Skip to main content
Log in

Hierarchical clustering analysis of flexible GBR 12909 dialkyl piperazine and piperidine analogs

  • Original paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Pharmacophore modeling of large, drug-like molecules, such as the dopamine reuptake inhibitor GBR 12909, is complicated by their flexibility. A comprehensive hierarchical clustering study of two GBR 12909 analogs was performed to identify representative conformers for input to three-dimensional quantitative structure–activity relationship studies of closely-related analogs. Two data sets of more than 700 conformers each produced by random search conformational analysis of a piperazine and a piperidine GBR 12909 analog were studied. Several clustering studies were carried out based on different feature sets that include the important pharmacophore elements. The distance maps, the plot of the effective number of clusters versus actual number of clusters, and the novel derived clustering statistic, percentage change in the effective number of clusters, were shown to be useful in determining the appropriate clustering level.

Six clusters were chosen for each analog, each representing a different region of the torsional angle space that determines the relative orientation of the pharmacophore elements. Conformers of each cluster that are representative of these regions were identified and compared for each analog. This study illustrates the utility of using hierarchical clustering for the classification of conformers of highly flexible molecules in terms of the three-dimensional spatial orientation of key pharmacophore elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

%ΔEff:

percentage change in the effective number of clusters

3D-QSAR:

three-dimensional quantitative structure–activity relationship

CoMFA:

Comparative Molecular Field Analysis

DA:

dopamine

DAT:

dopamine transporter

FRC:

fuzzy relational clustering

QSAR:

quantitative structure-activity relationship

RMSD:

root mean square deviation

RTB:

number of rotatable bonds

SAR:

structure–activity relationship

SERT:

serotonin transporter

References

  1. Kuhar MJ, Ritz MC, Boja JW (1991) TINS 14:299

    CAS  Google Scholar 

  2. Singh S (2000) Chem Rev 100:925

    Article  CAS  Google Scholar 

  3. Ravna AW, Sylte I, Kristiansen K, Dahl SG (2006) Bioorg Med Chem 14:666

    Article  CAS  Google Scholar 

  4. Sen N, Shi L, Beuming T, Weinstein H, Javitch JA (2005) Neuropharmacology 49:780

    Article  CAS  Google Scholar 

  5. Glowa JR, Wojnicki FHE, Matecka D, Bacher J, Mansbach RS, Balster RL, Rice KC (1995) Exp Clin Psychopharmacol 3:219

    Article  CAS  Google Scholar 

  6. Elmer GI, Brockington A, Gorelick DA, Carroll FI, Rice KC, Matecka D, Goldberg SR, Rothman RB (1996) Pharmacol Biochem Behav 53:911

    Article  CAS  Google Scholar 

  7. Rothman RB, Mele A, Reid AA, Akunne HC, Greig N, Thurkauf A, de Costa BR, Rice KC, Pert A (1991) Pharmacol Biochem Behav 40:387

    Article  CAS  Google Scholar 

  8. Mojsiak J (2003) Unpublished results. National Institutes of Health

  9. Prisinzano T, Rice KC, Baumann MH, Rothman RB (2004) Curr Med Chem – Central Nerv Syst Agents 4:47

    Article  CAS  Google Scholar 

  10. Kolhatkar R, Cook CD, Ghorai SK, Deschamps J, Beardsley PM, Reith MEA, Dutta AK (2004) J Med Chem 47:5101

    Article  CAS  Google Scholar 

  11. Kolhatkar RB, Ghorai SK, George C, Reith MEA, Dutta AK (2003) J Med Chem 46:2205

    Article  CAS  Google Scholar 

  12. Matecka D, Lewis D, Rothman RB, Dersch CM, Wojnicki FHE, Glowa JR, De Vries AC, Pert A, Rice KC (1997) J Med Chem 40:705

    Article  CAS  Google Scholar 

  13. Dutta AK, Xu C, Reith MEA (1996) J Med Chem 39:749

    Article  CAS  Google Scholar 

  14. Dutta AK, Reith MEA, Madras BK (2001) Synapse 39:175

    Article  CAS  Google Scholar 

  15. Prisinzano T, Greiner E, Johnson EM II, Dersch CM, Marcus J, Partilla JS, Rothman RB, Jacobson AE, Rice KC (2002) J Med Chem 45:4371

