Skip to main content

Advertisement

Log in

Mechanism of inhibition of human secretory phospholipase A2 by flavonoids: rationale for lead design

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The human secretory phospholipase A2 group IIA (PLA2-IIA) is a lipolytic enzyme. Its inhibition leads to a decrease in eicosanoids levels and, thereby, to reduced inflammation. Therefore, PLA2-IIA is of high pharmacological interest in treatment of chronic diseases such as asthma and rheumatoid arthritis. Quercetin and naringenin, amongst other flavonoids, are known for their anti-inflammatory activity by modulation of enzymes of the arachidonic acid cascade. However, the mechanism by which flavonoids inhibit Phospholipase A2 (PLA2) remained unclear so far. Flavonoids are widely produced in plant tissues and, thereby, suitable targets for pharmaceutical extractions and chemical syntheses. Our work focuses on understanding the binding modes of flavonoids to PLA2, their inhibition mechanism and the rationale to modify them to obtain potent and specific inhibitors. Our computational and experimental studies focused on a set of 24 compounds including natural flavonoids and naringenin-based derivatives. Experimental results on PLA2-inhibition showed good inhibitory activity for quercetin, kaempferol, and galangin, but relatively poor for naringenin. Several naringenin derivatives were synthesized and tested for affinity and inhibitory activity improvement. 6-(1,1-dimethylallyl)naringenin revealed comparable PLA2 inhibition to quercetin-like compounds. We characterized the binding mode of these compounds and the determinants for their affinity, selectivity, and inhibitory potency. Based on our results, we suggest C(6) as the most promising position of the flavonoid scaffold to introduce chemical modifications to improve affinity, selectivity, and inhibition of PLA2-IIA by flavonoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PLA2:

Phospholipase A2

PLA2-IB:

Phospholipase A2 group IB

PLA2-IIA:

Phospholipase A2 group IIA

3D:

Three-dimensional

MD:

Molecular dynamics

References

  1. Dennis EA, Rhee SG, Billah MM, Hannun YA, (1991) Faseb J 5(7):2068–2077

  2. Bennion C, Connolly S, Gensmantel NP, Hallam C, Jackson CG, Primrose WU, Roberts GC, Robinson DH, Slaich PK (1992) J Med Chem 35(16):2939–2951

    Article  CAS  Google Scholar 

  3. Jackson RC (1995) Curr Opin Biotechnol 6(6):646–651

    Article  CAS  Google Scholar 

  4. Ortiz AR, Pisabarro MT, Gago F, Wade RC (1995) J Med Chem 38(14):2681–2691

    Article  CAS  Google Scholar 

  5. Lindahl M, Tagesson C (1997) Inflammation 21(3):347–356

    Article  CAS  Google Scholar 

  6. Chemical Computing Group I (2006) Montreal, Quebec, Canada H3A 2R7

  7. Allen FH (2002) Acta Crystallogr B 58(Pt 3 Pt 1):380–388

    Article  Google Scholar 

  8. Koopmans T (1933) Physica 1:104–113

    Article  CAS  Google Scholar 

  9. Stewart JJP (1990) J Comp Aid Mol Des 1(4):1–45

    Google Scholar 

  10. Gester S, Metz P, Zierau O, Vollmer G (2001) Tetrahedron 57(6):1015–1018

    Article  CAS  Google Scholar 

  11. Tischer S, Metz P (2007) Adv Synth Catal 349(1–2):147–151

    Article  CAS  Google Scholar 

  12. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28(1):235–242

    Article  CAS  Google Scholar 

  13. Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL (2000) Mol Cell 6(4):909–919

