Skip to main content
Log in

A support vector machine approach to classify human cytochrome P450 3A4 inhibitors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

The cytochrome P450 (CYP) enzyme superfamily plays a major role in the metabolism of commercially available drugs. Inhibition of these enzymes by a drug may result in a plasma level increase of another drug, thus leading to unwanted drug–drug interactions when two or more drugs are coadministered. Therefore, fast and reliable in silico methods predicting CYP inhibition from calculated molecular properties are an important tool which can be applied to assess both already synthesized as well as virtual compounds. We have studied the performance of support vector machines (SVMs) to classify compounds according to their potency to inhibit CYP3A4. The data set for model generation consists of more than 1300 structural diverse drug-like research molecules which were divided into training and test sets. The predictive power of SVMs crucially depends on a careful selection of parameters specifying the kernel function and the penalty for misclassifications. In this study we have investigated a procedure to identify a valid set of SVM parameters which is based on a sampling of the parameter space on a regular grid. From this set of parameters, either single SVMs or SVM committees were trained to distinguish between strong and weak inhibitors or to achieve a more realistic three-class assignment, with one class representing medium inhibitors. This workflow was studied for several kernel functions and descriptor sets. All SVM models performed significantly better than PLS-DA models which were generated from the corresponding descriptor sets. As a very promising result, simple two-dimensional (2D) descriptors yield a three-class model which correctly classifies more than 70% of the test set. Our work illustrates that SVMs used in combination with simple 2D descriptors provide a very effective and reliable tool which allows a fast assessment of CYP3A4 inhibition potency in an early in silico filtering process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADME:

absorption, distribution, metabolism and excretion

CYP:

cytochrome P450

PLS:

partial least squares

DA:

discriminant analysis

SVM(s):

support vector machine(s)

3D:

three-dimensional

2D:

two-dimensional

QM:

quantum-mechanical

RBF:

radial basis function.

References

  1. D.F. Lewis (2003) Curr. Med. Chem. 10 1955 Occurrence Handle10.2174/0929867033456855 Occurrence Handle1:CAS:528:DC%2BD3sXnslyqtbo%3D Occurrence Handle12871098

    Article  CAS  PubMed  Google Scholar 

  2. P.B. Danielson (2002) Curr. Drug Metab. 3 561 Occurrence Handle10.2174/1389200023337054 Occurrence Handle1:CAS:528:DC%2BD38XoslKiu7s%3D Occurrence Handle12369887

    Article  CAS  PubMed  Google Scholar 

  3. S. Rendic F.J. Di Carlo (1997) Drug Metab. Rev. 29 413 Occurrence Handle1:CAS:528:DyaK2sXkt1Onur8%3D Occurrence Handle9187528

    CAS  PubMed  Google Scholar 

  4. S.A. Wrighton E.G. Schuetz K.E. Thummel D.D. Shen K.R. Korzekwa P.B. Watkins (2000) Drug Metab. Rev. 32 339 Occurrence Handle10.1081/DMR-100102338 Occurrence Handle1:CAS:528:DC%2BD3MXjsFCmsw%3D%3D Occurrence Handle11139133

    Article  CAS  PubMed  Google Scholar 

  5. V.P. Miller D.M. Stresser A.P. Blanchard S. Turner C.L. Crespi (2000) Ann. NewYork Acad. Sci. 919 26 Occurrence Handle1:CAS:528:DC%2BD3cXosFSktL0%3D

    CAS  Google Scholar 

  6. K.M. Jenkins R. Angeles M.T. Quintos R. Xu D.B. Kassel R.A. Rourick (2004) J. Pharm. Biomed. Anal. 34 989 Occurrence Handle10.1016/j.jpba.2003.08.001 Occurrence Handle1:CAS:528:DC%2BD2cXhslWmtro%3D Occurrence Handle15019033

    Article  CAS  PubMed  Google Scholar 

  7. H.-J. Böhm G. Schneider (2000) Virtual Screening for Bioactive Molecules Wiley-VCH New York

    Google Scholar 

  8. G.A. Schoch J.K. Yano M.R. Wester K.J. Griffin C.D. Stout E.F. Johnson (2004) J. Biol. Chem. 279 9497 Occurrence Handle10.1074/jbc.M312516200 Occurrence Handle1:CAS:528:DC%2BD2cXhs1Omt78%3D Occurrence Handle14676196

