Skip to main content
Log in

Electrostatic evaluation of isosteric analogues

  • Original Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A method is presented for enumerating a large number of isosteric analogues of a ligand from a known protein–ligand complex structure and then rapidly calculating an estimate of their binding energies. This approach takes full advantage of the observed crystal structure, by reusing the atomic co-ordinates determined experimentally for one ligand, to approximate those of similar compounds that have approximately the same shape. By assuming that compounds with similar shapes adopt similar binding poses, and that entropic and protein flexibility effects are approximately constant across such an isosteric series (“the frozen ligand approximation”), it is possible to order their binding affinities relatively accurately. Additionally, the constraint that the atomic coordinates are invariant allows for a dramatic simplification in the Poisson–Boltzmann method used to calculation the electrostatic component of the binding energy. This algorithmic improvement allows for the calculation of tens of thousands of binding energies per second for drug-like molecules, enabling this technique to be used in screening large virtual libraries of isosteric analogues. Most significantly, this procedure is shown to be able to reproduce SAR effects of subtle medicinal chemistry substitutions. Finally, this paper reports the results of the proposed methodology on␣seven model systems; dihydrofolate reductase, Lck␣kinase, ribosome inactivating protein, l-arabinose binding protein, neuraminidase, HIV-1 reverse transcriptase and COX-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) J Phys Chem 97:10269

    Article  CAS  Google Scholar 

  2. Chris Bayly, Merck, Personal Communication, September 2005

  3. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Roux B, Schlenkrick M, Smith JC, Stote R, Straub J, Wiorkiewicz-Kuczera J, Karplus M (1992) FASEB J 6:A143

    Google Scholar 

  4. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179

    Article  CAS  Google Scholar 

  5. Eldridge D, Murray CW, Auton TR, Paolini GV, Mee RP (1997) J Comp Aided Mol Design 11(5):425

    Article  CAS  Google Scholar 

  6. Ferrari AM, Wei BQ, Constantino L, Shoichet BK (2004) J␣Med Chem 47:5076

    Article  CAS  Google Scholar 

  7. Fornabio M, Cozzini P, Mozzarelli A, Abraham DJ, Kellogg GE (2003) J Med Chem 46(21):4487

    Article  Google Scholar 

  8. Gasteiger J, Marsili M (1978) A new model for calculating atomic charges in molecules. Tetrahed Lett 3181

  9. Gasteiger J, Marsili M, (1980) Tetrahedron 36:3219

    Article  CAS  Google Scholar 

  10. Gillet VJ, Johnson AP, Mata P, Sike S, Williams P (1993) J␣Comp Aided Mol Design 7:127

    Article  CAS  Google Scholar 

  11. Gilson M, Sharp KA, Honig B (1987) Calculating the electrostatic potential of molecules in solution: method and error assessment. J Comput Chem 9327

  12. Graffner-Nordberg M, Marelius J, Ohlsson S, Persson A, Swedberg G, Anderssin P, Andersson SE, Aqvist J, Hallberg A (2000) J Med Chem 43(21):3853

    Article  Google Scholar 

  13. Grant JA, Pickup BT, Nicholls A (2001) J Comput Chem 22:608

    Article  CAS  Google Scholar 

  14. Graves AP, Brenk R, Shoichet BK (2005) J Med Chem (JMC) 48(11):3714

    Article  CAS  Google Scholar 

  15. Halgren TA (1996) J Comput Chem 17(5–6):490

    Article  CAS  Google Scholar 

  16. Halgren TA (1996) J Comput Chem 17(5):553

    Article  CAS  Google Scholar 

  17. Hansch C, Fukunaga JY, Jow PYC, Hynes JB (1977) J Med Chem 20:1

    Article  Google Scholar 

  18. Hawkins GD, Cramer CJ, Truhlar DG (1996) J Phys Chem 100:19824

    Article  CAS  Google Scholar 

  19. Hawkins, P (2005) OpenEye Scientific Software, Personal Communication, September 2005

  20. Honig B, Nicholls A (1995) Science 268:1144

    Article  CAS  Google Scholar 

  21. Jakalian A, Jack DB, Bayly CI (2002) J Comput Chem 23:1623

    Article  CAS  Google Scholar 

  22. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) J␣Mol Biol (JMB) 207:727

