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Abstract
Structure-based predictions of binding affinities of ligands binding to proteins by coordination bonds
with transition metals, covalent bonds, and bonds involving charge re-distributions are hindered by
the absence of proper force fields. This shortcoming affects all methods which use force-field-based
molecular simulation data on complex formation for affinity predictions. One of the most frequently
used methods in this category is the Linear Response (LR) approach of Åquist, correlating binding
affinities with van der Waals and electrostatic energies, as extended by Jorgensen’s inclusion of
solvent-accessible surface areas. All these terms represent the differences, upon binding, in the
ensemble averages of pertinent quantities, obtained from molecular dynamics (MD) or Monte Carlo
simulations of the complex and of single components. Here we report a modification of the LR
approach by: (1) the replacement of the two energy terms through the single-point QM/MM energy
of the time-averaged complex structure from an MD simulation; and (2) a rigorous consideration of
multiple modes (mm) of binding. The first extension alleviates the force-field related problems, while
the second extension deals with the ligands exhibiting large-scale motions in the course of an MD
simulation. The second modification results in the correlation equation that is nonlinear in optimized
coefficients, but does not lead to an increase in the number of optimized coefficients. The application
of the resulting mm QM/MM LR approach to the inhibition of zinc-dependent gelatinase B (matrix
metalloproteinase 9) by 28 hydroxamate ligands indicates a significant improvement of descriptive
and predictive abilities.

Keywords
affinity; binding energy; enzyme inhibition; ligand-macromolecule binding; matrix
metalloproteinases; metalloproteins; Linear Response approach; molecular dynamics; prediction;
QM/MM

Introduction
The continuously growing number of protein structures and protein structural models, resulting
from the knowledge of genomes, represents enormous promise for development of drugs and
other bioactive compounds. Full utilization of the potential requires an armory of
computational methods for prediction of ligand-protein binding affinities. Structure-based
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prediction methods with various levels of accuracy and speed are available today: fast docking
and scoring approaches [1,2] for reduction of vast chemical libraries to several hundreds of
probable binders, the second-pass methods selecting a dozen or so compounds with a high
probability of success, and the most sophisticated methods like Free Energy Perturbation [3]
and Thermodynamic Integration [4], which can e.g. discern the affinity of closely related
analogs.

In recent years, most developments have been seen in the second category of methods, which
are based on decomposition of the binding free energy. The methods usually use
conformational sampling of the ligand-receptor complex and of free reactants by Molecular
Dynamics (MD) or Monte Carlo (MC) simulations, although the use of multiple structures
corresponding to energy minima [5] or single optimized structures to speed up the calculations
have also been advocated [6,7]. Other differences appear in the following areas: the treatment
of solvent (explicit [8], continuum [6,9], or in vacuo [6,10]), estimation of the electrostatic
component of solvation energies (linearized Poisson-Boltzman equation [5,6,10–13], the
generalized Born model [9,12,14], or the pair-wise Coulomb relations in explicit solvent
[15]), and the parameter optimization (used [16] or not used [5,13]).

We prefer to use Linear Response (LR) method [8] and, especially, its extended variant [17],
because they contain 3–5 adjustable coefficients, which, in our opinion, account for the
differences between the simulated and experimental systems better than other approaches. The
LR decomposition of the free energy of binding, ΔGb, reads:

(1)

where K is the association constant, R is the universal gas constant, T is temperature, E denotes
the energy (van der Waals energy and electrostatic energy, scaled by separate coefficients α
and β [8,17] or overall QM/MM energy scaled by α [18]), PSA and NPSA represent polar and
nonpolar solvent-accessible surface areas [17], and γ, δ, and κ are adjustable coefficients. The
angle brackets denote the ensemble averages and Δ indicates the difference between the
ensemble averages in the bound and free ligand states. The ensemble averages of the energies
and the surface areas can be replaced by the respective quantities calculated for the time-
averaged structures [10].

The MD simulations are often trapped in local minima close to the starting conformations. To
obtain a better sampling of the conformational space, strategies as replica exchange MD [19]
or local replica exchange MD [20] were devised. Alternatively, predominant states can be
analyzed as in the approach called Mining Minima [21]. Some ligands exhibit extensive
movements and need much longer MD simulations to equilibrate than the rest of compounds.
To reduce the cost, these ligands can be included in the LR correlations by treating them as
assuming several binding modes, as described in our multi-mode (mm) approach [22].

