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Abstract In previous studies we have developed cate-

gorical QSAR models for predicting skin-sensitization

potency based on 4D-fingerprint (4D-FP) descriptors and in

vivo murine local lymph node assay (LLNA) measures.

Only 4D-FP derived from the ground state (GMAX)

structures of the molecules were used to build the QSAR

models. In this study we have generated 4D-FP descriptors

from the first excited state (EMAX) structures of the

molecules. The GMAX, EMAX and the combined ground

and excited state 4D-FP descriptors (GEMAX) were

employed in building categorical QSAR models. Logistic

regression (LR) and partial least square coupled logistic

regression (PLS-CLR), found to be effective model build-

ing for the LLNA skin-sensitization measures in our

previous studies, were used again in this study. This also

permitted comparison of the prior ground state models to

those involving first excited state 4D-FP descriptors. Three

types of categorical QSAR models were constructed for

each of the GMAX, EMAX and GEMAX datasets: a binary

model (2-state), an ordinal model (3-state) and a binary-

binary model (two-2-state). No significant differences exist

among the LR 2-state model constructed for each of the

three datasets. However, the PLS-CLR 3-state and 2-state

models based on the EMAX and GEMAX datasets have

higher predictivity than those constructed using only the

GMAX dataset. These EMAX and GMAX categorical

models are also more significant and predictive than cor-

responding models built in our previous QSAR studies of

LLNA skin-sensitization measures.

Keywords Skin sensitization � Categorical QSAR

models � Excited state structures

Introduction

Allergic contact dermatitis (ACD) results from the T-lym-

phocyte mediated immune response to a chemical allergen

coming into contact with the skin [1]. The small allergenic

molecule (hapten) penetrates the skin and binds to a carrier

protein, typically by covalent bond, to form an antigenic

hapten-protein complex. This complex is then processed by

antigen-presenting cells migrating to the draining lymph-

nodes, where they introduce the haptens to the

T-lymphocytes. A chemical compound’s ability to behave

as a contact allergen depends on how well it penetrates the

stratum corneum and on its means to react, either directly or

after metabolic activation, with skin proteins.

Thus, the chemical reactivity profile of a compound plays

a major role in its propensity to be a chemical allergen.
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Studies [2, 3] show that the photoreactive states of skin-

sensitizing carcinogenic compounds are characterized by a

substantial localization of the electronic excitation, thereby

providing a logical basis for the structure-activity correla-

tion of skin-sensitizing compounds. And in an analogous

manner, the coumarins, which are one class of typical skin-

sensitizing derivatives, also possess partially localized

triplet states [4]. In contrast, the 3La state of benzo(a)pyrene

is characterized more by electron delocalization than that of

the non-carcinogenic benzo(e)pyrene [3]. Earlier studies [5]

have also shown 5-fluorouracil to be much more reactive

than thymine with respect to the excited state of some sen-

sitizing carcinogenic compounds. Recently, other studies

[6] have suggested the excited states of endogenous chro-

mophores, such as porphyrins, melanin precursors and

cross-link-fluorophores of skin collagen, exert skin photo-

damage by direct reaction with substrate molecules, leading

to formation of reactive oxygen species. Further, the excited

state cycloaddition of some skin-sensitizing carcinogenic

compounds is predicted as the most favorable pathway [7],

which agrees with the experimental findings that such a

pathway provides the highest yield. Overall, these results

suggest that the use of excited state molecular features in

combination with ground state properties may be important

in constructing models that accurately capture the overall

mechanistic details of skin sensitization.

Quantitative structure activity relationships (QSARs)

increasingly play a role in compound evaluation and

screening, and are considered an important alternative for

the estimation of toxicity effects, including skin sensitiza-

tion. But QSARs have traditionally been developed using

chemical properties and features derived from the ground

state of a molecule [8–10]. Even for adverse biological

responses, like skin sensitization, where the chemical

reactivity of the molecule is known to play a role in the

expression of the response, chemical reactivity has been

only indirectly represented through ground state descrip-

tors. These descriptors include properties derived explicitly

from the electronic structure of a molecule, like molecular

orbital energies (HOMO and LUMO), of the molecule or

more empirical features, such as two-dimensional electro-

topological descriptors [11, 12].

