Skip to main content
Log in

Outliers in SAR and QSAR: Is unusual binding mode a possible source of outliers?

  • Special Issue: Yvonne Martin Retirement
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A lead optimization is usually carried out by structure-activity relationship (SAR) and/or quantitative structure-activity relationship (QSAR) studies. One of the assumptions in SAR and QSAR studies is that similar analogs bind to the same binding site in a similar binding mode. One often observes that there are outliers, especially in QSAR. However, most QSAR studies are carried out focusing their attention to the development of QSAR and leave the outliers without much attention. We searched a number of ligand-bound X-ray crystal structures from the protein structure database to find evidences that could indicate a possible source of outliers in SAR or QSAR. Our results show that unusual binding mode could be a source of outliers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kurup A (2003) J Comput Aided Mol Des 17:187–196

    Article  CAS  Google Scholar 

  2. BioByte 201 W. 4th St., #204, Claremont, CA 91711-4707. clogp@biobyte.com. 909-624-5992

  3. Berman HM, Westbrook J, Feng Z, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  4. CCDC Relibase (version 1.3.2, August 2005), Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB2 1EZ, United Kingdom

  5. Thompson J, Jeanmougin F (2003) ClustalW multiple sequence alignment program (Version 1.83, June 2003)

  6. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  7. Kim KH (1995) In: Hansch C, Fujita T (eds) Classical and three-dimensional QSAR in agrochemistry. American Chemical Society, Washington, DC, vol ACS Symposium Series 606, pp 302–317

  8. Hansch C (1995) In: Hansch C, Fujita T (eds) Classical and three-dimensional QSAR in agrochemistry. American Chemical Society: Washington, DC, vol ACS Symposium Series 606, pp 254–262

  9. Lindskog S (1997) Pharmacol Ther 74:1–20

    Article  CAS  Google Scholar 

  10. Kim C-Y, Chang JS, Doyon JB, Baird TT Jr, Fierke CA, Jain A, Christianson DW (2000) J Am Chem Soc 122:12125–12134

    Article  CAS  Google Scholar 

  11. Kim CY, Chandra PP, Jain A, Christianson DW (2001) J Am Chem Soc 123:9620–9627

    Article  CAS  Google Scholar 

  12. Orville AM, Lipscomb JD, Ohlendorf DH (1997) Biochemistry 36:10052–10066

    Article  CAS  Google Scholar 

  13. Orville AM, Elango N, Lipscomb JD, Ohlendorf DH (1997) Biochemistry 36:10039–10051

    Article  CAS  Google Scholar 

  14. Elgren TE, Orville AM, Kelly KA, Lipscomb JD, Ohlendorf DH, Que Jr L (1997) Biochemistry 36:11504–11513

    Article  CAS  Google Scholar 

  15. Christianson DW, Lipscomb WD (1989) Acc Chem Res 22:62–69

    Article  CAS  Google Scholar 

  16. Chung SJ, Kim DH (2001) Bioorg Med Chem 9:185–189

    Article  CAS  Google Scholar 

  17. Cho JH, Kim DH, Chung SJ, Ha N-C, Oh B-H, Choi KY (2002) Bioorg Med Chem 10:2015–2022

    Article  CAS  Google Scholar 

  18. Massova I, Martin P, de Mel S, Tanaka Y, Edwards B, Mobashery S (1996) J Am Chem Soc 118:12479–12480

    Article  CAS  Google Scholar 

  19. Park JD, Kim DH, Woo J-R, Ryu SE (2002) J Med Chem 45:5295–5302

    Article  CAS  Google Scholar 

  20. Teplyakov A (1993) Acta Cryst D 49:534–540

    Article  CAS  Google Scholar 

  21. Goldstein IM, Ostwald P, Roth S (1996) Vision Res 36:2979–2994

    Article  CAS  Google Scholar 

  22. Bredt DS, Snyder SH (1992) Neuron 8:3–11

    Article  CAS  Google Scholar 

  23. Li H, Shimizu H, Flinspach ML, Jamal J, Yang W, Xian M, Cai T, Wen EZ, Jia Q, Wang PG, Poulos TL (2002) Biochemistry 41:13868–13875

    Article  CAS  Google Scholar 

  24. Reddy AV (1991) Indian J Biochem Biophys 28:10–15

    CAS  Google Scholar 

  25. Kester WR (1977) Biochemistry 16:2506–2516

    Article  CAS  Google Scholar 

  26. Senda M, Senda T, Ogi T, Kidokoro S (2002) Acta Cryst A58:C278

    Google Scholar 

  27. Skulachev VP (1998) FEBS Lett 423:275–280

    Article  CAS  Google Scholar 

  28. Fitzgerald MM (1994) Biochemistry 33:3807–3818

    Article  CAS  Google Scholar 

  29. Fitzgerald MM (1996) Nat Struct Biol 3:626–631

    Article  CAS  Google Scholar 

  30. Musah RA (1997) Biochemistry 36:11665–11674

    Article  CAS  Google Scholar 

  31. Musah RA (1997) J Am Chem Soc. 119:9083–9084

    Article  CAS  Google Scholar 

  32. Musah RA (2002) J Mol Biol 315:845–857

    Article  CAS  Google Scholar 

  33. Brenk R (2006) J Mol Biol 357:1449–1470

    Article  CAS  Google Scholar 

  34. Gomez A (2006) Protein Sci 15:58–64

    Article  CAS  Google Scholar 

  35. Gomez GA (2004) Biochemistry 43:4716–4723

    Article  CAS  Google Scholar 

  36. Argiriadi MA (1999) Proc Natl Acad Sci USA 96:10637–10642

    Article  CAS  Google Scholar 

  37. Argiriadi MA (2000) J Biol Chem 275:15265–15270

    Article  CAS  Google Scholar 

  38. Schweitzer BI, Dicker AP, Bertino JR (1990) FABES J 4:2441–2452

    CAS  Google Scholar 

  39. Whitlow M, Howard AJ, Stewart D, Hardman KD, Chan JH, Baccanari DP, Tansik RL, Hong JS, Kuyper LF (2001) J Med Chem 44:2928–2932