    Article  CAS  PubMed  Google Scholar 

  9. G.D. Szklarz J.R. Halpert (1998) Drug Metab Dispos. 26 1179 Occurrence Handle1:CAS:528:DyaK1MXhvFCqtg%3D%3D Occurrence Handle9860924

    CAS  PubMed  Google Scholar 

  10. M.R. Wester E.F. Johnson C. Marques-Soares P.M. Dansette D. Mansuy C.D. Stout (2003) Biochemistry 42 6370 Occurrence Handle10.1021/bi0273922 Occurrence Handle1:CAS:528:DC%2BD3sXjsVOhurs%3D Occurrence Handle12767218

    Article  CAS  PubMed  Google Scholar 

  11. P.A. Williams J. Cosme A. Ward H.C. Angove D.M. Vinković H. Jhoti (2003) Nature 424 464 Occurrence Handle10.1038/nature01862 Occurrence Handle1:CAS:528:DC%2BD3sXls1aqtrk%3D Occurrence Handle12861225

    Article  CAS  PubMed  Google Scholar 

  12. P.A. Williams J. Cosme D.M. Vinković A. Ward H.C. Angove P.J. Day C. Vonrhein I.J. Tickle H. Jhoti (2004) Science 305 683 Occurrence Handle10.1126/science.1099736 Occurrence Handle1:CAS:528:DC%2BD2cXmtFWqsrY%3D Occurrence Handle15256616

    Article  CAS  PubMed  Google Scholar 

  13. M.R. Wester J.K. Yano G.A. Schoch C. Yang K.J. Griffin C.D. Stout E.F. Johnson (2004) J. Biol. Chem. 279 35630 Occurrence Handle10.1074/jbc.M405427200 Occurrence Handle1:CAS:528:DC%2BD2cXmsl2hsLs%3D Occurrence Handle15181000

    Article  CAS  PubMed  Google Scholar 

  14. J.K. Yano M.R. Wester G.A. Schoch K.J. Griffin C.D. Stout E.F. Johnson (2004) J. Biol. Chem. 279 38091 Occurrence Handle10.1074/jbc.C400293200 Occurrence Handle1:CAS:528:DC%2BD2cXnt1Oqs7c%3D Occurrence Handle15258162

    Article  CAS  PubMed  Google Scholar 

  15. S. Ekins G. Bravi J.H. Wikel S.A. Wrighton (1999) J.␣Pharmacol. Exp. Ther. 291 424 Occurrence Handle1:CAS:528:DyaK1MXmtlaktrc%3D Occurrence Handle10490933

    CAS  PubMed  Google Scholar 

  16. S. Ekins D.M. Stresser J.A. Williams (2003) Trends Pharmacol. Sci. 24 161 Occurrence Handle10.1016/S0165-6147(03)00049-X Occurrence Handle1:CAS:528:DC%2BD3sXjtFeqt7c%3D Occurrence Handle12707001

    Article  CAS  PubMed  Google Scholar 

  17. S. Ekins G. Bravi S. Binkley J.S. Gillespie B.J. Ring J.H. Wikel S.A. Wrighton (1999) J. Pharmacol. Exp. Ther. 290 429 Occurrence Handle1:CAS:528:DyaK1MXktFKit7s%3D Occurrence Handle10381809

    CAS  PubMed  Google Scholar 

  18. G.N. Kumar Surapaneni (2001) Med. Res. Rev. 21 397 Occurrence Handle10.1002/med.1016 Occurrence Handle1:CAS:528:DC%2BD3MXmsFCmtbg%3D Occurrence Handle11579440

    Article  CAS  PubMed  Google Scholar 

  19. G.D. Szklarz J.R. Halpert (1997) J. Comput.-Aided Mol. Des. 11 265 Occurrence Handle10.1023/A:1007956612081 Occurrence Handle1:CAS:528:DyaK2sXlsVCrsr0%3D Occurrence Handle9263853

    Article  CAS  PubMed  Google Scholar 

  20. M.L. Schrag L.C. Wienkers (2001) Arch. Biochem. Biophys. 391 49 Occurrence Handle10.1006/abbi.2001.2401 Occurrence Handle1:CAS:528:DC%2BD3MXksVKjsb4%3D Occurrence Handle11414684

    Article  CAS  PubMed  Google Scholar 

  21. J. Zuegge U. Fechner O. Roche N.J. Parrott O. Engkvist G. Schneider (2002) Quant. Struct. Act. Relat. 21 249 Occurrence Handle10.1002/1521-3838(200208)21:3<249::AID-QSAR249>3.0.CO;2-S Occurrence Handle1:CAS:528:DC%2BD38XmvFCqsb4%3D

