Skip to main content
Log in

Quantitative prediction of imprinting factor of molecularly imprinted polymers by artificial neural network

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Artificial neural network (ANN) implementing the back-propagation algorithm was applied for the calculation of the imprinting factors (IF) of molecularly imprinted polymers (MIP) as a function of the computed molecular descriptors of template and functional monomer molecules and mobile phase descriptors. The dataset used in our study were obtained from the literature and classified into two distinctive datasets on the basis of the polymer’s morphology, irregularly sized MIP and uniformly sized MIP datasets. Results revealed that artificial neural network was able to perform well on datasets derived from uniformly sized MIP (n=23, r=0.946, RMS=2.944) while performing poorly on datasets derived from irregularly sized MIP (n=75, r=0.382, RMS=6.123). The superior performance of the uniformly sized MIP dataset over the irregularly sized MIP dataset could be attributed to its more predictable nature owing to the consistency of MIP particles, uniform number and association constant of binding sites, and minimal deviation of the imprinted polymers. The ability to predict the imprinting factor of imprinted polymer prior to performing actual experimental work provide great insights on the feasibility of the interaction between template-functional monomer pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MIP:

molecularly imprinted polymer

NIP:

non-imprinted polymer

IF:

imprinting factor

RMS:

root mean square error

References

  1. Ye L., Mosbach K., (2001) J. Incl. Phenom. Macrocycl. Chem. 41:107

    Article  CAS  Google Scholar 

  2. Dobashi A., Nishida S., Kurata K., Hamada M., (2002) Anal. Sci. 18:35

    Article  CAS  Google Scholar 

  3. Lin T.Y., Hu C.H., Chou T.C., (2004) Biosens. Bioelectron. 20:75

    Article  CAS  Google Scholar 

  4. Piacham T., Josell Å., Arwin H., Prachayasittikul V., Ye L., (2005) Anal. Chim. Acta, 536:191

    Article  CAS  Google Scholar 

  5. Vlatakis G., Anderson L.I., Muller R., Mosbach K., (1993) Nature 361:645

    Article  CAS  Google Scholar 

  6. Piacham, T., Isarankura Na Ayudhya, C., Prachayasittikul, V., Bülow, L. and Ye, L., Chem. Commun., (2003) 1254

  7. Mosbach K., Yu Y., Andersch J., Ye L., (2001) J. Am. Chem. Soc. 123:12420

    Article  CAS  Google Scholar 

  8. Sellergren B., Lepistoe M., Mosbach K., (1988) Am. Chem. Soc. 110:5853

    Article  CAS  Google Scholar 

  9. Duffy D.J., Das K., Hsu S.L., Penelle J., Rotello V.M., Stidham H.D., (2000) Polym. Mat. Sci. Eng., 82:69

    CAS  Google Scholar 

  10. Nicholls I.A., Adbo K., Andersson H.S., Andersson P.O., Ankarloo J., Hedin-Dahlstrom J., Jokela P., Karlsson J.G., Olofsson L., Rosengren J., (2001) Anal. Chim. Acta 435:9

