Scholar 

  35. Additionally, the aniline-acetate anion system, substituted with-CH2OH, forms bidentate bonding, i.e., each respective hydrogen on aniline forms a bond with each oxygen atom on the acetate molecule with H-bond lengths of 1.8 and 2.6 Å, respectively. This is the only complex, which forms a bidentate bonding observed in this work.

  36. Reynisson, J. and Steenken, S., Org. Biomol. Chem., 2 (2004) 578.

    Google Scholar 

  37. Steenken, S., Chem.Rev., 89 (1989) 503.

    Google Scholar 

  38. Reynisson, J. and Steenken, S., Phys. Chem. Chem. Phys., 4 (2002) 5346.

    Google Scholar 

  39. Isaacs, N., Physical Organic Chemistry. Longman Scientic and Technical, Essex, UK, 1987, pp. 146-192.

    Google Scholar 

  40. The R values for the slopes lie between 0.97509 and 0.87004.

  41. Nitro (σpara = 0.78), trifluoromethyl (σpara = 0.53) and methylsulphonite (σpara = 0.73).

  42. Boström, J., Norrby, P. and Liljefors, T., J. Comput.-aided Mol. Des., 12 (1998) 383.

    Google Scholar 

  43. Vieth, M., Hirst, J.D. and Brooks III, C.L., J. Comput.-aided Mol. Des., 12 (1998) 563.

    Google Scholar 

  44. For intercalation of ligands into the DNA stack hydro-phobicity provides the overwhelming driving force for complex formation [45, 46].

  45. Chaires, J.B., Curr. Opin. Struct. Biol., 8 (1998) 314.

    Google Scholar 

  46. Chaires, J.B., Biopolymers, 44 (1997) 201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynisson, J., Mcdonald, E. Tuning of hydrogen bond strength using substituents on phenol and aniline: A possible ligand design strategy. J Comput Aided Mol Des 18, 421–431 (2004). https://doi.org/10.1007/s10822-004-3741-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-004-3741-7

Navigation