Using ground state descriptors of a molecule to char-

acterize skin sensitization has had success. Presumably

certain ground state descriptors provide glimpses of the

reactivity behavior of a molecule. For example, we have

carried out a two-state categorical QSAR modeling of skin

sensitization [13] using a dataset constructed from the

validated in vivo murine local lymph node assay (LLNA)

[14]. In our initial study, ground state 4D-fingerprints

(4D-FP) were used as a descriptor set to generate cate-

gorical QSAR models for two states: sensitizer and non-

sensitizer [13]. This current study focused on exploring the

usefulness of the statistical methodologies of logistic

regression (LR) and partial-least square coupled logistic

regression (PLS-CLR) to build two-state categorical

models. The LR models have a cross-validated prediction

accuracy range of 77.3–78.0% for the training set, while

that for the PLS-CLR models ranges from 87.1 to 89.4%.

For the test set, the prediction accuracy of the LR models

ranges from 80.0 to 86.7%, while that for the PLS-CLR

models range from 73.3 to 80.0%. These significant values

show that the methods applied in this study are effective for

separating non-sensitizers from sensitizers.

In a more recent study, we used the same LLNA dataset

and both LR and PLS-CLR to build 3-state and two-2-state

categorical models for skin sensitization potency [15]. The

three-state QSAR model yields a classification accuracy of

73.4% for the training set and 63.6% for the test set, while

the random average value of classification accuracy for any

3-state dataset is 33.3%. The two-2-state (four categories in

total) QSAR model gives a classification accuracy of

83.2% for the training set and 54.6% for the test set, while

the random average value of classification accuracy for any

two-2-state dataset is 25%. A comparison of the results of

the two-state modeling study described above suggests that

including more than two categorical states in skin-sensiti-

zation modeling leads to a loss of accuracy and reliability.

This may arise, in part, from the lack of including explicit

descriptors derived from excited states of the molecules.

The two primary goals of this study are: (1) to develop a

methodology to compute 4D-FP from the electronic and

geometric structures of molecules in their excited states,

and, (2) to use ground and/or excited state 4D-FP to build

categorical QSAR models for skin sensitization that can be

directly compared to equivalent models previously devel-

oped using only ground state 4D-FP. To facilitate the

second goal—generating 4D-FP categorical QSAR models,

three types of 4D-FP descriptors have been assigned to the

descriptor pool: GMAX (ground state descriptors only),

EMAX (excited state descriptors only), and GEMAX

(the combination of ground and excited state descriptors).

The final results show that the constructed models based

on EMAX and GEMAX datasets have a higher predictivity

than those derived from the GMAX dataset. Interestingly,

there are no obvious differences between the EMAX and

GEMAX 4D-FP categorical QSAR models.

Material and methodology

Database construction

The LLNA training and test sets used in this study were

pruned from a master skin-sensitization database, which

itself was constructed from data provided by interested
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organizations [16, 17]. This pruned database consists of

126 compounds which were originally categorized as non-,

weak-, moderate-, strong- and extreme-skin sensitizers,

according to each compound’s EC3 value [18]. Depending

on the size of the categorical model being built, the pruned

database was reclassified into three main categories: 63

‘‘non-weak’’ sensitizers, 35 ‘‘moderate’’ sensitizers and 28

‘‘strong-extreme’’ sensitizers.

An initial 3D structure of each of the 126 compounds

was constructed in its neutral form using HyperChem 7.05

software [19] to obtain its three dimensional coordinate and

optimized geometry. For the ground state, each structure’s

energy was minimized using the AM1 molecular orbital

method without any geometric constraints. For the excited

state, each structure was energy minimized using both the

AM1 [20] and the PM3 [21] molecular orbital methods,

without any geometric constraints, for the lowest-energy

excited state. In the ground and lowest-energy excited

states, the energy-minimized structures and corresponding

charge distributions were used as the initial structures in

the 4D-FP module of the 4D-QSAR molecular modeling

package [22]. Three 4D-FP trial descriptor matrices were

employed in building the categorical QSAR models:

GMAX (only the ground 4D-FP descriptors), EMAX

(only the excited state 4D-FP descriptors), and GEMAX

(the combination ground and excited state 4D-FP descriptors).

