Skip to main content
Log in

Interactions of peptide mimics of hyaluronic acid with the receptor for hyaluronan mediated motility (RHAMM)

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Using the hyaluronic acid (HA) binding region of the receptor for hyaluronan-mediated motility (RHAMM) as a model, a molecular perspective for peptide mimicry of the natural ligand was established by comparing the interaction sites of HA and unnatural peptide–ligands to RHAMM. This was accomplished by obtaining a series of octapeptide–ligands through screening experiments that bound to the HA binding domains of RHAMM (amino acids 517–576) and could be displaced by HA. These molecules were computationally docked onto a three-dimensional NMR based model of RHAMM. The NMR model showed that RHAMM(517–576) was a set of three helices, two of which contained the HA binding domains (HABDs) flanking a central groove. The structure was stabilized by hydrophobic interactions from four pairs of Val and Ile side chains extending into the groove. The presence of solvent exposed, positively charged side chains spaced 11 Å apart matched the spacing of negative charges on HA. Docking experiments using flexible natural and artificial ligands demonstrated that HA and peptide–mimetics preferentially bound to the second helix that contains HABD-2. Three salt bridges between HA carboxylates and Lys548, Lys553 and Lys560 and two hydrophobic interactions involving Val538 and Val559 were predicted to stabilize the RHAMM-HA complex. The high affinity peptides and HA utilized the same charged residues, with additional contacts to other basic residues. However, hydrophobic contacts do not contribute to affinity for peptide ligand-RHAMM complexes. These results offer insight into how selectivity is achieved in the binding of HA to RHAMM, and how peptide competitors may compete for binding with HA on a single hyaladherin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CVFF:

combined valence force field

DYANA:

dynamics algorithm for NMR applications

ECM:

extracellular matrix

EDCI:

1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride

Erk:

extracellular signal regulated protein kinase

FAK:

focal adhesion kinase

GAG:

glycosaminoglycan

GCU:

glucuronic acid

GnHCl:

guanidinium hydrochloride

GPI:

glycosyl phosphatidyl inositol

GST:

glutathione-S transferase

HA:

hyaluronic acid

HABD:

hyaluronic acid binding domain

HPLC:

high performance liquid chromatography

MAPK:

mitogen activated protein kinase

NAG:

N-acetyl glucosamine

NOESY:

nuclear Overhauser enhanced spectroscopy

ppm:

parts per million

RHAMM:

receptor for hyaluronan mediated motility

TGF:

transforming growth factor

TOCSY:

total correlation spectroscopy

References

  • J.R. Fraser T.C. Laurent U.B. Laurent (1997) J. Intern. Med. 242 27

    Google Scholar 

  • J.Y. Lee A.P. Spicer (2000) Curr. Opin. Cell Biol. 12 581

    Google Scholar 

  • B.P. Toole (2001) Semin. Cell. Dev. Biol. 12 79

    Google Scholar 

  • J. Entwistle C.L. Hall E.A. Turley (1996) J. Cell. Biochem. 61 569

    Google Scholar 

  • W.Y. Chen G. Abatangelo (1999) Wound Repair Regen. 7 79

    Google Scholar 

  • E.A. Turley P.W. Noble L.Y. Bourguignon (2002) J. Biol. Chem. 277 4589

    Google Scholar 

  • B.D. Lynn X. Li P.A. Cattini E.A. Turley J.I. Nagy (2001) J. Comp. Neurol. 439 315

    Google Scholar 

  • V.B. Lokeshwar M.G. Selzer (2000) J. Biol. Chem. 275 27641

    Google Scholar 

  • J. Greiner M. Ringhoffer M. Taniguchi A. Schmitt D. Kirchner G. Krahn V. Heilmann J. Gschwend L. Bergmann H. Dohner M. Schmitt (2002) Exp. Hematol. 30 1029

    Google Scholar 

  • A.J. Day (1999) Biochem. Soc. Trans. 27 115

    Google Scholar 

  • D. Kohda C.J. Morton A.A. Parkar H. Hatanaka F.M. Inagaki I.D. Campbell A.J. Day (1996) Cell 86 767 Occurrence Handle1:CAS:528:DyaK28XlslShtrg%3D Occurrence Handle8797823

    CAS  PubMed  Google Scholar 

  • J. Lesley N.M. English I. Gal K. Mikecz A.J. Day R. Hyman (2002) J. Biol. Chem. 277 26600

    Google Scholar 

  • J. Bajorath B. Greenfield S.B. Munro A.J. Day A. Aruffo (1998) J. Biol. Chem. 273 338