A natural question emerges, whether the QM/MM energies can also be successfully used in
the mm approach. To examine this possibility, the mm QM/MM LR method was applied to a
set of 28 diverse hydroxamate inhibitors [23] of gelatinase B (MMP-9), a member of the family
of matrix metalloproteinases (MMPs). MMPs participate in remodeling of extracellular matrix
and are implicated in cancer, metastases, arthritis, and other diseases [24].

Background and Methods
To provide the theoretical background for the correlation equation underlying the mm QM/
MM LR approach, the description of binding equilibria as well as the replacement of the
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ensemble averages of van der Waals and electrostatic energies are briefly reviewed. The
computational protocol is described.

Multi-Mode Binding Equilibria
Reversible 1:1 binding of the i-th ligand Li in m mutually exclusive orientations or
conformations (modes) to the receptor site R can be schematically written as

(2).

Individual equilibria are characterized by the partial association constants Kij. The ligand is
present as a single species in the receptor surroundings. The apparent association constant Ki
for this process is, on the concentration basis, defined as

(3).

Eq. (3) is in accordance with the Mining Minima approach to calculation of free energies [5],
as well as with other published analyses of formally analogous situations: the rigorous
statistical thermodynamic description [25] and equilibrium treatment [26,27] of the multi-mode
interactions of ligands with proteins, and kinetic analyses of reversible uni-molecular reactions
leading to different products [28] or isomers [29].

Each partial association constant Kij can be expressed using Eq. (1), with the same values of
the adjustable coefficients α, β, γ, and κ. The apparent association constant Ki can then be
correlated with the simulation results by a combination of Eq. (1), now with the subscript ij
representing the j-th binding mode of the i-th compound), and Eq. (3):

(4)

In addition to predicting the binding affinity, Eq. (4) can also select the most dominant bound
conformation(s) of the ligand out of the set of hypothetical conformations. Individual
exponentials in Eq. (4) represent the partial association constants Kij of binding modes as
defined in Eq. (2) and Eq. (3). After the coefficients in Eq. (4) are optimized, the Boltzmann
probability of each bound conformation is easily calculated as Kij/ΣKij.

The QM/MM Binding Energy
The use of molecular mechanics (MM) for the description of the ligand-receptor interactions
requires similarity of chemical bonds in free and bound systems. Once the bonds change upon
binding, most commonly when covalent or coordination bonds are formed or even when
polarizability causes a different charge distribution for ligand-receptor complex, the use of
standard force fields becomes problematic. Two possible solutions to this problem are
represented by the development of more sophisticated force fields or by the use of quantum
mechanical (QM) methods. For large ligand-receptor systems, combination QM/MM methods
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are frequently used, with the QM domain including the changing bonds and the MM domain
covering the rest of the receptor molecules.

The use of the time-averaged structures in place of the ensemble averages in the LR equations
makes the use of QM/MM methods straightforward: the energy of the relaxed time-averaged
structures can be used instead of the van der Waals and electrostatic energies in Eq. (1). We
have recently shown that this modification of the LR approach with electrostatic and van der
Waals energies improves both descriptive and predictive abilities of the correlation [18].

Computational Protocol
The computation details were described previously [18,22]. Briefly, the protocol consisted of:
(1) FlexX docking of the ligands to the processed structure of MMP-9 taken from the Protein
Data Bank [30] (file 1GKC [31]), with the pose selected primarily on the basis of acceptable
distances between the catalytic zinc and the hydroxamate atoms; (2) QM/MM minimization
of the selected poses, with the QM region including the ligand, tha catalytic zinc, Glu402 and
the His triad as shown in Figure 1; (3) 200-ps MD simulation of the complex with the zinc
bonds restricted; and (4) calculation of single-point QM/MM energies of the complex in the
time-averaged structures from the simulations.