In this study, three types of categorical QSAR models

are constructed for each of the three 4D-FP descriptor

datasets: a binary model (2-state), ordinal model (3-state),

and a binary-binary model (two-2-state). In the 2-state

model, a ‘‘non-weak’’ sensitizer has a value of ‘‘0’’ and a

‘‘strong-extreme’’ sensitizer a value of ‘‘1’’. In the 3-state

model, a ‘‘non-weak’’ sensitizer has a value of ‘‘0’’, a

‘‘moderate’’ sensitizer ‘‘1’’, and a ‘‘strong-extreme’’ sen-

sitizer ‘‘2’’. In the two-2-state model, compounds are

classified according to the following two steps: First, a

‘‘non-weak’’ sensitizer has a value of ‘‘0’’ and a ‘‘moder-

ate-strong-extreme’’ sensitizer has a value of ‘‘1’’. In the

second step, dealing with the selected ‘‘non-weak’’ sensi-

tizers, a value of ‘‘0’’ is assigned to a non-sensitizer and a

value of ‘‘1’’ for a weak-sensitizer. Similarly, for the

selected ‘‘moderate-strong-extreme’’ sensitizers, the values

of the dependent variable are assigned based on the skin-

sensitization potency of each compound; ‘‘0’’ for a mod-

erate-sensitizer and ‘‘1’’ for a ‘‘strong-extreme’’ sensitizer.

In building the 4D-FP QSAR models for this study, the

training sets and the test sets members were randomly

chosen from each skin-sensitization potency category of

the parent 126-compound LLNA dataset. To compare the

2-state model constructed in this study with models

developed in our previous studies, we chose a similar ratio

for the number of compounds making up the training set

and the number for the test set. This ratio is about 8:1, with

80 training set compounds and 11 test set compounds for

this study. However, the predicted accuracies had no

obvious differences among each study’s 2-state model

based on the GMAX, EMAX, and GEMAX 4D-FP trial

descriptor matrices. Therefore, the final ratio was ulti-

mately decreased, with fewer training set compounds and

more test set compounds.

Universal 4D-fingerprints, 4D-FP, descriptors

The theory and methodology of the universal 4D-FP

descriptors were developed using the 4D-QSAR paradigm

and 4D molecular similarity analysis [23, 24]. The uni-

versal 4D-FP are the eigenvalues of the molecular

similarity eigenvectors determined for a given molecule

based on a set of absolute molecular similarity main dis-

tance-dependent matrices (MDDM). The eigenvectors

capture the molecular information of a molecule’s atom

types, size, shape and conformational flexibility. The types

of atoms composing a molecule are currently defined as

eight interaction pharmacophore elements (IPE’s), which

were defined in previous papers [9, 25]. A cutoff value for

the eigenvalues is applied, and those normalized eigen-

values below the cutoff are disregarded. For this study, the

cutoff was set at 0.002. Our previous papers [9, 23–25]

offer more details on deriving the 4D-FP descriptors.

Construction of the trial descriptor matrix for all training

set compounds is determined by maximizing its informa-

tion content. For each compound in the training set, the

number of significant eigenvalues in the eigenvector for a

particular IPE pair (u, v) is computed. Then the maximum

number of significant eigenvalues, nmax(u,v), across the

training set is determined. Finally, the molecules in the

training set are assigned nmax(u,v) eigenvalues from their

corresponding eigenvectors for the IPE pair (u,v). Eigen-

vectors containing fewer than nmax(u,v) significant

eigenvalues have these ‘‘missing’’ eigenvalues set to 0. For

instance, if nmax(3,5) is 10, and the eigenvector for IPE

pair (u,v) of a compound has only eight significant eigen-

values, the ninth and tenth eigenvalues for IPE pair(u,v) are

set to 0.

When applying this methodology, the total number of

4D-FP descriptors (ntotal) for each compound in the

training set will be the sum of the nmax(u,v) values for the

36 eigenvectors arising from the set of unique IPE pairs.