    Article  CAS  Google Scholar 

  11. Chianella I., Lotierzo M., Piletsky S.A., Tothill I.E., Chen B., Karim K., Turner A.P., (2002) Anal. Chem. 74:1288

    Article  CAS  Google Scholar 

  12. Subrahmanyam S., Piletsky S.A., Piletska E.V., Chen B., Karim K., Turner A.P., (2001) Biosens. Bioelectron. 16:631

    Article  CAS  Google Scholar 

  13. Piletsky S.A., Karim K., Piletska E.V., Day C.J., Freebairn K.W., Legge C., Turner A.P., (2001) Analyst 126:1826

    Article  CAS  Google Scholar 

  14. Wu L., Li Y., (2004) J. Mol. Recognit. 17:567

    Article  CAS  Google Scholar 

  15. Wu L., Sun B., Li Y., Chang W., (2003) Analyst 128:944

    Article  CAS  Google Scholar 

  16. Pérez-Moral N., Mayes A.G., (2004). Anal. Chim. Acta 504:15

    Article  Google Scholar 

  17. MARVIN, Version 3.5.4, ChemAxon Ltd., Budapest, Hungary, http://www.chemaxon.com/marvin

  18. RECON, Version 5.5, Rensselaer Polytechnic Institute, Troy, New York, USA, http://www.chem.rpi.edu/chemweb/recondoc

  19. Breneman C.M., Rhem M., (1997). Comput. Chem. 18:182

    Article  CAS  Google Scholar 

  20. Breneman C.M., Thompson T.R., Rhem M., Dung M., (1995) Comput. Chem. 19:161

    Article  CAS  Google Scholar 

  21. Lide D.R., 1990 CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data 71st ed., CRC Press, Inc. Florida

    Google Scholar 

  22. Dumanovic D., Kosanovic D.J., Arkakovic D., Jovanovic J., (1992). Pharmazie 47:603

    CAS  Google Scholar 

  23. Chien Y.W., (1984) J. Parenter. Sci. Technol. 38:32

    CAS  Google Scholar 

  24. Prakongpan S., Nagai T., (1984). Chem. Pharm. Bull. 32:340

    CAS  Google Scholar 

  25. McNaught, A.D. and Wilkinson, A., IUPAC Compendium of Chemical Terminology, 2nd ed., http://www.iupac.org/goldbook/I03180.pdf

  26. Whitley D.C., Ford M.G., Livingstone D.J., (2000) J. Chem. Inf. Comput. Sci. 40:1160

    Article  CAS  Google Scholar 

  27. Niculescu S.P., (2003) J. Mol. Struct., 622:71

    CAS  Google Scholar 

  28. Agatonovic-Kustrin S., Zecevic M., Zivanovic L., (1999) J. Pharm. Biomed. Anal. 21:95

    Article  CAS  Google Scholar 

  29. Zupan J., Gasteiger J., 1999. Neural Networks in Chemistry and Drug Design, 2nd ed., Wiley-VCH Weinheim

    Google Scholar 

  30. Witten I.H., Frank E., 2000 Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations Morgan Kaufmann Publishers San Francisco

    Google Scholar 

  31. Zhang R., Yan A., Liu M., Liu H., Hu Z., (1999) Chemometr. Intell. Lab. Syst. 45:113

    Article  CAS  Google Scholar 

  32. Loukas Y.L., (2000) J. Chromatogr. A 904:119

    Article  CAS  Google Scholar 

  33. Pérez-Moral N., Mayes A.G., (2001) Bioseparation 10:287

    Article  Google Scholar 

  34. Cacho C., Turiel E., Martin-Esteban A., Pérez-Conde C., Cámara C., (2004) J. Chromatogr. B 802:347

    Article  CAS  Google Scholar 

  35. Tamayo F.G., Casillas J.L., Martin-Esteban A., (2003) Analyst 128:137

    Article  Google Scholar 

  36. Baggiani, C., Baravalle, P., Anfossi, L. and Tozzi, C., Anal. Chim. Acta, 542 (2005) 125

    Google Scholar 

  37. Mayes A.G., 2001. Polymerisation techniques for the formation of imprinted beads In: Sellergren B., (Eds) Molecularly Imprinted Polymers: Man-made Mimics of Antibodies and their Applications in Analytical Chemistry (Chapter 12) Elsevier, Amsterdam pp. 305–324

  38. Fu Q., Sanbe H., Kagawa C., Kunimoto K.K., Hagina, (2003) J. Anal. Chem. 75:191

    Article  CAS  Google Scholar 

  39. Lai J.P., Cao X.F., Wang X.L., He X.W., (2002) Anal. Bioanal. Chem. 372:391

    Article  CAS  Google Scholar 

  40. Haginaka J., Kagawa C., (2003) Anal. Sci. 19:39

    Article  CAS  Google Scholar 

  41. Haginaka J., Kagawa C., (2002) J. Chromatogr. A 948:77

    Article  CAS  Google Scholar 

  42. Umpleby R.J. II, Baxter S.C., Rampey A.M., Rushton G.T., Chen Y., Shimizu K.D., (2004) J. Chromatogr. B 804:141

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.N. is grateful for the Royal Golden Jubilee Ph.D. Scholarship under V.P. supervision from The Thailand Research Fund. This project was also partially supported by the Thailand Toray Science Foundation (TTSF) and a grant from the annual budget of Mahidol University (B.E.2548).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virapong Prachayasittikul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nantasenamat, C., Naenna, T., Ayudhya, C.I.N. et al. Quantitative prediction of imprinting factor of molecularly imprinted polymers by artificial neural network. J Comput Aided Mol Des 19, 509–524 (2005). https://doi.org/10.1007/s10822-005-9004-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-005-9004-4

Keywords

Navigation