    Google Scholar 

  • C.D. Blundell D.J. Mahoney A. Almond P.L. DeAngelis J.D. Kahmann P. Teriete A.R. Pickford I.D. Campbell A.J. Day (2003) J. Biol. Chem. 11 11

    Google Scholar 

  • B. Yang B.L. Yang R.C. Savani E.A. Turley (1994) Embo J. 13 286

    Google Scholar 

  • A.J. Day G.D. Prestwich (2002) J. Biol. Chem. 277 4585

    Google Scholar 

  • M.R. Ziebell Z.G. Zhao B. Luo Y. Luo E.A. Turley G.D. Prestwich (2001) Chem. Biol. 8 1081

    Google Scholar 

  • C.L. Hall B. Yang X. Yang S. Zhang M. Turley S. Samuel L.A. Lange C. Wang G.D. Curpen R.C. Savani et al. (1995) Cell 82 19

    Google Scholar 

  • J. Sambrook E.F. Fritsch T. Maniatis (1989) Molecular Cloning A Laboratory Manual EditionNumber2 Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY

    Google Scholar 

  • C. Wang J. Entwistle G. Hou Q. Li E.A. Turley (1996) Gene 174 299 Occurrence Handle10.1016/0378-1119(96)00080-7

    Article  Google Scholar 

  • K. Nordstrand H. Ponstingl A. Holmgren G. Otting (1996) Eur. Biophys. J. 24 179

    Google Scholar 

  • C. Bartels T.H. Xia M. Billeter P. Guntert K. Wüthrich (1995) J. Biomol. NMR 6 1

    Google Scholar 

  • G.M. Clore J.G. Omichinski K. Sakaguchi N. Zambrano H. Sakamoto E. Appella A.M. Gronenborn (1994) Science 265 386

    Google Scholar 

  • K. Wüthrich M. Billeter W. Braun (1984) J. Mol. Biol. 180 715

    Google Scholar 

  • T.F. Havel K. Wüthrich (1985) J. Mol. Biol. 182 281

    Google Scholar 

  • P. Guntert C. Mumenthaler K. Wüthrich (1997) J. Mol. Biol. 273 283

    Google Scholar 

  • L.A. Kelley R.M. MacCallum M.J. Sternberg (2000) J. Mol. Biol. 299 499

    Google Scholar 

  • P. Mallick K.E. Goodwill S. Fitz-Gibbon J.H. Miller D. Eisenberg (2000) Proc. Natl. Acad. Sci. USA, 97 2450

    Google Scholar 

  • T.J. Ewing S. Makino A.G. Skillman I.D. Kuntz (2001) J. Comput.-Aided. Mol. Des. 15 411

    Google Scholar 

  • T.J. Ewing I.D. Kuntz (1997) J. Comput. Chem. 18 1175

    Google Scholar 

  • J. Wang P.A. Kollman I.D. Kuntz (1999) Proteins 36 1

    Google Scholar 

  • M.L. Connolly (1986) J. Mol. Graphics 4 3

    Google Scholar 

  • M.L. Connolly (1983) Science 221 709

    Google Scholar 

  • Hendrix, D.K. and Kuntz, I.D., Pac. Symp. Biocomput. (1998) 317.

  • R.M. Knegtel M. Wagener (1999) Proteins 37 334

    Google Scholar 

  • X. Fradera R.M. Knegtel J. Mestres (2000) Proteins 40 623

    Google Scholar 

  • D.J. Mahoney C.D. Blundell A.J. Day (2001) J. Biol. Chem. 276 22764

    Google Scholar 

  • J.E. Scott (1989) Ciba Found. Symp. 143 6

    Google Scholar 

  • B.A. Bray (2001) J. Theor. Biol. 210 121

    Google Scholar 

  • S. Li M.J. Jedrzejas (2001) J. Biol. Chem. 276 41407

    Google Scholar 

  • M. Nukui K.B. Taylor D.T. McPherson M.K. Shigenaga M.J. Jedrzejas (2003) J. Biol. Chem. 278 3079

    Google Scholar 

  • B. Yang C.L. Hall B.L. Yang R.C. Savani E.A. Turley (1994) J. Cell. Biochem. 56 455

    Google Scholar 

  • S. Cai J.L. Dufner-Beattie G.D. Prestwich (2004) Anal. Biochem. 326 33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Ziebell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziebell, M.R., Prestwich, G.D. Interactions of peptide mimics of hyaluronic acid with the receptor for hyaluronan mediated motility (RHAMM). J Comput Aided Mol Des 18, 597–614 (2004). https://doi.org/10.1007/s10822-004-5433-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-004-5433-8

Keywords

Navigation