The number of 4D-FP descriptors in the trial descriptor

matrices is 290 each for the GMAX and EMAX, and 580

for the GEMAX matrix. A descriptor ei(u,v) used in these

matrices represents the ith eigenvalue in the eigenvector for

the IPE pair (u,v). ei(u,v)g indicates that this descriptor

comes from ground state structure of a molecule while

ei(u,v)e denotes that the descriptor comes from the excited
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state structure. The method involved in creating the trial

descriptor matrix introduces a degree of ‘‘noise,’’ with

the need to add zero value eigenvalues. However, if the

‘‘noise’’ in a particular descriptor column renders the

descriptor unfit for describing the variance of the depen-

dant categorical variable, this descriptor will not show up

in the optimized QSAR model. Thus, these matrices can be

used directly in categorical QSAR-model construction.

Data reduction and model construction

As mentioned above, some degree of ‘‘noise’’ may exist

within the trial descriptor matrices. Collinearity and/or

multilinearity may also exist between/among the 4D-FP

descriptors of all three trial descriptor matrices. Partial

least square (PLS) regression [26] was used to reduce

collinearity and noise. The reduced matrices for each of the

trial descriptor matrices can be employed in the next step

of model building, which is logistic regression (LR) anal-

ysis. This overall process is referred to as PLS-CLR. In this

way, the original trial descriptor matrix will be reduced to a

smaller matrix, where each column represents an extracted

component from the original trial descriptor matrix. In this

study, xscri denotes the ith PLS component extracted from

the original trial descriptor matrix. Although more than 100

components are extracted from the original trial descriptor

matrix, only the first 20 were selected for the three trial

descriptor matrices, the reason being that the first set of

components account for most of the variances in both the

explanatory variables and the response logit. In this study,

the first 20 components account for more than 80% of

variance in all applications.

For the 2-state models, the response, Y—the skin-sen-

sitization potency endpoint—can take on one of two

possible values, denoted for convenience by 1 and 0.

Y = 1 if a compound is a strong or extreme skin sensitizer

and Y = 0 if the compound is a non- or weak-sensitizer.

Assuming xi is a vector of explanatory independent vari-

ables, in this case the 4D-FP, and P1 = Pr(Y = 1) is the

response probability to be modeled, then P0 = Pr(Y = 0).

The linear logistic model has the form,

LogitðP1Þ ¼ log
P1

1� P1

¼ dþ b1 � X1þ b2 � X2þ � � � þ bk � Xk ð1Þ

or

P1 ¼
expðdþ b1 � X1þ b2 � X2þ � � � þ bk � XkÞ

1þ expðdþ b1 � X1þ b2 � X2þ � � � þ bk � XkÞ
ð2Þ

P0 ¼ 1� P1 ð3Þ

where d is the intercept parameter and bi is the vector of

slope parameters in Eqs. 1 and 2. The linear LR models are

fit to binary-response data using the maximum likelihood

method, which is generated from either Fisher-scoring or a

Newton-Raphson algorithm [27]. The predicted response

probabilities are obtained by replacing the b parameter with

its maximum likelihood estimate (MLE), q̂:
For 3-state models, the response Y can take ordinal

values, denoted for convenience in this study by 0, 1 and 2.

In particular, the dependent variable Y takes values of 2

(strong or extreme skin sensitizer), 1 (moderate skin sen-

sitizer), and 0 (non- or weak-sensitizer.)

Cumulative logits can be modeled with the proportional

odds model. The proportional odds model assumes the

cumulative logits can be represented as parallel linear

functions of independent variables. That is, for each

cumulative logit the parameters of the models are the same,

except for the intercept. If P0 = P(Y = 0), P1 = P(Y = 1)

