Skip to main content

Advertisement

Log in

Homology modeling and molecular interaction field studies of α-glucosidases as a guide to structure-based design of novel proposed anti-HIV inhibitors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

For AIDS therapy, there are currently a number of compounds available for multiple targets already approved by the FDA and in clinic, e.g. protease inhibitors, reverse transcriptase inhibitors (NRTI, NNRTI), fusion inhibitors, CCR4, CCR5 among others. Some pharmaceuticals act against the virus before the entrance of HIV into the host cells. One of these targets is the glucosidase protein. This novel fusion target has been recently explored because the synthesis of viral glycoproteins depends on the activity of enzymes, such as glucosidase and transferase, for the elaboration of the polysaccharides. In this work we have built an homology model of Saccharomyces cerevisiae glucosidase and superimposed all relevant glucosidase-like enzymes in complex with carbohydrates, and calculated as well molecular interaction fields in our S. cerevisiae active site model. Our results suggest that there are two saccharide binding sites which are the most important for the binding of inhibitors with this family of enzymes which supports the possibility of inhibitors containing only two sugar units. Based on these results, we have proposed a novel pseudo-dissacharide which is a potential pharmaceutical for AIDS treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B.L. Martins C.A. Taft M.A. Perez F.M.L.G. Stamato E. Longo (1998) Int. J. Quant. Chem. 69 117 Occurrence Handle10.1002/(SICI)1097-461X(1998)69:1<117::AID-QUA13>3.0.CO;2-3 Occurrence Handle1:CAS:528:DyaK1cXktVekt7s%3D

    Article  CAS  Google Scholar 

  2. Pavão, A.C., Taft, C.A., Guimarãles, T.C.F., Leão, M.B.C., Mohallem, J.R., Lester, W.A.Jr., J. Phys. Chem. A, 105 (2001) 5 – Invited International Paper: Special edition dedicated to Per-Olov LÖwdin

    Google Scholar 

  3. J.B.L. Martins M.A. Perez E. Longo C.A. Taft M. Arissawa F.G.L. Stamato J.G.R. Tostes (2002) Int. J. Quant. Chem. 90 575 Occurrence Handle10.1002/qua.987 Occurrence Handle1:CAS:528:DC%2BD38XntlOitrg%3D

    Article  CAS  Google Scholar 

  4. X. Fradera X. de la Cruz C.H.T.P. Silva J.L. Gelpi F.S. Luque M. Orozco (2002) Bioinformatics 18 939 Occurrence Handle10.1093/bioinformatics/18.7.939 Occurrence Handle1:CAS:528:DC%2BD38XmtVaqt7o%3D

    Article  CAS  Google Scholar 

  5. M. Arissawa C.A. Taft J. Felcman C.H.T. Silva C.A. Taft (2003) Int. J. Quant. Chem. 93 422 Occurrence Handle10.1002/qua.10580 Occurrence Handle1:CAS:528:DC%2BD3sXksFSiurw%3D

    Article  CAS  Google Scholar 

  6. C.H.T.P. Silva P. Almeida C.A. Taft (2004) J. Mol. Model. 10 38 Occurrence Handle10.1007/s00894-003-0167-4 Occurrence Handle1:CAS:528:DC%2BD2cXktFSgtLw%3D

    Article  CAS  Google Scholar 

  7. C.H.T.P. Silva S.M. Sanches C.A. Taft (2004) J. Mol. Graph. Model. 23 89 Occurrence Handle10.1016/j.jmgm.2004.03.013 Occurrence Handle15331057

    Article  PubMed  Google Scholar 

  8. I. Carvalho E.B. Melo (2004) Carbohyd. Res. 339 361 Occurrence Handle10.1016/j.carres.2003.10.010 Occurrence Handle1:CAS:528:DC%2BD3sXhtVWhu7jP

    Article  CAS  Google Scholar 

  9. P.R. Walker M. Worobey A. Rambaut E.C. Holmes O.G. Pybus (2003) Nature 422 6933 Occurrence Handle10.1038/422679a

    Article  Google Scholar 

  10. M.A. Noor R.A. Parker E. O’Mara D.M. Grasela A. Currie S.L. Hodder F.T. Fiedorek D.W. Haas (2004) AIDS 18 2137 Occurrence Handle10.1097/00002030-200411050-00005 Occurrence Handle1:CAS:528:DC%2BD2cXhtVOqt7jK Occurrence Handle15577646