The van der Waals, electrostatic energies, and surface area terms were calculated using the
corresponding time-averaged structures of the complex and the free ligand for eight 25-ps
intervals of the 200-ps MD simulations. The time-averaged structure for each interval
represented a binding mode: 0–25 ps - mode 1, 25–50 ps - mode 2, … 175–200 ps - mode 8.
The structures of the compounds and inhibitory activities, both experimental [23] and
calculated by individual equations, are given in supporting information (Table S1).

Results and Discussion
The QM/MM optimization of the best FlexX poses showed that the hydroxamate groups of all
28 derivatives created, along with the histidine triad of MMP-9, rather similar trigonal
bipyramidal coordination spheres around the catalytic zinc [18] (Figure 1). Glu402 formed the
hydrogen bonds with the nonionized hydroxyl group of the hydroxamates. The QM/MM
approach, in general, handles the zinc-ligand charge transfer, bond length changes,
polarization, and ionization of the ligands upon binding to zinc better than advanced force
fields.

The ligand behavior differed more in the 200-ps simulations following 100-ps equilibrations
with harmonically restrained zinc-binding groups (Figure 2). Most ligands were well
equilibrated (as ligand 27, structure in Table S1 in supplementary information), but some
ligands showed large-scale motions (e.g. ligands 22 and especially 7). The multi-mode
approach was implemented to account for the instabilities. The LR terms in Eq. (1) and Eq.
(4), which were calculated for the minimized and time-averaged structures from the MD data
(supplementary information, Tables S2 and S3, respectively) did not exhibit colinearities: the
highest mutual correlation coefficient was r2 = 0.193. As the last parameter, the single-point
QM/MM energies for the time-averaged structures resulting from the 200-ps MD simulations
were calculated. In all studied cases, the used time-averaged structures were close to at least
one structure recorded in the simulation.

All statistically significant results of the fits of Eq. (1) and Eq. (4) to the data for the one-mode
and multi-mode LR approaches with classical and QM/MM energy parameters are summarized
in Table 1. In all cases, the dependent variable was ln (1/Ki) because the reported Ki values
[23] are the inhibition constants, not the association constants. The quality of individual fits
can be assessed using the statistical indices in Table 1 and also the plot of residuals vs. the

Khandelwal and Balaz Page 4

J Comput Aided Mol Des. Author manuscript; available in PMC 2010 July 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



experimental activities for individual equations (Figure 3). The FlexX docking, while providing
good starting geometries, did not allow the FlexX scoring function to discriminate between
individual binding affinities. For both MM and QM/MM minimizations (Eq. (1), lines 2 and
3 in Table 1), the QM/MM, van der Waals, and electrostatic terms were statistically not
significant and the coefficient errors were higher than the optimized coefficient values.
Moreover, the coefficients for the QM/MM and van der Waals terms had negative values. The
optimized structures, regardless whether obtained by MM or QM/MM minimization, probably
did not represent well the bound conformations and the results were discouraging (r2 = 0.508
and 0.514), in contrast to other reports [7].

Both MD and MD+QM/MM one-mode treatments resulted in the same equation (line 4 in
Table 1), because all the energy-related coefficients were insignificant. The coefficient errors
for the electrostatics and PSA terms were almost equal to the optimized coefficient values. The
sign of the coefficient for the van der Waals term was negative and the error was higher than
the coefficient. Inclusion of the statistically insignificant terms led to negligible or moderate
improvements in the correlations: for MM minimization, r2=0.516; for QM/MM minimization,
r2=0.520; and for the one-mode treatment, r2 = 0.625 (MD) and r2 = 0.630 (MD + QM/MM).
Conformational sampling using 200-ps MD simulations did not improve the statistics
significantly (r2 = 0.589). We showed previously [18,32] that these correlations can be
amended by a careful selection of the used intervals of MD simulations.

The interval selection is automated in the multi-mode approaches resulting in Eq. (4), which
provide a real breakthrough in the performance, explaining 84% of the variance with the MD
energy parameters, and 90% with the QM/MM parameter (Table 1, the last two lines). The
improvement caused by the inclusion of the QM/MM energies into the multi-mode LR
approach is significant and results in the best description of the data. All three terms included
in Eq. (4) for the mm QM/MM LR approach exhibited significant contributions to the
correlation. The residuals (Figure 3) are the lowest among the used approaches, and seem to
be randomly distributed.