and P2 = P(Y = 2), then ordinal logistic regression mod-

els the relationship between the cumulative logits of Y, or

log(P2/(1-P2)) = log(P2/(P 1 + P0)) and log((P2 + P1)/

(1-P2-P 1)) = log((P2 + P1)/P0). The model assumes a

linear relationship for each logit and parallel regression

lines,

Logit P2ð Þ ¼ log
P2

1� P2

� �

¼ d2 þ b1 � X1 þ b2 � X2 þ � � � þ bk � Xk ð4Þ

Logit P2 þ P1ð Þ ¼ log
P2 þ P1

1� P2 � P1

� �

¼ d1 þ b1 � X1 þ b2 � X2 þ � � � þ bk � Xk

ð5Þ

d is the intercept parameter and bi is the vector of slope

parameters. From the above equations, it is obvious that the

intercepts are different, but the remaining regression

parameters are the same. It is easy to see that the odds

P2/(1-P2) and (P2 + P1)/P0 are proportional,

P2

1� P2

¼ exp d
2
ð Þ � exp b1 � X1 þ b2 � X2 þ � � � þ bk � Xkð Þ

ð6Þ
P2 þ P1

P0

¼ exp d
1
ð Þ

� exp b1 � X1 þ b2 � X2 þ � � � þ bk � Xkð Þ
¼ C � P2

1� P2

ð7Þ

where C is a constant and equals exp(d1-d2).

The maximum likelihood estimation is used to obtain

the estimates of the model parameters. After estimators of

d2,d1, b1, b2, …, bk are computed, it is easy to compute
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predicted probabilities using the following relationships

derived from the above equations.

P2 ¼
expðd2 þ b1 � X1 þ b2 � X2 þ � � � þ bk � XkÞ

1þ expðd
2
þ b1 � X1 þ b2 � X2 þ � � � þ bk � XkÞ

ð8Þ

P2þP1 ¼
expðd

1
þ b1 �X1þ b2 �X2þ � � � þ bk �XkÞ

1þ expðd1þ b1 �X1þ b2 �X2þ � � � þ bk �XkÞ
ð9Þ

P0 ¼ 1� P2 þ P1ð Þ ð10Þ

Goodness of fit and the predictivity of a model

The Hosmer–Lemeshow test [27] is widely used to evaluate

the goodness of fit of a categorical model, and it can be

applied in this application since the 4D-FP are continuous

variables. This test involves dividing the observations into k

groups of approximately the same size, and with similar

estimated probabilities within one group. Then the Hosmer–

Lemeshow goodness-of-fit statistic, v2, is defined as,

v2 ¼
Xk

i¼0

ðOi � EiÞ2

Ei
ð11Þ

where Oi is the observed frequency for bin i and Ei is the

expected frequency for bin i. The expected frequency is

calculated by,

Ei ¼ N F Yuð Þ � F Ylð Þð Þ ð12Þ

where F is the cumulative distribution function for the

distribution being tested, Yu is the upper limit for class i, Yl

is the lower limit for class i, and N is the sample size. Large

values of v2 (and small p-values) indicate a lack of fit for

the model.

Model predictivity was evaluated using both leave-one-

out cross-validation and a compound test set. The higher

the classification accuracy for the training and test sets,

based on the leave-one-out measure, the greater the pre-

dictivity of a categorical QSAR model. Classification

accuracy, sensitivity and specificity are defined, respec-

tively, as,

Accuracy ¼ tpþ tn

tpþ fnþ tnþ fp
ð13aÞ

Sensitivity ¼ tp

tpþ fn
ð13bÞ

Specificity ¼ tn

tnþ fp
ð13cÞ

where tp and fn are the numbers of strong-extreme sensi-

tizers for which the predicted probabilities are larger and

less than the cutoff value of 0.5, respectively. Similarly, tn

and fp are the numbers of non-weak sensitizers for which

the predicted probabilities are less than and larger than the

cutoff value of 0.5, respectively.

It should be noted that classification accuracy and

goodness-of-fit have no direct inter-relationship. Accurate

or inaccurate classification does not indicate goodness-of-

fit, or vice-versa. However, use of classification accuracy is

most appropriate when classification is a stated goal of the

analysis [28], as is in this study.

The statistical methodology reported above can be

implemented with a combination of standard statistical

methods available in SAS [29].

Results

Logistic regression (LR) analysis for building 2-state

models

The most significant and accurate categorical models were

obtained by applying stepwise LR on 2-state models for all

three types of trial descriptor matrices, GMAX, EMAX, and

GEMAX. There are a total of 290 4D-fingerprints in both

GMAX and EMAX. The number doubles in GEMAX. From

the 126 selected compounds, 91 belong to ‘‘non-weak’’ and

‘‘strong-extreme’’ categories, with the remaining 35 com-

pounds in the ‘‘moderate category’’. Eighty of the 91 ‘‘non-

weak’’ and ‘‘strong-extreme’’ compounds were selected

randomly as training set compounds to build the 2-state

models. The significance level for a descriptor to enter or

leave an evolving model was set at a default value of 0.05.

