Skip to main content
Log in

A comprehensive analysis of the thermodynamic events involved in ligand–receptor binding using CoRIA and its variants

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Quantitative Structure-Activity Relationships (QSAR) are being used since decades for prediction of biological activity, lead optimization, classification, identification and explanation of the mechanisms of drug action, and prediction of novel structural leads in drug discovery. Though the technique has lived up to its expectations in many aspects, much work still needs to be done in relation to problems related to the rational design of peptides. Peptides are the drugs of choice in many situations, however, designing them rationally is a complicated task and the complexity increases with the length of their sequence. In order to deal with the problem of peptide optimization, one of our recently developed QSAR formalisms CoRIA (Comparative Residue Interaction Analysis) is being expanded and modified as: reverse-CoRIA (rCoRIA) and mixed-CoRIA (mCoRIA) approaches. In these methodologies, the peptide is fragmented into individual units and the interaction energies (van der Waals, Coulombic and hydrophobic) of each amino acid in the peptide with the receptor as a whole (rCoRIA) and with individual active site residues in the receptor (mCoRIA) are calculated, which along with other thermodynamic descriptors, are used as independent variables that are correlated to the biological activity by chemometric methods. As a test case, the three CoRIA methodologies have been validated on a dataset of diverse nonamer peptides that bind to the Class I major histocompatibility complex molecule HLA-A*0201, and for which some structure activity relationships have already been reported. The different models developed, and validated both internally as well as externally, were found to be robust with statistically significant values of r 2 (correlation coefficient) and r 2 pred (predictive r 2). These models were able to identify all the structure activity relationships known for this class of peptides, as well uncover some new relationships. This means that these methodologies will perform well for other peptide datasets too. The major advantage of these approaches is that they explicitly utilize the 3D structures of small molecules or peptides as well as their macromolecular targets, to extract position-specific information about important interactions between the ligand and receptor, which can assist the medicinal and computational chemists in designing new molecules, and biologists in studying the influence of mutations in the target receptor on ligand binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hansch C, Maloney PP, Fujita T, Muir RM (1962) Nature 194:178

