Skip to main content
Log in

An Effective Simulation of Aqueous Micellar Aggregates by Computational Models

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

We have computationally studied the interaction modes, localization and orientation of a benzene (Bz) molecule on the surface of micelles formed by cetyltrimethylammonium salts CTAX. Experimental 1H-NMR data on complexation shifts induced by Bz on the polar head hydrogens and on the adjacent methylene hydrogens of CTAX have been interpreted using a computational approach that combines an automatic molecular docking procedure with a calculation module that accounts for NMR complexation shifts due to ring current diamagnetic anisotropy. Three different models were used to reduce the complexity of the micellar system. Computational results, in good agreement with available experimental data, point to a preferential localization of the Bz molecule along the CTAX alkyl tail, about 3.9 Å away from the charged nitrogen. The Bz molecular plane is predicted perpendicular to the C-H bonds of the alkyl tail. The good results obtained with the simplest model suggest that it could be used to study more complex systems involving surfactants endowed with molecular recognition or catalytic abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chasman D.I., Protein Struct., 417 (2003)

  2. KB. Lipkowitz (2001) J. Chromatogr. A. 906 417 Occurrence Handle10.1016/S0021-9673(00)00946-8 Occurrence Handle11215900

    Article  PubMed  Google Scholar 

  3. B.K. Shoichet S.L. Mc Govern B. Wai J. Irwin (2002) Curr. Opin. Chem. Biol. 6 439 Occurrence Handle10.1016/S1367-5931(02)00339-3 Occurrence Handle12133718

    Article  PubMed  Google Scholar 

  4. M. Cui X. Huang X. Luo J.M. Briggs R. Ji K. Chem J. Shen H. Jiang (2002) J. Med. Chem. 45 5249 Occurrence Handle10.1021/jm020082x Occurrence Handle12431052

    Article  PubMed  Google Scholar 

  5. P. Burkhard V. Hommel M. Sanner M.D. Walkinshaw (1999) J. Mol. Biol. 287 IssueID5 853 Occurrence Handle10.1006/jmbi.1999.2621 Occurrence Handle10222195

    Article  PubMed  Google Scholar 

  6. D.A. Gschwend A.C. Good I.D. Kuntz (1996) J. Mol. Recogn. 9 IssueID2 175 Occurrence Handle10.1002/(SICI)1099-1352(199603)9:2<175::AID-JMR260>3.0.CO;2-D

    Article  Google Scholar 

  7. K. B. Lipkowitz (2000) Acc. Chem. Res. 33 555 Occurrence Handle10.1021/ar980115w Occurrence Handle10955986

    Article  PubMed  Google Scholar 

  8. Mittol, K.L. (Ed.) Micellization, Solubilization and Microemulsions, Vol. 1, Plenum Press, New York, 1997

  9. Fendler, J. and Fendler, E., Catalysis in Micellar and Macromolecular Systems, Academic Press, New York, 1975

  10. Wasan, D.T., Ginn, M.E. and Shah, D.O. (Eds.) Surfactants in Chemical/Process Engineering, Dekker, New York, 1988

  11. D.C. Herman J.F. Artiola R.M. Miller (1995) Environ. Sci. Technol. 29 2280

    Google Scholar 

  12. G. Cerichelli S. Cerritelli M. Chiarini P. Maria ParticleDe A. Fontana (2002) Chem. Eur. J. 8 5204 Occurrence Handle10.1002/1521-3765(20021115)8:22<5204::AID-CHEM5204>3.0.CO;2-C

    Article  Google Scholar 

  13. . Kabir-ud-Din S. Kumar P.S. Goyal (1996) Langmuir 12 1496 Occurrence Handle10.1021/la950677d

    Article  Google Scholar 

  14. G.J. Duns L.W. Reeves D.W. Yang D.S. Williams (1995) J. Colloid Interf. Sci. 173 261 Occurrence Handle10.1006/jcis.1995.1325

    Article  Google Scholar 

  15. P. Mukerjee J.R. Cardinal (1978) J. Phys. Chem. 82 1620 Occurrence Handle10.1021/j100503a010

    Article  Google Scholar 

  16. L. Pauling (1936) J. Chem. Phys. 4 673 Occurrence Handle10.1063/1.1749766

    Article  Google Scholar 

  17. C.W. Haigh R.B. Mallion (1980) Progr. Nucl. Magn. Reson. Spectrosc. 13 303 Occurrence Handle10.1016/0079-6565(79)80010-2

    Article  Google Scholar 

  18. H. Stamm H. Jäckel (1989) J. Am. Chem. Soc. 111 6544 Occurrence Handle10.1021/ja00199a010

    Article  Google Scholar 

  19. U. Fleisher W. Kutzelnigg P. Lazzaretti V. Mühlenkamp (1994) J. Am. Chem. Soc. 116 5289

    Google Scholar 

  20. J.A. Pople (1956) J. Chem. Phys. 24 1111 Occurrence Handle10.1063/1.1742701

    Article  Google Scholar 

  21. J.S. Wangh R.W. Fessenden (1957) J. Am. Chem. Soc. 79 846 Occurrence Handle10.1021/ja01561a017

    Article  Google Scholar 

  22. C.E. Johnson F.A. Bovey (1958) J. Chem. Phys. 29 101 Occurrence Handle10.1063/1.1744645

    Article  Google Scholar 

  23. R. Abraham (1961) J. Mol. Phys. 4 145

    Google Scholar 

  24. R.J. Abraham C.J. Medforth (1987) Magn. Reson. Chem. 25 432 Occurrence Handle10.1002/mrc.1260250510

    Article  Google Scholar 

  25. J.E. Cochran T.J. Parrott B.S. Withlock H.W. Withlock (1992) J. Am. Chem. Soc. 114 2269 Occurrence Handle10.1021/ja00032a057

    Article  Google Scholar 

  26. M.J. Schneider (1993) Ree. Trav. Chim. Pays-Bas 112 412

    Google Scholar 

  27. G. Cerichelli G. Mancini (2000) Langmuir 16 182 Occurrence Handle10.1021/la990748z

    Article  Google Scholar 

  28. S. Alcaro F. Gasparrini O. Iucani S. Mecucci D. Misiti M. Pierini C. Villani (2000) J. Comput. Chem. 21 515 Occurrence Handle10.1002/(SICI)1096-987X(200005)21:7<515::AID-JCC2>3.0.CO;2-5

    Article  Google Scholar 

  29. C.D. Bruce M.L. Berkowitz L. Perera M.D.E. Forbes (2002) J. Phys. Chem. B 106 3788 Occurrence Handle10.1021/jp013616z

    Article  Google Scholar 

  30. D. P. Tieleman D. Spoel Particlevan der H. J. C. Berendsen (2000) J. Phys. Chem. B, 104 6380

    Google Scholar 

  31. R.J. Abraham M. Canton M. Reid L. Griffiths (2000) J.␣Chem. Soc., Perkin Trans. 2 803

    Google Scholar 

  32. Alkorta, I. and Elguero, J., New J. Chem., (1998) 381

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Pierini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angelini, G., Cerichelli, G., Cerritelli, S. et al. An Effective Simulation of Aqueous Micellar Aggregates by Computational Models. J Comput Aided Mol Des 19, 259–269 (2005). https://doi.org/10.1007/s10822-005-4994-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-005-4994-5

Keywords

Navigation