The resulting optimal 2-state categorical QSAR models are

shown below. For GMAX, the 2-state QSAR model is given

by Eq. 14, which contains four 4D-FP descriptors. For

EMAX, Eq. 15 defines the corresponding model, which

contains five 4D-FP descriptors. Equation (16) defines the

optimal 2-state categorical QSAR model for GEMAX,

which contains four 4D-FP descriptors:

LogitðP1Þ ¼ � 14:80þ 20:69 � e1ðany; npÞgþ 108:90

� e8ðnp; hsÞgþ 14:22 � e2ðhba; hsÞg
þ 299:70 � e10ðaro; hsÞg ð14Þ

LogitðP1Þ¼�20:86þ31:72� e1ðany;npÞe
�202:40� e5ðnp;hsÞeþ394:70� e7ðnp;hsÞe
þ19:40� e2ðhba;hsÞeþ321:70� e10ðaro;hsÞe

ð15Þ

LogitðP1Þ¼�15:11þ112:00� e8ðnp;hsÞg
þ14:40� e2ðhba;hsÞgþ303:60

� e10ðaro;hsÞgþ21:19� e1ðany;npÞe ð16

In Eqs. 14–16, by way of example, e1(any, np)g

represents the largest eigenvalue from the MDDM of
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u = (any) and v = (np), of the ground state 4D-FP

calculation. Likewise, e5(np, hs)e represents the fifth

largest eigenvalue from the MDDM of u = (np) and

v = (hs) from excited state 4D-FP.

The GEMAX 2-state QSAR model is very similar to the

GMAX 2-state QSAR model except that one 4D-FP

descriptor changes from e1(any, np)g to e1(any, np)e. Thus,

in the GEMAX 2-state QSAR model, the largest 4D-FP

(eigenvalue) with respect to the joint spatial distributions of

any atoms and non-polar atoms across the training set

compounds, comes from the excited state, not from the

ground state. This particular 4D-FP is more significant

when it comes from the excited state than when derived

from the ground state. The increased statistical significance

of eq(16) as compared to Eq. 14 is reflected in their

respective Hosmer–Lemeshow goodness-of-fit measures.

The GEMAX QSAR model has a smaller v2 value of 10.31

than the 11.89 in the GMAX QSAR model, indicating the

GEMAX model is more significant than the GMAX model.

However, the predicted accuracies of these two 2-state

QSAR models, shown in Table 1, are the same. The

predicted probability of each compound being a ‘‘strong-

extreme sensitizer’’ and its corresponding predicted skin-

sensitization potency category are also listed in Table 1.

The EMAX 2-state categorical QSAR model has an

additional descriptor, e5(np, hs)e, compared to both the

GMAX and GEMAX models. The LR analysis using the

EMAX trial descriptor matrix found an additional signifi-

cant descriptor compared to both the GMAX and GEMAX

trial descriptor matrices. One 4D-FP, e 8(np, hs)g,

appearing in the GMAX and GEMAX QSAR models was

found to change slightly to e7(np, hs)e in the EMAX.

Overall, a comparison of the regression coefficients and

constant of the EMAX QSAR model (Eq. 15), as compared

to Eqs. 14 and 16, indicates the EMAX QSAR model

captures additional and somewhat different attributes with

respect to the spatial distribution of hydrophobic atoms.

However, there are similar spatial features in regards to

hydrogen bond acceptors over the training set compounds.

The highly negative regression constant and negative

regression coefficient for e5(np, hs)e in Eq. 15 causes the

final EMAX model to have highly positive regression

coefficients for the other 4D-FP in order to compensate.

That is, for descriptors with positive regression coefficients

in Eq. 15 that also appear in Eq. 14 or Eq. 16, an increase

value for each descriptor yields a greater contribution to the

probability of the compound falling into the ‘‘strong-

extreme’’ category using Eq. 15 than with Eq. 14 or Eq. 16.