    Article  CAS  Google Scholar 

  40. Whitlow M, Howard AJ, Stewart D, Hardman KD, Kuyper LF, Baccanari DP, Fling ME, Tansik RL (1997) J Biol Chem 272:30289–30298

    Article  CAS  Google Scholar 

  41. Patick AK, Potts KE (1998) Clin Microbiol Rev 11:614–627

    CAS  Google Scholar 

  42. Hiremath CN, Filman DJ, Grant RA, Hogle JM (1997) Acta Crystallogr D Biol Crystallogr 53:558–570

    Article  CAS  Google Scholar 

  43. Grant RA, Hiremath CN, Filman DJ, Syed R, Andries K, Hogle JM (1994) Curr Biol 4:784–797

    Article  CAS  Google Scholar 

  44. Turner RB (2001) Antiviral Res 49:1–14

    Article  CAS  Google Scholar 

  45. Badger J, Minor I, Oliveira MA, Smith TJ, Rossmann MG (1989) Proteins: Struct Funct Genet 6:1–19

    Article  CAS  Google Scholar 

  46. Hadfield AT, Diana GD, Rossmann MG (1999) Proc Natl Acad Sci USA 96:14730–14735

    Article  CAS  Google Scholar 

  47. Kim KH, Willingmann P, Gong ZX, Kremer MJ, Chapman MS, Minor I, Oliveira MA, Rossmann MG, Andries K, Diana GD, Dutko FJ, McKinlay MA, Pevear DC (1993) J Mol Biol 230:206–227

    Article  CAS  Google Scholar 

  48. Zhang Y, Simpson AA, Ledford RM, Bator CM, Chakravarty S, Skochko GA, Demenczuk TM, Watanyar A, Pevear DC, Rossmann MG (2004) J Virol 78:11061–11069

    Article  CAS  Google Scholar 

  49. Hadfield AT, Oliveira MA, Kim KH, Minor I, Kremer MJ, Heinz BA, Shepard D, Pevear DC, Rueckert RR, Rossmann MG (1995) J Mol Biol 253:61–73

    Article  CAS  Google Scholar 

  50. Chakravarty S, Bator CM, Pevear DC, Diana GD, Rossmann MG The refined structure of a piconavirus inhibitor currently in clinical trials, when complexed with human rhinovirus 16. to be published

  51. Smith TJ, Kremer MJ, Luo M, Vriend G, Arnold E, Kamer G, Rossmann MG, McKinlay MA, Diana GD, Otto MJ (1986) Science 233:1286–1293

    Article  CAS  Google Scholar 

  52. Baldwin ET, Weber IT, Charles RS, Xuan J.-C, Appella E, Yamada M, Matsushima K, Edwards BFP, Clore GM, Gronenborn AM, Wlodawer A (1991) Proc Natl Acad Sci USA 88:502–506

    Article  CAS  Google Scholar 

  53. Braun W, Vasak M, Robbins AH, Stout CD, Wagner G, Kagi JHR, Wuthrich K (1992) Proc Natl Acad Sci USA 89:10124–10128

    Article  CAS  Google Scholar 

  54. Nilges M, Macias MJ, O’Donoghue SI, Oschkinat H (1997) J Mol Biol 269:408–422

    Article  CAS  Google Scholar 

  55. Holak TA, Bode W, Huber J, Otlewski J, Wilusz T (1989) J Mol Biol 210:649–654

    Article  CAS  Google Scholar 

  56. Montelione GT, Zheng D, Huang YJ, Gunsalus KC, Szyperski T (2000) Nat Struct Biol 7:982–985

    Article  CAS  Google Scholar 

  57. Billeter M (1992) Q Rev Biophys 25:325–377

    Article  CAS  Google Scholar 

  58. Hiller N (2005) Protein Sci 15:281–289

    Article  CAS  Google Scholar 

  59. Segelke BW, Forstner M, Knapp M, Trakhanov SD, Parkin S, Newhouse YM, Bellamy HD, Weisgraber KH, Rupp B (2000) Protein Sci 9:886–897

    CAS  Google Scholar 

  60. Longhi S, Nicolas A, Creveld L, Egmond M, Verrips CT, de Vlieg J, Martinez C, Cambillau C (1996) Proteins: Struct Funct Genet 26:442–458

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author express sincere gratitude to both Professor Corwin Hansch and Dr. Albert Leo for their generous permission to use their C-QSAR database and the BioByte program Bio-Loom. The author thanks to Drs. Albert Leo and Yvonne Martin for their critical evaluation of the manuscript and valuable suggestions. The author dedicates this paper to the lifetime advisors and friends, Drs. Corwin Hansch, Albert Leo, Yvonne Martin, and Gary Grunewald.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki Hwan Kim.

Electronic supplementary material

Below is the electronic supplementary material.

ESM 1 (PDF )

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K.H. Outliers in SAR and QSAR: Is unusual binding mode a possible source of outliers?. J Comput Aided Mol Des 21, 63–86 (2007). https://doi.org/10.1007/s10822-007-9106-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-007-9106-2

Keywords

Navigation