    Article  CAS  Google Scholar 

  22. L. Molnár G.M. Keseru (2002) Bioorg. Med. Chem. Lett. 12 419 Occurrence Handle10.1016/S0960-894X(01)00771-5 Occurrence Handle11814811

    Article  PubMed  Google Scholar 

  23. S. Ekins J. Berbaum R.K. Harrison (2003) Drug Metab. Dispos. 31 1077 Occurrence Handle10.1124/dmd.31.9.1077 Occurrence Handle1:CAS:528:DC%2BD3sXmslKlurw%3D Occurrence Handle12920160

    Article  CAS  PubMed  Google Scholar 

  24. C. Merkwirth H. Mauser T. Schulz-Gasch O. Roche M. Stahl T. Lengauer (2004) J. Chem. Inf. Comput. Sci. 44 1971 Occurrence Handle10.1021/ci049850e Occurrence Handle1:CAS:528:DC%2BD2cXotlalsro%3D Occurrence Handle15554666

    Article  CAS  PubMed  Google Scholar 

  25. V. Vapnik (1995) The Nature of Statistical Learning Theory Springer New York

    Google Scholar 

  26. Y. Lee C.K. Lee (2003) Bioinformatics 19 1132 Occurrence Handle10.1093/bioinformatics/btg102 Occurrence Handle1:CAS:528:DC%2BD3sXks1Wrtbo%3D Occurrence Handle12801874

    Article  CAS  PubMed  Google Scholar 

  27. E. Byvatov U. Fechner J. Sadowski G. Schneider (2003) J. Chem. Inf. Comput. Sci. 43 1882 Occurrence Handle10.1021/ci0341161 Occurrence Handle1:CAS:528:DC%2BD3sXns1Wmt74%3D Occurrence Handle14632437

    Article  CAS  PubMed  Google Scholar 

  28. M.K. Warmuth J. Liao G. Rätsch M. Mathieson S. Putta C. Lemmen (2003) J. Chem. Inf. Comput. Sci. 43 667 Occurrence Handle10.1021/ci025620t Occurrence Handle1:CAS:528:DC%2BD3sXhtVOjtbk%3D Occurrence Handle12653536

    Article  CAS  PubMed  Google Scholar 

  29. M.W.B. Trotter S.B. Holden (2003) Quant. Struct. Act. Relat. 22 533 Occurrence Handle1:CAS:528:DC%2BD3sXmtFeksbw%3D

    CAS  Google Scholar 

  30. V.V. Zernov K.V. Balakin A.A. Ivaschenko N.P. Savchuk I.V. Pletnev (2003) J. Chem. Inf. Comput. Sci. 43 2048 Occurrence Handle10.1021/ci0340916 Occurrence Handle1:CAS:528:DC%2BD3sXotFSht7w%3D Occurrence Handle14632457

    Article  CAS  PubMed  Google Scholar 

  31. P. Lind T. Maltseva (2003) J. Chem. Inf. Comput. Sci. 43 1855 Occurrence Handle10.1021/ci034107s Occurrence Handle1:CAS:528:DC%2BD3sXotFCgt70%3D Occurrence Handle14632433

    Article  CAS  PubMed  Google Scholar 

  32. M.J. Sorich J.O. Miners R.A. McKinnon D.A. Winkler F.R. Burden P.A. Smith (2003) J. Chem. Inf. Comput. Sci. 43 2019 Occurrence Handle10.1021/ci034108k Occurrence Handle1:CAS:528:DC%2BD3sXnt1Ohsbs%3D Occurrence Handle14632453

    Article  CAS  PubMed  Google Scholar 

  33. C. Cortes V. Vapnik (1995) Mach. Learn. 20 273

    Google Scholar 

  34. C.-W. Hsu C.-J. Lin (2002) IEEE Transactions on Neural Networks 13 415 Occurrence Handle10.1109/TNN.2002.1000139

    Article  Google Scholar 

  35. G.C. Moody S.J. Griffin A.N. Mather D.F. McGinnity R.J. Riley (1999) Xenobiotica 29 53 Occurrence Handle10.1080/004982599238812 Occurrence Handle1:CAS:528:DyaK1MXotlOjsg%3D%3D Occurrence Handle10078840