The predicted probabilities, classifications and accura-

cies for models (14), (15) and (16), based on the training

set compounds, are shown in Table 1. A summary of

classification accuracy for the test set predictions is given

in Table 2. This study, and our previous 2-state modeling

study [13], yield very similar predicted accuracies, when

based solely upon the ground state, for the training set:

87.5% for this study and 85.6% in the previous study.

However, the predicted accuracy in this study (63.6%) for

the test set is lower than the last study (86.7%). The reason

is that both the size and choice of the training and test set

compounds differ somewhat in the studies. However, the

predictive accuracy for the test set of this study is still

larger than that for a random blind test, which is 47.4%

based on the cutoff value used in this study. Thus, the

2-state models, Eqs. 14–16, have a predictive capacity of

around 17% (64–47%) above that of random chance.

PLS-CLR analysis for building 2-state models

The previous study to develop 2-state categorical QSAR

modeling of the LLNA dataset, using only ground state

4D-FP, showed that PLS-CLR analysis led to models of

higher prediction accuracy than the LR models [15]. This

finding encouraged us to perform a PLS-CLR analysis in

this study to improve the prediction accuracy of the

resulting 2-state models. PLS-CLR was used to construct

2-state categorical QSAR models for the trial descriptor

matrices GMAX, EMAX and GEMAX. The GMAX and

EMAX matrices yielded 124 components. As noted in the

Material and methodology section, the first 20 compo-

nents are only used for QSAR model construction. The

PLS-CLR 4D-FP QSAR model for GMAX is Eq. 17,

which contains four extracted components. For EMAX,

the optimal QSAR model is Eq. 18 with five components,

while for GEMAX, Eq. 19 having four extracted com-

ponents is the optimal PLS-CLR 2-state categorical

QSAR model.

LogitðP1Þ¼�2:710þ1:384�xscr1þ1:158�xscr5

þ1:463�xscr9þ2:499�xscr13 ð17Þ

LogitðP1Þ ¼ � 2:497þ 1:716 � xscr1þ 1:531 � xscr5

þ 0:720 � xscr8þ 1:096 � xscr9

þ 1:861 � xscr13 ð18Þ

LogitðP1Þ¼�2:942þ1:200�xscr1þ1:044�xscr5

þ1:107�xscr9þ1:847�xscr13 ð19Þ

The three models, Eqs. 17–19, are very similar to one

another. In fact, the extracted components are exactly the

same for the GMAX and GEMAX QSAR models. The only

modest differences between the two are found in the

regression coefficients and regression constants. But like

the LR 2-state models, the EMAX QSAR model has one

more descriptor, xscr8, compared to the other two models.

This suggests that information extracted in the PLS-CLR

QSAR model-building process involves an additional PLS
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Table 1 The predicted probabilities and corresponding classifications

of the training set compounds using LR 2-state QSAR models, Eqs.

14–16, for the ground state descriptors (GMAX), excited state

descriptors (EMAX). and the combination of ground and excited state

descriptors (GEMAX)