    Article  CAS  Google Scholar 

  16. Cramer RD III, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5959

    Article  CAS  Google Scholar 

  17. Carroll FI, Gao Y, Rahman MA, Abrams P, Parham K, Lewin AH, Boja JW, Kuhar MJ (1991) J Med Chem 34:2719

    Article  CAS  Google Scholar 

  18. Froimowitz M (1993) J Comput Chem 14:934

    Article  CAS  Google Scholar 

  19. Carroll FI, Mascarella SW, Kuzemko MA, Gao Y, Abraham P, Lewin AH, Boja JW, Kuhar MJ (1994) J Med Chem 37:2865

    Article  CAS  Google Scholar 

  20. Yang B, Wright J, Eldefrawi ME, Pou S, MacKerell AD Jr (1994) J Am Chem Soc 116:8722

    Article  CAS  Google Scholar 

  21. Lieske SF, Yang B, Eldefrawi ME, MacKerell AD Jr, Wright J (1998) J Med Chem 41:864

    Article  CAS  Google Scholar 

  22. Zhu N, Harrison A, Trudell ML, Klein-Stevens CL (1999) Struct Chem 10:91

    Article  CAS  Google Scholar 

  23. Muszynski IC, Scapozza L, Kovar K-A, Folkers G (1999) Quant Struct Act Relationsh 18:342

    Article  CAS  Google Scholar 

  24. Hoffman BT, Kopajtic T, Katz JL, Newman AH (2000) J Med Chem 43:4151

    Article  CAS  Google Scholar 

  25. Davies HML, Gilliatt V, Kuhn LA, Saikali E, Ren P, Hammond PS, Sexton GJ, Childers SR (2001) J Med Chem 44:1509

    Article  CAS  Google Scholar 

  26. Zhan CG, Zheng F, Landry DW (2003) J Am Chem Soc 125:2462

    Article  CAS  Google Scholar 

  27. Paula S, Tabet MR, Keenan SM, Welsh WJ, Ball WJ Jr (2003) J Mol Biol 325:515

    Article  CAS  Google Scholar 

  28. Paula S, Tabet MR, Farr CD, Norman AD, Ball WJ Jr (2004) J Med Chem 47:133

    Article  CAS  Google Scholar 

  29. Yuan H, Kozikowski AP, Petukhov PA (2004) J Med Chem 47:6137

    Article  CAS  Google Scholar 

  30. Kulkarni SS, Grundt P, Kopajtic T, Katz JL, Newman AH (2004) J Med Chem 47:3388

    Article  CAS  Google Scholar 

  31. Robarge MJ, Agoston GE, Izenwasser S, Kopajtic T, George C, Katz JL, Newman AH (2000) J Med Chem 43:1085

    Article  CAS  Google Scholar 

  32. Newman AH, Izenwasser S, Robarge MJ, Kline RH (1999) J Med Chem 42:3502

    Article  CAS  Google Scholar 

  33. Fengyi L, Boli L, Zhaoxing M, Shijun Z (2004) J Mol Struct (Theochem) 712:207

    Article  Google Scholar 

  34. Froimowitz M, Wu K-M, Rodrigo J, George C (2000) J Comput Aided Mol Des 14:135

    Article  CAS  Google Scholar 

  35. Froimowitz M, George C (1998) J Chem Inf Comp Sci 38:506

    Article  CAS  Google Scholar 

  36. Kulkarni SS, Newman AH, Houlihan WJ (2002) J Med Chem 45:4119

    Article  CAS  Google Scholar 

  37. Froimowitz M, Patrick KS, Cody V (1995) Pharm Res 12:1430

    Article  CAS  Google Scholar 

  38. Venanzi CA, Misra M, Gilbert KM, Buono RA, Schweri MM, Shi Q, Deutsch HM (2006) To be submitted for publication. New Jersey Institute of Technology