    Article  CAS  Google Scholar 

  2. Hansch C, Muir RM, Fujita T, Maloney PP, Geiger F, Streich M (1963) J Am Chem Soc 85:2817

    Article  CAS  Google Scholar 

  3. Hansch C, Fujita T (1964) J Am Chem Soc 86:1616

    Article  CAS  Google Scholar 

  4. Hansch CA (1969) Acc Chem Res 2:232

    Article  CAS  Google Scholar 

  5. Cramer RD III, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5959

    Article  CAS  Google Scholar 

  6. Tokarski JS, Hopfinger AJ (1994) J Med Chem 37:3639

    Article  CAS  Google Scholar 

  7. Klebe G, Abraham U, Mietzner T (1994) J Med Chem 37:4130

    Article  CAS  Google Scholar 

  8. Havel TF, Kuntz ID, Crippen GM (1983) Bull Math Biol 45:665

    Google Scholar 

  9. Doweyko AM (1988) J Med Chem 31:1396

    Article  CAS  Google Scholar 

  10. Walters DE, Hinds RM (1994) J Med Chem 37:2527

    Article  CAS  Google Scholar 

  11. Jain AN, Koile K, Chapman D (1994) J Med Chem 37:2315

    Article  CAS  Google Scholar 

  12. Hopfinger A, Wang S, Tokarski J, Baiqiang J, Albuquerque M, Madhav P, Duraiswami C (1997) J Am Chem Soc 119:10509

    Article  CAS  Google Scholar 

  13. Vedani A, Dobler M, Prog Drug Res (2000) 55:105

    CAS  Google Scholar 

  14. Vedani A, Dobler M (2002) J Med Chem 45:2139

    Article  CAS  Google Scholar 

  15. Vedani A, Dobler M, Lill MA (2005) J Med Chem 48:3700

    Article  CAS  Google Scholar 

  16. Tokarski JS, Hopfinger AJ (1997) J Chem Inf Comput Sci 37:792

    Article  CAS  Google Scholar 

  17. Ortiz AR, Pisabarro TM, Gago F, Wade RC (1995) J Med Chem 38:2681

    Article  CAS  Google Scholar 

  18. Gohlke H, Klebe G (2002) J Med Chem 45:4153

    Article  CAS  Google Scholar 

  19. Datar PA, Khedkar SA, Malde AK, Coutinho EC (2006) J Comput Aided Mol Des 20:343

    Article  CAS  Google Scholar 

  20. Khedkar SA, Malde AK, Coutinho EC (2007) J Chem Inf Model 47:1839

    Article  CAS  Google Scholar 

  21. Marshall GR (1993) Tetrahedron 49:3547

    Article  CAS  Google Scholar 

  22. Doytchinova IA, Flower DR (2001) J Med Chem 44:3572

    Article  CAS  Google Scholar 

  23. Doytchinova IA, Flower DR (2002) J Comput Aided Mol Des 16:535

    Article  CAS  Google Scholar 

  24. Sneath PH (1966) J Theor Biol 12:157

    Article  CAS  Google Scholar 

  25. Kidera A, Konishi Y, Oka M, Ooi T, Scheraga HA (1985) J Prot Chem 4:23

    Article  CAS  Google Scholar 

  26. Hellberg S, Sjostrom M, Skagerberg B, Wold S (1987) J Med Chem 30:1126

    Article  CAS  Google Scholar 

  27. Collantes ER, Dunn WJ (1995) J Med Chem 38:2705

    Article  CAS  Google Scholar 

  28. Zaliani A, Gancia E (1999) J Chem Inf Comput Sci 39:525

    Article  CAS  Google Scholar 

  29. Pissurlenkar RRS, Malde AK, Khedkar SA, Coutinho EC (2007) QSAR Comb Sci 26:189

    Article  CAS  Google Scholar 

  30. Doytchinova IA, Walshe VA, Jones NA, Gloster SE, Borrow P, Flower DR (2004) J Immunol 172:7495

    CAS  Google Scholar 

  31. Hattotuwagama CK, Doytchinova IA, Flower DR (2005) J Chem Inf Mod 45:1415

    Article  CAS  Google Scholar 

  32. Hattotuwagama CK, Guan P, Doytchinova IA, Flower DR (2004) Org Biomolec Chem 2:3274

    Article  CAS  Google Scholar 

  33. Hattotuwagama CK, Guan P, Doytchinova IA, Zygouri C, Flower DR (2004) J Mol Graph Model 22:195

    Article  CAS  Google Scholar 

  34. Davies MN, Hattotuwagama CK, Moss DS, Drew MGB, Flower DR (2006) BMC Structural Biology 6:5

    Article  Google Scholar 

  35. Guan P, Doytchinova IA, Walshe VA, Borrow P, Flower DR (2005) J Med Chem 48:7418

    Article  CAS  Google Scholar 

  36. Doytchinova IA, Flower DR (2007) J Chem Inf Model 47:234

    Article  CAS  Google Scholar 

  37. Doytchinova IA, Flower DR (2002) Proteins 48:505

    Article  CAS  Google Scholar 

  38. Doytchinova IA, Walshe V, Borrow P, Flower DR (2005) J Comput Aided Mol Des 19:203

    Article  CAS  Google Scholar 

  39. Ruppert J, Sidney J, Celis E, Kubo RT, Grey HM, Sette A (1993) Cell 74:929

    Article  CAS  Google Scholar 

  40. Sette A, Sidney J, del Guercio M-F, Southwood S, Ruppert J, Dalberg C, Grey HM, Kubo RT (1994) Mol Immunol 31:813

    Article  CAS  Google Scholar 

  41. Cerius2, version 4.6 (1998) Accelrys Inc., San Diego, CA, USA

  42. InsightII, version 2005L (2005) Accelrys Inc., San Diego, CA, USA

  43. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235

    Article  CAS  Google Scholar 

  44. Maple JR, Hwang M-J, Stockfisch TP, Dinur U, Waldman M, Ewig CS, Hagler AT (1994) J Comput Chem 15:162

    Article  CAS  Google Scholar 

  45. Kellogg GE, Semus SF, Abraham DJ (1991) J Comput Aided Mol Des 5:545

    Article  CAS  Google Scholar 

  46. Sybyl, version 7.1 (2005) Tripos Associates Inc., 1699 S Hanley Rd., St. Louis, MO 631444, USA

  47. Murcko MA, Stouten PFW (1997) In: Charifson PS (ed) Practical application of computer-aided drug design, Marcel Dekker Inc., New York, USA, p 355

