Skip to main content
Log in

Calculating physical properties of organic compounds for environmental modeling from molecular structure

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Mathematical models for predicting the transport and fate of pollutants in the environment require reactivity parameter values – that is the value of the physical and chemical constants that govern reactivity. Although empirical structure–activity relationships have been developed that allow estimation of some constants, such relationships are generally valid only within limited families of chemicals. The computer program, SPARC, uses computational algorithms based on fundamental chemical structure theory to estimate a large number of chemical reactivity parameters and physical properties for a wide range of organic molecules strictly from molecular structure. Resonance models were developed and calibrated using measured light absorption spectra, whereas electrostatic interaction models were developed using measured ionization pKas in water. Solvation models (i.e., dispersion, induction, H-bonding, etc.) have been developed using various measured physical properties data. At the present time, SPARC’s physical property models can predict vapor pressure and heat of vaporization (as a function of temperature), boiling point (as a function of pressure), diffusion coefficient (as a function of pressure and temperature), activity coefficient, solubility, partition coefficient and chromatographic retention time as a function of solvent and temperature. This prediction capability crosses chemical family boundaries to cover a broad range of organic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Miller MM, Wasik SP, Huang GL, Shiu WT, Mackay D (1985) Environ Sci Technol 19:522

    Article  CAS  Google Scholar 

  2. Rekker RF (1977) The hydrophobic fragment constant. Elsevier, Amsterdam

    Google Scholar 

  3. Banerjee S, Yalkowsky SH, Valvani SC (1980) Environ Sci Toxicol 14:1227

    CAS  Google Scholar 

  4. Doucette WJ, Andren AW (1987) Environ Sci Technol 21:821

    Article  CAS  Google Scholar 

  5. Lyman WJ, Reehl E, Rosenblatt D (1990) Handbook of Chemical Property Estimation Methods. ACS (ed), Washington

  6. Leo AJ (1975) In: Veith GD (ed) Structure activity correlations in studies of toxicity and bio-concentrations with aquatic organism. International Joint Commission, Windsor, p 151

    Google Scholar 

  7. Wolfe NL, Zepp RG, Gordon JA, Baughman GL, Cline DM (1977) Environ Sci Technol 11:88

    Article  CAS  Google Scholar 

  8. Zepp RG, Cline DM (1977) Environ Sci Technol 11:359

    Article  CAS  Google Scholar 

  9. Zepp RG (1982) Handbook of environmental chemistry. Springer Verlag, New York

    Google Scholar 

  10. Karickhoff SW, McDaniel VK, Melton C, Vellino AN, Nute DE, Carreira LA (1991) Environ Tox Chem 10:1405

    Article  CAS  Google Scholar 

  11. Hilal SH, Karickhoff SW, Carreira LA (1995) Quant Struct Act Relat 14:348

    Article  CAS  Google Scholar 

  12. Hilal SH, Karickhoff SW, Carreira LA (2003) QSAR Comb Sci 22:565

    Article  CAS  Google Scholar 

  13. Hilal SH, Carreira LA, Karickhoff SW (2004) QSAR Comb Sci 23:709

    Article  CAS  Google Scholar 

  14. Hilal SH, Carreira LA, Karickhoff SW, Melton CM (1993) Quant Struct Act Relat 12:389

    Article  CAS  Google Scholar 

  15. Whiteside TS, Hilal SH, Carreira LA (2006) QSAR Comb Sci 25:123

    Article  CAS  Google Scholar 

  16. Hilal SH, Carreira LA (2007) To be submitted

  17. Hilal SH, Carreira LA, Karickhoff SW, Melton CM (1994) J Chromatogr 662:269

    Article  CAS  Google Scholar 

  18. Whiteside TS, Carreira LA, Hilal SH, Brenner A (2007) To be submitted

  19. Dykyj J, Repas M, Svoboda AJ (1984) Vapor pressure of organic substances. VEDA, Vydavatel’ stvo, Slovenskej Akademie Vied, Bratislava

  20. Flory PJ (1941) J Chem Phys 9:660

    Article  CAS  Google Scholar 

  21. Huggins ML (1941) J Chem Phys 9:440

    Article  CAS  Google Scholar 

  22. Tarjan G, Timar I, Takacs JM, Meszaros SY, Nyiredy S, Budahegyl MV, Lombosi ER, Lombosi TS (1982) J Chromatogr 271:213

    Google Scholar 

  23. Haken JK, Evans MB (1989) J Chromatogr 93:472

    Google Scholar 

  24. Budavari S, O’Neil M, Smith A, Heckelman PE, Kinneary JF (1996) The Merck index. Merck & CO., Inc., Whitehouse Station

    Google Scholar 

  25. Heller SR, Bigwood DW, Laster P, Scott K, Ars pesticide properties database. USDA

  26. Hartley D, Kidd H (1983) The agro chemical handbook. Royal Society of Chemistry, Nottingham

    Google Scholar 

  27. Yalkowsky SH, He Y (2006) AQUASOL dATAbASE of aqueous solubility. The University of Arizona

  28. Meylan WM, Howard PH (2004) SRC’s EPI suite: PHYSPROP database. Syracuse Research Corporation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Hilal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilal, S.H., Saravanaraj, A.N., Whiteside, T. et al. Calculating physical properties of organic compounds for environmental modeling from molecular structure. J Comput Aided Mol Des 21, 693–708 (2007). https://doi.org/10.1007/s10822-007-9134-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-007-9134-y

Keywords

Navigation