    Article  CAS  PubMed  Google Scholar 

  11. T.M. Dando L.J. Scott (2005) Drugs 65 285 Occurrence Handle15631548

    PubMed  Google Scholar 

  12. A.S. Veiga N.C. Santos L.M. Loura A. Fedorov M.A. Castanho (2004) J. Am. Chem. Soc. 126 14758 Occurrence Handle10.1021/ja0459882 Occurrence Handle1:CAS:528:DC%2BD2cXovFSlsrw%3D Occurrence Handle15535700

    Article  CAS  PubMed  Google Scholar 

  13. K. Princen S. Hatse K. Vermeire S. Aquaro E. De Clercq L.O. Gerlach M. Rosenkilde T.W. Schwartz R. Skerlj G. Bridger D. Schols (2004) J. Virol. 78 12996 Occurrence Handle10.1128/JVI.78.23.12996-13006.2004 Occurrence Handle1:CAS:528:DC%2BD2cXhtVaqtbnP Occurrence Handle15542651

    Article  CAS  PubMed  Google Scholar 

  14. A. Mehta N. Zitzmann P.M. Rudd T.M. Block R.A. Dwek (1998) FEBS Lett. 430 17 Occurrence Handle10.1016/S0014-5793(98)00525-0 Occurrence Handle1:CAS:528:DyaK1cXktFGmur4%3D Occurrence Handle9678587

    Article  CAS  PubMed  Google Scholar 

  15. N. Asano M. Nishida A. Kato H. Kizu K. Matsui Y. Shimada T Itoh M. Baba A.A. Watson R.J. Nash P.M. Lilley Particlede D.J. Watkin G.W.J. Fleet (1998) J. Med. Chem. 41 2565 Occurrence Handle10.1021/jm970836l Occurrence Handle1:CAS:528:DyaK1cXkt12jt7Y%3D Occurrence Handle9651160

    Article  CAS  PubMed  Google Scholar 

  16. D.C. Billington F. Perron-Sierra I. Picard S. Beaubras J. Duhault J. Espinal S. Challal (1994) Bioorg. Med. Chem. Lett. 19 2307 Occurrence Handle10.1016/0960-894X(94)85030-5

    Article  Google Scholar 

  17. P.I. Dalko P. Sinay (1999) Angew. Chem. Int. Edit. 38 773 Occurrence Handle10.1002/(SICI)1521-3773(19990315)38:6<773::AID-ANIE773>3.0.CO;2-N Occurrence Handle1:CAS:528:DyaK1MXisVelu7Y%3D

    Article  CAS  Google Scholar 

  18. A. Sali T.L. Blundell (1990) J. Mol. Biol. 212 403 Occurrence Handle10.1016/0022-2836(90)90134-8 Occurrence Handle1:CAS:528:DyaK3cXitlWmsbc%3D Occurrence Handle2181150

    Article  CAS  PubMed  Google Scholar 

  19. A. Roujeinikova C. Raasch S. Sedelnikova W. Liebl D.W. Rice (2002) J. Mol. Biol. 321 149 Occurrence Handle10.1016/S0022-2836(02)00570-3 Occurrence Handle1:CAS:528:DC%2BD38XlsFKgtbY%3D Occurrence Handle12139940

    Article  CAS  PubMed  Google Scholar 

  20. G. Barton M.J.E. Sternberg (1987) J. Mol. Biol. 198 327 Occurrence Handle10.1016/0022-2836(87)90316-0 Occurrence Handle1:CAS:528:DyaL1cXlt1ersA%3D%3D Occurrence Handle3430611

    Article  CAS  PubMed  Google Scholar 

  21. InstitutionalAuthorNameInsight II. (2004) Accelrys CA San Diego

    Google Scholar 

  22. J.L. Gelpi S.G. Kalko X. Barril J. Cirera X. Cruz Particlede la F.J. Luque M. Orozco (1991) Proteins 45 110

    Google Scholar 

  23. M. Blanco (1991) J. Comp. Chem. 12 237 Occurrence Handle10.1002/jcc.540120214 Occurrence Handle1:CAS:528:DyaK3MXhsFSns7s%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.A. Taft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva, C., Carvalho, I. & Taft, C. Homology modeling and molecular interaction field studies of α-glucosidases as a guide to structure-based design of novel proposed anti-HIV inhibitors. J Comput Aided Mol Des 19, 83–92 (2005). https://doi.org/10.1007/s10822-005-1486-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-005-1486-6

Key words:

Navigation