The robustness of the regression Eq. (1) and Eq. (4) and their predictive abilities were probed
by leave-one-out (LOO) and leave-several-out (LSO) cross-validation procedures. The latter
approach, using a random selection of a 6-member test set that was repeated 200 times, provided
a thorough evaluation. The predictivity of the mm QM/MM LR approach is better than with
other approaches (Table 1, the last line). The RMSE values using LOO (0.817) and LSO (0.827)
cross-validations were comparable to the SD value (0.730), which is equivalent to the RMSE
value without any compound omission.

The prevalences of individual simulation intervals representing the binding modes for the
studied ligands can be calculated as Kij/ΣKij, where the partial association constants Kij, as
defined in Eq. (2) and Eq. (3), correspond to individual exponentials in Eq. (4). The prevalences
are summarized in Table S4 in the supporting information, and plotted against inhibitory
activities in Figure 4. Apparently, the number of binding modes is not related to the activity,
contrary to the notion that weak binders have a frustrated energy landscapes leading to multiple
binding modes [33]. It should be noted, however, that the least active compound 28 (structure
in Table S1 in the supporting information) does not have a clearly dominating mode, and all
the modes exhibit about equal (10–14%) contributions to the binding. All but one compounds
have the major binding mode representing less than 50% of bound molecules. In 60% of the
cases, mode 1 is the dominant binding mode. Major outliers in one-mode treatment (compounds
2, 3, 6, 15, 21, 22, 25, and 28, Table S1 in the supporting information) are predicted accurately
by the multi-mode treatment.
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The presented mm QM/MM LR approach, combining MD simulations and QM/MM methods,
exhibits very good descriptive and predictive abilities for the studied inhibition of MMP-9 by
hydroxamate ligands. If further studies confirm the applicability of the approach, it can become
a useful addition to the armory of the approaches to the structure-based prediction of binding
affinities. The two novel features of the mm QM/MM LR approach become especially handy
in the following situations. The multi-mode treatment automates the selection of suitable
simulation intervals for compounds undergoing significant large-scale movements. The QM/
MM energy provides superior descriptions of the binding energies if the ligand-macromolecule
complex is formed by coordination, covalent or polarizable bonds rather than by standard weak
interactions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The average lengths and standard deviations (Å) of the bonds (in magenta) between Zn and
coordinating atoms: B1=2.120±0.022, B2=2.156±0.011, B3=2.253±0.016, B4=2.029±0.018,
and B5=2.089±0.012 for all studied compounds. The hydrogen-bond lengths between Glu402
and O1 of the hydroxamate group were characterized by B6=2.604±0.065. The average bond
angles O1-Zn-N in His401, His405 and His411 are 121.77±14.81°, 135.58±8.95°, and 82.06
±1.65°, respectively. The average bond angles O2-Zn-N in the same order are 101.55±1.89°,
95.07±2.13°, and 155.23±2.98°, respectively. The average bond angle of O2-Zn-O1 is 79.66
±0.61°. The smallest inhibitor 28 (Table S1, supplementary information) shown in the time-
averaged position after 200-ps MD simulations. The surface of the MMP-9 is shown in gray.
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Figure 2.
The distance (Å) between Zn and the carbon atom indicated by the arrow for compounds 7
(black), 22 (red), and 27 (green) throughout the MD simulation. Structures of studied
compounds are given in Table S1 in supplementary information.
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Figure 3.
Plot of residuals (experimental minus calculated activities) obtained from FlexX docking
(grey), MM minimization (yellow), QM minimization (blue), LR and QM/MM LR approach
(green), mm LR approach (red), and mm QM/MM LR approach (black) vs experimental
activity (Ki is in M). The coefficients and statistical indices for individual approaches are
summarized in this order in Table 1.
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Figure 4.
Plot of prevalencies of individual modes vs experimental ln(1/Ki) values, calculated from the
best mm QM/MM LR correlation (the last line in Table 1). Individual modes m1 - m8,
representing time-averaged structures for consecutive 25-ps MD simulations, are shown in
black, red, green, gray, cyan, yellow, purple, and blue colors, respectively.
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