    Article  CAS  Google Scholar 

  14. Steiner RA, Kalk KH, Dijkstra BW (2002) Proc Natl Acad Sci USA 99(26):16625–16630

    Article  CAS  Google Scholar 

  15. Ferrer JL, Jez JM, Bowman ME, Dixon RA, Noel JP (1999) Nat Struct Biol 6(8):775–784

    Article  CAS  Google Scholar 

  16. Jez JM, Bowman ME, Dixon RA, Noel JP (2000) Nat Struct Biol 7(9):786–791

    Article  CAS  Google Scholar 

  17. Welford RW, Clifton IJ, Turnbull JJ, Wilson SC, Schofield CJ (2005) Org Biomol Chem 3(17):3117–3126

    Article  CAS  Google Scholar 

  18. Hansford KA, Reid RC, Clark CI, Tyndall JD, Whitehouse MW, Guthrie T, McGeary RP, Schafer K, Martin JL, Fairlie DP (2003) Chembiochem 4(2–3):181–185

    Article  CAS  Google Scholar 

  19. Pan YH, Yu BZ, Berg OG, Jain MK, Bahnson BJ (2002) Biochemistry 41(50):14790–14800

    Article  CAS  Google Scholar 

  20. BioSolveIT G (2007) An der Ziegelei 75:53757 St. Augustin, Germany

  21. Schevitz RW, Bach NJ, Carlson DG, Chirgadze NY, Clawson DK, Dillard RD, Draheim SE, Hartley LW, Jones ND, Mihelich ED et al (1995) Nat Struct Biol 2(6):458–465

    Article  CAS  Google Scholar 

  22. Case CA, Darden TA, Cheatham ITE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Wang B, Pearlman DA, Crowley M, Brozell S, Tsui V, Gohlke H, Mongan J, Hornak H, Cui G, Beroza P, Schafmeister C, Caldwell JW, Ross WS, Kollman PA (2004) Amber8 users manual, University of California, San Francisco

  23. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  24. Bohl M, Ketscher L, Tietbohl C, Gutzeit HO (2006) Anal Biochem 359(2):280–282

    Article  Google Scholar 

  25. Leslie CC, Gelb MH (2004) Methods Mol Biol 284:229–242

    CAS  Google Scholar 

  26. Menschikowski M, Hagelgans A, Heyne B, Hempel U, Neumeister V, Goez P, Jaross W, Siegert G (2005) Biochim Biophys Acta 1733(2–3):157–171

    CAS  Google Scholar 

  27. Pisabarro MT, Ortiz AR, Palomer A, Cabre F, Garcia L, Wade RC, Gago F, Mauleon D, Carganico G (1994) J Med Chem 37(3):337–341

    Article  CAS  Google Scholar 

  28. Guerrero JA, Lozano ML, Castillo J, Benavente-Garcia O, Vicente V, Rivera JJ (2005) Thromb Haemost 3(2):369–376

    Article  CAS  Google Scholar 

  29. van Zanden JJ, Geraets L, Wortelboer HM, van Bladeren PJ, Rietjens IM, Cnubben NH (2004) Biochem Pharmacol 67(8):1607–1617

    Article  Google Scholar 

  30. Prout CK, Wallwork SC (1966) Acta Crystallogr 21:449–450

    Article  CAS  Google Scholar 

  31. Gil B, Sanz MJ, Terencio MC, Ferrandiz ML, Bustos G, Paya M, Gunasegaran R, Alcaraz MJ (1994) Life Sci 54(20):PL333–PL338

    Article  CAS  Google Scholar 

  32. Chang HW, Baek SH, Chung KW, Son KH, Kim HP, Kang SS (1994) Biochem Biophys Res Commun 205(1):843–849

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded by European Structural Funds (EFRE). MTP group is funded by the Klaus Tschira Stiftung GmbH. We are grateful to Mrs. Mandy Erlitz for her invaluable administrative support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jens Lättig or M. Teresa Pisabarro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lättig, J., Böhl, M., Fischer, P. et al. Mechanism of inhibition of human secretory phospholipase A2 by flavonoids: rationale for lead design. J Comput Aided Mol Des 21, 473–483 (2007). https://doi.org/10.1007/s10822-007-9129-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-007-9129-8

Keywords

Navigation