  39. Gilbert KM, Skawinski WJ, Misra M, Paris KA, Naik NH, Deutsch HM, Venanzi CA (2004) J Comput Aided Mol Des 18:719

    Article  CAS  Google Scholar 

  40. Wang S, Sakamuri S, Enyedy IJ, Kozikowski AP, Zaman WA, Johnson KM (2001) Bioorg Med Chem Lett 9:1753

    Article  CAS  Google Scholar 

  41. Nicklaus MC, Wang S, Driscoll J, Milne GWA (1995) Bioorg Med Chem 3:411

    Article  CAS  Google Scholar 

  42. Veith M, Hirst JD, Brooks CL III (1998) J Comput Aided Mol Des 12:563

    Article  Google Scholar 

  43. Boström J, Norrby P-O, Liljefors T (1998) J Comput Aided Mol Des 12:383

    Article  Google Scholar 

  44. Debnath AK (1999) J Med Chem 42:249

    Article  CAS  Google Scholar 

  45. Perola E, Charifson PS (2004) J Med Chem 47:2499

    Article  CAS  Google Scholar 

  46. Benedetti P, Mannhold R, Cruciani G, Pastor M (2002) J␣Med Chem 45:1577

    Article  CAS  Google Scholar 

  47. Guarnieri F, Weinstein H (1996) J Am Chem Soc 118:5580

    Article  CAS  Google Scholar 

  48. Hopfinger AJ, Tokarski JS (1997) In: Charifson PS (eds), Practical application of computer-aided drug design. Marcel Dekker, New York, 1997, pp 105–164

  49. Barnett-Norris J, Guarnieri F, Hurst DP, Reggio PH (1998) J␣Med Chem 41:4861

    Article  CAS  Google Scholar 

  50. Barnett-Norris J, Hurst DP, Lynch DL, Guarnieri F, Makriyannis A, Reggio PH (2002) J Med Chem 45:3649

    Article  CAS  Google Scholar 

  51. Greenidge PA, Merette SAM, Beck R, Dodson G, Goodwin CA, Scully MF, Spencer J, Weiser J, Deadman JJ (2003) J␣Med Chem 46:1293

    Article  CAS  Google Scholar 

  52. Bernard D, Coop A, MacKerell AD Jr (2003) J Am Chem Soc 125:3101

    Article  CAS  Google Scholar 

  53. Bernard D, Coop A, MacKerell AD Jr (2005) J Med Chem 48:7773

    Article  CAS  Google Scholar 

  54. Shenkin PS, McDonald DQ, (1994) J Comput Chem 15:899

    Article  CAS  Google Scholar 

  55. Clark M, Cramer RD III, Van Opdenbosch N (1989) J␣Comput Chem 10:982

    Article  CAS  Google Scholar 

  56. Berfield JL, Wang LC, Reith MEA (1999) J Biol Chem 274:4876

    Article  CAS  Google Scholar 

  57. Skawinski WJ (2004) Unpublished results. New Jersey Institute of Technology

  58. Dutta AK, Meltzer PC, Madras BK, (1993) Med Chem Res 3:209

    CAS  Google Scholar 

  59. Misra M, Banerjee A, Davé RN, Venanzi CA (2005) J Chem Inf Model 45:610

    Article  CAS  Google Scholar 

  60. Shenkin PS, Erman B, Mastrandrea LD (1991) Struct Funct Gen 11:297

    Article  CAS  Google Scholar 

  61. Fiorentino A, Pandit D, Gilbert KM, Misra M, Dios R, Venanzi CA (2006) J Comput Chem 27:609

    Google Scholar 

  62. Oprea TI (2000) J Comput Aided Mol Des 14:251

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH grant DA018153 (C.A.V.). K.M.G. acknowledges the support of Ruth L. Kirschstein National Research Service Award Individual Predoctoral Fellowship DA015555.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol A. Venanzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, K.M., Venanzi, C.A. Hierarchical clustering analysis of flexible GBR 12909 dialkyl piperazine and piperidine analogs. J Comput Aided Mol Des 20, 209–225 (2006). https://doi.org/10.1007/s10822-006-9046-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9046-2

Keywords

Navigation