    Article  Google Scholar 

  23. Jorgensen WL, Maxwell D, Tirado-Rives J (1996) J Am Chem Soc 118:11225

    Article  CAS  Google Scholar 

  24. Kangas E, Tidor B (1999) Phys Rev E 59(5):5958

    Article  CAS  Google Scholar 

  25. Kangas E, Tidor B (2000) J Chem Phys 112(20):9120

    Article  CAS  Google Scholar 

  26. Kangas E, Tidor B (2000) Electrostatic optimization in ligand complementarity and design. In: Floudas CA, Pardalos PM (eds) Optimization in computational chemistry and molecular biology. Kluwer Academic Publishers, pp␣231–242

  27. Madura JD, Briggs JM, Wade RC, Davis ME, Luty BA, Ilin A, Antosiewicz J, Gilson MK, Bagheri B, Scott LR, McCammon JA (1995) Comp Phys Commun 91:57

    Article  CAS  Google Scholar 

  28. Mata P, Gillet VJ, Johnson AP, Lampreia J, Myatt GJ, Sike S, Stebbings A (1995) J Chem Inform Comp Sci 35:479

    Article  CAS  Google Scholar 

  29. McGovern SL, Shoichet BK (2003) J Med Chem 46:2895

    Article  CAS  Google Scholar 

  30. Miller DJ, Ravikumar K, Shen H, Suh J-K, Kerwin SM, Robertus JD (2002) J Med Chem 45(1):90–98

    Article  CAS  Google Scholar 

  31. Mozziconacci J-C, Arnoult E, Bernard P, Do QT, Marot C, Morin Allory L (2005) J Med Chem 48(4):1055

    Article  CAS  Google Scholar 

  32. Muegge I, Martin YC (1999) J Med Chem 45(5):791

    Article  Google Scholar 

  33. Nicholls A, Honig B (1991) J Comput Chem 12:435

    Article  CAS  Google Scholar 

  34. OEChem Theory Manual, Version 1.4, OpenEye Scientific Software, Santa Fe, New Mexico. http://www.eyesopen.com/

  35. Plount Price ML, Jorgensen WL (2000) J Am Chem Soc (JACS) 122:9455

    Article  Google Scholar 

  36. Rizzo RC, Udier-Blagovic M, Wang D-P, Watkins EK, Kroeger Smith MB, Smith RH, Tirado-Rives J, Jorgensen WL (2002) J Med Chem 45(14):2970

    Article  CAS  Google Scholar 

  37. Rush Thomas III S, Manas Eric C, Tawa Gregory J, Alvarez Juan C (2005) Solvation-based scoring for high throughput docking, Chapter 10. In: Alvarez J, Shoicet B (eds) Virtual screening in drug discovery. Taylor & Franics Group, CRC Press, pp 249–277

  38. Sharp K, Honig B (1990) Ann Rev Biophys Biophys Chem 19:301

    Article  CAS  Google Scholar 

  39. Shen J, Quiocho FA (1995) J Comp Chem 16(4):445

    Article  Google Scholar 

  40. Sitkoff D, Sharp KA, Honig B (1994) J Phys Chem 98:1978

    Article  CAS  Google Scholar 

  41. Soliva R, Almansa C, Kalko SG, Luque FJ, Orozco M (2003) J Med Chem 46(8):1372

    Article  CAS  Google Scholar 

  42. Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) J␣Am Chem Soc 112:6127

    Article  CAS  Google Scholar 

  43. Vaidya CM, Wright JE, Rosowsky A (2002) J Med Chem 45(8):1690

    Article  CAS  Google Scholar 

  44. Verkivker GM, Bouzida D, Gehlaar DK, Rejto PA, Arthurs S, Colson AB, Freer ST, Larson V, Luty BA, Marrone T, Rose PW (2000) J Comput Aided Mol Design 14:731

    Article  Google Scholar 

  45. Wang Renxiao, Fu Y, Lai L (1997) J Chem Inform Comp Sci 37:615

    Article  CAS  Google Scholar 

  46. Li J, Zhu T, Cramer CJ, Truhlar DG (1998) J phys chem 102:1820

    Google Scholar 

Download references

Acknowledgements

We thank Andrew Grant at AstraZeneca who kindly provided the crystal structure and IC50 inhibition data for the Lck kinase case study, and Bob Tolbert for his work integrating WABE and GIMBLE into a single package. We also thank the anonymous reviewers, Geoff Skillman, Paul Hawkins and Christopher Bayly for their insightful comments. Finally, we would like to thank Juan Alvarez for a description in his recent book to an early draft of this work as “an inspired experiment” [37].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Sayle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sayle, R., Nicholls, A. Electrostatic evaluation of isosteric analogues. J Comput Aided Mol Des 20, 191–208 (2006). https://doi.org/10.1007/s10822-006-9045-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9045-3

Keywords

Navigation