  48. Quasar, version 5.0 (2005) Biographics laboratory 3R, Basel, Switzerland

  49. Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) J Am Chem Soc 112:6127

    Article  CAS  Google Scholar 

  50. Searle MS, Williams DH (1992) J Am Chem Soc 114:10690

    Article  CAS  Google Scholar 

  51. Rogers D, Hopfinger AJ (1994) J Chem Inf Comput Sci 34:854

    Article  CAS  Google Scholar 

  52. Wold S, Johansson E, Cocchi M (1993) In: Kubinyi H (ed) 3D QSAR in drug design: theory, methods and applications, ESCOM Science Publishers, Leiden, p 523

  53. Richard D, Cramer RD III, Bunce JD, Patterson DE, Frank IE (1988) Quant Struct-Act Relat 7:18

    Article  Google Scholar 

  54. Madden DR (1995) Annu Rev Immunol 13:587

    Article  CAS  Google Scholar 

  55. Madden DR, Garboczi DN, Wiley DC (1993) Cell 75:693

    Article  CAS  Google Scholar 

  56. Falk K, Ro¨tzschke O, Stefanovic S, Jung G, Rammensee H-G (1991) Nature 351:290

    Article  CAS  Google Scholar 

  57. Holtje H-D, Sippl W, Rognan D, Folkers G (2003) In: Holtje H-D, Folkers G (eds) Molecular modeling—basic principles and applications, WILEY—VCH GmbH & Co. KGaA, Weinheim, p 179

  58. Binz AK, Rodriguez RC, Biddison WE, Baker BM (2003) Biochemistry 42:4954

    Article  CAS  Google Scholar 

  59. Marvin JS, Hellinga HW (2001) Nat Struct Biol 8:795

    Article  CAS  Google Scholar 

  60. Oelschlaeger P, Mayo SL, Pleiss J (2005) Protein Sci 14:765

    Article  CAS  Google Scholar 

  61. Dönnes P, Elofsson A (2002) BMC Bioinformatics 3:25

    Article  Google Scholar 

  62. Altuvia Y, Sette A, Sidney J, Southwood S, Margalit H (1997) Hum Immunol 58:1

    Article  CAS  Google Scholar 

  63. Guan P, Doytchinova IA, Zygouri C, Flower DR (2003) Appl Bioinformatics 2:63

    CAS  Google Scholar 

  64. Guan P, Doytchinova IA, Zygouri C, Flower DR (2003) Nucleic Acids Res 31:3621

    Article  CAS  Google Scholar 

  65. Zhang GL, Khan AM, Srinivasan KN, August JT, Brusic V (2005) Nucleic Acids Res 33:W172

    Article  CAS  Google Scholar 

  66. Bhasin M, Singh H, Raghava GPS (2003) Bioinformatics 19:665

    Article  CAS  Google Scholar 

  67. Buus S, Lauemoller SL, Worning P, Kesmir C, Frimurer T, Corbet S, Fomsgaard A, Hilden J, Holm A, Brunak S (2003) Tissue Antigens 62:378

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was made possible by a grant [01(1986)/05/EMR-II] from the Council of Scientific and Industrial Research (CSIR, New Delhi). The Department of Science and Technology (DST, New Delhi) is also thanked for providing some of the computational facilities under the FIST program (SR/FST/LSI-163/2003). Jitender Verma, S. A. Khedkar and A. K. Malde thank CSIR for financial support. V. M. Khedkar thanks the Amrut Mody Research Foundation (AMRF) for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evans C. Coutinho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, J., Khedkar, V.M., Prabhu, A.S. et al. A comprehensive analysis of the thermodynamic events involved in ligand–receptor binding using CoRIA and its variants. J Comput Aided Mol Des 22, 91–104 (2008). https://doi.org/10.1007/s10822-008-9172-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-008-9172-0

Keywords

Navigation