    Article  CAS  PubMed  Google Scholar 

  36. These descriptors are calculated by a Boehringer Ingelheim in-house software package (propty, developed by K.M. Hasselbach)

  37. Molecular Operating Environment Release 2003.2, Chemical Computing Group, Montreal, Canada, 2003

  38. VolSurf 3.0.11, Molecular Discovery Ltd., London, UK, 2004

  39. G. Cruciani M. Pastor W. Guba (2000) Eur. J. Pharm. Sci. 11 IssueIDSuppl 2 S29 Occurrence Handle10.1016/S0928-0987(00)00162-7 Occurrence Handle1:CAS:528:DC%2BD3cXntF2gtbo%3D Occurrence Handle11033425

    Article  CAS  PubMed  Google Scholar 

  40. CORINA 3.1, Molecular Networks GmbH, Erlangen, Germany, 2004

  41. M.J.S. Dewar E.G. Zoebisch E.F. Healy J.J.P. Stewart (1985) J. Am. Chem. Soc. 107 3902 Occurrence Handle10.1021/ja00299a024

    Article  Google Scholar 

  42. VAMP 8.1, University of Erlangen, Erlangen, Germany (This version is provided as part of Materials Studio 2.2.1 by Accelrys, Inc.), 2003

  43. A. Golbraikh M. Shen Z. Xiao Y.D. Xiao K.H. Lee A. Tropsha (2003) J. Comput.-Aided Mol. Des. 17 241 Occurrence Handle10.1023/A:1025386326946 Occurrence Handle1:CAS:528:DC%2BD3sXmsVGnsL0%3D Occurrence Handle13677490

    Article  CAS  PubMed  Google Scholar 

  44. R.W. Kennard L.A. Stone (1969) Technometrics 11 137

    Google Scholar 

  45. L. Eriksson E. Johansson F. Lindgren M. Sjøstrøm S. Wold (2002) J. Comput.-Aided Mol. Des. 16 711 Occurrence Handle10.1023/A:1022450725545 Occurrence Handle1:CAS:528:DC%2BD3sXht1WksbY%3D Occurrence Handle12650589

    Article  CAS  PubMed  Google Scholar 

  46. L. Eriksson T. Arnhold B. Beck T. Fox E. Johansson J.M. Kriegl (2004) J. Chemometrics 18 188 Occurrence Handle10.1002/cem.854 Occurrence Handle1:CAS:528:DC%2BD2cXnt1WgtrY%3D

    Article  CAS  Google Scholar 

  47. SIMCA-P+ 10, Umetrics AB, Umeå, Sweden, 2004

  48. S. Wold (1978) Technometrics 20 397

    Google Scholar 

  49. LIBSVM 2.5 National Taiwan University, 2003; http://www.csie.ntu.edu.tw/∼ ∼cjlin/libsvm/index.html

  50. S.S. Keerthi C.-J. Lin (2003) Neural Comput. 15 1667 Occurrence Handle10.1162/089976603321891855 Occurrence Handle12816571

    Article  PubMed  Google Scholar 

  51. P. Baldi S. Brunak Y. Chauvin C.A. Andersen H. Nielsen (2000) Bioinformatics 16 412 Occurrence Handle10.1093/bioinformatics/16.5.412 Occurrence Handle1:CAS:528:DC%2BD3cXlvVKqt74%3D Occurrence Handle10871264

    Article  CAS  PubMed  Google Scholar 

  52. B.W. Matthews (1975) Biochim. Biophys. Acta 405 442 Occurrence Handle1:CAS:528:DyaE2MXlslCksbk%3D Occurrence Handle1180967

    CAS  PubMed  Google Scholar 

  53. C. M. Bishop (2004) Br. J. Clin. Pharmacol. 57 473 Occurrence Handle10.1111/j.1365-2125.2003.02041.x Occurrence Handle15025746

    Article  PubMed  Google Scholar 

  54. E. Byvatov G. Schneider (2004) J. Chem. Inf. Comput. Sci. 44 993 Occurrence Handle10.1021/ci0342876 Occurrence Handle1:CAS:528:DC%2BD2cXhslajtrs%3D Occurrence Handle15154767

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan M. Kriegl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kriegl, J.M., Arnhold, T., Beck, B. et al. A support vector machine approach to classify human cytochrome P450 3A4 inhibitors. J Comput Aided Mol Des 19, 189–201 (2005). https://doi.org/10.1007/s10822-005-3785-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-005-3785-3

Keywords

Navigation