Skip to main content

Advertisement

Log in

Prediction of plasma protein binding of drugs using Kier–Hall valence connectivity indices and 4D-fingerprint molecular similarity analyses

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

A 115 compound dataset for HSA binding is divided into the training set and the test set based on molecular similarity and cluster analyses. Both Kier–Hall valence connectivity indices and 4D-fingerprint similarity measures were applied to this dataset. Four different predictive schemes (SM, SA, SR, SC) were applied to the test set based on the similarity measures of each compound to the compounds in the training set. The first algorithmic scheme (SM) predicts the binding affinity of a test compound using only the most similar training set compound’s binding affinity. This scheme has relatively poor predictivity based both on Kier–Hall valence connectivity indices similarity measures and 4D-fingerprints similarity analyses. The other three algorithmic schemes (SM SR, SC), which assign a weighting coefficient to each of the top-ten most similar training set compounds, have reasonable predictivity of a test set. The algorithmic scheme which categorizes the most similar compounds into different weighted clusters predicts the test set best. The 4D-fingerprints provide 36 different individual IPE/IPE type molecular similarity measures. This study supports that some types of similarity measures are highly similar to one another for this dataset. Both the Kier–Hall valence connectivity indices similarity measures and the 4D-fingerprints have nearly same predictivity for this particular dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krueger T.E., Buenger P., 1965 The role of the therapeutic regimen in dosage design Chemotherapia 10: 61 129

    Article  Google Scholar 

  2. Peters T., All about Albumin: Biochemistry, Genetics, and Medical Applications, Academic Press, San Diego. 1995

    Google Scholar 

  3. Goodman G.A., The Pharmacological Basis of Therapeutics. 9. McGraw-Hill, New York: 1996

    Google Scholar 

  4. Holford, N.H.G. and Benet, L.Z., In Katzung, B.G. (Ed.), Basic and Clinical Pharmacology, 7th Edition, Appleton and Lange, Stamford, CT, 1998, pp. 34–49

  5. Torres P.J., 1996 All about Albumin: Biochemistry Genetics and Medical Applications. Academic Press, San Diego

    Google Scholar 

  6. Sudlow G., Birkett D.J., Wade D.N., 1975 The characterization of two specific drug binding sites on human serum albumin Mol. Pharm. 11(6):824

    CAS  Google Scholar 

  7. Sudlow G., Birkett D.J., Wade D.N., 1976 Further characterization of specific drug binding sites on human serum albumin Mol. Pharm. 12(6):1052

    CAS  Google Scholar 

  8. Watanbe S., Tanase K.N., Maruyama T., Kragh-Hansen U., Otagiri M., 2000 Role of Arg-410 and Tyr-411 in human serum albumin for ligand binding and esterase-like activity Biochem. J. 349:813

    Google Scholar 

  9. Bhattacharya A.A., Curry S., Franks N.P., 2000 Binding of the general anesthetics propofol and halothane to human serum albumin: high-resolution crystal structures J. Biol. Chem. 275:38731

    Article  CAS  Google Scholar 

  10. Petitpas I., Bhattacharya A.A., Twine S., East M., Curry S., 2001 Crystal structure analysis of warfarin binding to human serum albumin anatomy of drug site I J. Biol. Chem. 276:22804

    Article  CAS  Google Scholar 

  11. Morris J.J., Bruneau P.P., 2000 Prediction of physicochemical properties. In: Böhm H.-J., Schneider G., eds. Virtual Screening for Bioactive Molecules. Weinheim: Wiley–VCH Verlag GmbH, pp. 33–56

    Google Scholar 

  12. Kratochwil N.A., Huber W., Müller F., Kansy M., Gerber P.R., 2000 Predicting plasma protein binding of drugs: a new approach Biochem. Pharmacol. 64(9):1355

    Article  CAS  Google Scholar 

  13. Lesk A.M., 1998 Extraction of geometrically similar substructures: least-squares and Chebyshev fitting and the difference distance matrix Proteins: Struct., Funct., Genet. 33(3):320

    Article  CAS  Google Scholar 

  14. Kubinyi H., Hamprecht F.A., Mietzner T., 1998 Three-dimensional quantitative similarity-activity relationships (3D QSiAR) from SEAL similarity matrices J. Med. Chem. 41(14):2553

    Article  CAS  Google Scholar 

  15. So S.S., Karplus M., 1997 Three-dimensional quantitative structure–activity relationships from molecular similarity matrices and genetic neural networks. 1. Method and validations J. Med. Chem. 40(26):4347

    Article  CAS  Google Scholar 

  16. So S.S., Karplus M., 1997 Three-dimensional quantitative structure–activity relationships from molecular similarity matrixes and genetic neural networks. 2. Applications. J. Med. Chem. 40(26):4360

    Article  CAS  Google Scholar 

  17. Good A.C., So S.S., Richards W.G., 1993 Structure–activity relationships from molecular similarity matrices J. Med. Chem. 36(4):433

    Article  CAS  Google Scholar 

  18. Cruz R., Lopez N., Quintero M., Rojas G., 1997 Cluster analysis from molecular similarity matrixes using a non-linear neural network J. Math. Chem. 20(3, 4):385

    Google Scholar 

  19. Kubinyi H., A general view on similarity and QSAR studies. In van de Waterbeemd H., Testa B., Folkers G., Eds.; Computer-Assisted Lead Finding and Optimization: Current Tools for Medicinal Chemistry; VHCA: Basel, and Wiley–VCH: Weinheim, 1997; pp. 7–28

    Chapter  Google Scholar 

  20. Duca J.S., Hopfinger A.J., 2001 Estimation of molecular similarity based on 4D-QSAR analysis: formalism and validation J. Chem. Inf. Comput. Sci. 41:1367

    Article  CAS  Google Scholar 

  21. Dollery C., Therapeutic Drugs. 2. Churchill Livingstone, Edinburgh: 1999

    Google Scholar 

  22. Kier L.B., Hall L.H., 1981 Derivation and significance of valence molecular connectivity J. Pharm. Sci. 70:583

    Article  CAS  Google Scholar 

  23. SAS, Version 8.1 for Windows, SAS Institute Inc., 2001

  24. Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. 1997 Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings Adv. Drug Delivery Rev. 23(1–3):3

    Article  CAS  Google Scholar 

  25. Seri-Levy A., Richards W.G., 1993 Chiral drug potency: Pfeiffer’s rule and computed chirality coefficients Tetrahedron Asymmetry 4:1917

    Article  CAS  Google Scholar 

  26. Seri-Levy A., West S., Richards W.G., 1994 Molecular similarity, quantitative chirality and QSAR for chiral drugs J. Med. Chem. 37:1727

    Article  CAS  Google Scholar 

  27. Burt C., Huxley P., Richard W.G., 1990 The application of molecular similarity calculations J. Comp. Chem. 11:1139

    Article  CAS  Google Scholar 

  28. Hall L.M., Hall L.H., Kier L.B., 2003 QSAR modeling of β-lactam binding to human serum proteins J. Comp. Aided Mol. Design 17:103

    Article  CAS  Google Scholar 

  29. Hall L.M., Hall L.H., Kier L.B., 2003 Modeling drug albumin binding affinity with E-state topological structure representation J. Chem. Inf. Comput. Sci. 43:2120

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Yang, L., Li, Y. et al. Prediction of plasma protein binding of drugs using Kier–Hall valence connectivity indices and 4D-fingerprint molecular similarity analyses. J Comput Aided Mol Des 19, 567–583 (2005). https://doi.org/10.1007/s10822-005-9012-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-005-9012-4

Keywords

Navigation