Chemical name Observed

class

GMAX EMAX GEMAX

Predicted

probability

Predicted

class

Predicted

probability

Predicted

probability

Predicted

class

Predicted

probability

4-Methoxyacetophenone 0 0.302 0 0.389 0 0.295 0

4-Nitrobenzyl bromide 1 0.837 1 0.825 1 0.842 1

Benzyl bromide 1 0.083 0 0.150 0 0.087 0

Benzaldehyde 0 0.206 0 0.338 0 0.210 0

Cyclamen aldehyde 0 0.014 0 0.004 0 0.014 0

Cinnamic alcohol 0 0.026 0 0.000 0 0.025 0

1, 4-Phenylenediamine 1 0.895 1 0.842 1 0.899 1

p-Benzoquinone 1 0.845 1 0.872 1 0.848 1

Hydroxycitronellal 0 0.102 0 0.149 0 0.099 0

Maleic anhydride 1 0.951 1 0.997 1 0.954 1

3-Phenylenediamine 1 0.756 1 0.996 1 0.757 1

1-Chloromethylpyrene 1 0.992 1 0.993 1 0.993 1

2,4,6-Trichloro-1,3,5-triazine (cyanuric chloride) 1 0.963 1 0.998 1 0.966 1

Chlorobenzene 0 0.029 0 0.132 0 0.028 0

1-Bromobutane 0 0.020 0 0.000 0 0.020 0

Hexane 0 0.007 0 0.000 0 0.007 0

2,2,6,6-Tetramethyl-heptane-3,5-dione 0 0.168 0 0.080 0 0.164 0

1-Bromooctadecane 0 0.001 0 0.000 0 0.001 0

Benzyl benzoate 0 0.540 1 0.312 0 0.523 1

Ethyl vanillin 0 0.254 0 0.006 0 0.226 0

Propyl gallate 1 0.298 0 0.312 0 0.283 0

a-Amyl cinnamic aldehyde 0 0.006 0 0.001 0 0.006 0

Hydroquinone 1 0.932 1 0.920 1 0.936 1

Octanoic acid 0 0.158 0 0.002 0 0.130 0

Dodecylthiosulphonate 1 0.033 0 0.010 0 0.038 0

1-(30,40,50-Trimethoxyphenyl)-4-

dimethylpentane-1,

3,-dione

0 0.024 0 0.017 0 0.029 0

5-Methyl-2,3-hexanedione 0 0.117 0 0.308 0 0.118 0

4-Nitroso-N,N-dimethylaniline 1 0.702 1 0.875 1 0.701 1

4-Allylanisole 0 0.008 0 0.000 0 0.007 0

Ethyl acrylate 0 0.062 0 0.108 0 0.054 0

1-Bromododecane 0 0.001 0 0.000 0 0.001 0

Oxalic acid 0 0.000 0 0.000 0 0.000 0

2-Mercaptobenzothiazole 0 0.046 0 0.019 0 0.045 0

5,5-Dimethyl-3-thiocyanatomethyl-2(3H)-

furanone

1 0.524 1 0.838 1 0.532 1

3-Ethoxy-1-(20,30,40,50-
tetramethylphenyl)propane-1,

3-dione

0 0.208 0 0.255 0 0.189 0

C11-Azlactone 0 0.011 0 0.000 0 0.012 0

6-Methyleugenol 0 0.453 0 0.258 0 0.453 0

5-Methyleugenol 0 0.493 0 0.472 0 0.487 0

3-Methyleugenol 0 0.179 0 0.066 0 0.178 0

5-Methylisoeugenol 1 0.365 0 0.492 0 0.367 0

cis-6-Nonenal 0 0.007 0 0.000 0 0.008 0
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component formed from the EMAX matrix compared to

the PLS components in the GMAX and GEMAX matrices.

Overall, the prediction accuracies are exactly the same

for the three datasets; 95.0% for the training set and 90.9%

for the test set. Both values are higher than those of the LR

2-state model. This suggests that the extracted PLS com-

ponents from each of the original GMAX, EMAX and

GEMAX matrices do include more comprehensive

4D-fingerprint information than realized in a LR model of

individual single 4D-fingerprints. Because the training and

Table 1 continued

Chemical name Observed

class

GMAX EMAX GEMAX

Predicted

probability

Predicted

class

Predicted

probability

Predicted

probability

Predicted

class

Predicted

probability

1-Chlorotetradecane 0 0.001 0 0.000 0 0.001 0

Butyl glycidyl ether 0 0.108 0 0.163 0 0.103 0

4-Amino-m-cresol 1 0.925 1 0.996 1 0.930 1

Lyral 0 0.246 0 0.226 0 0.242 0

4,4,4-Trifluro-1-phenylbutane-1,3-dione 0 0.099 0 0.011 0 0.097 0

Oleyl methane sulphonate 0 0.014 0 0.000 0 0.013 0

Methyl hexadecyl sulphonate 0 0.007 0 0.000 0 0.006 0

1-Iodododecane 0 0.001 0 0.000 0 0.001 0

Furil 0 0.236 0 0.406 0 0.238 0

Chlorpromazine hydrochloride 1 0.971 1 0.994 1 0.975 1

Piperonyl butoxide 0 0.012 0 0.001 0 0.008 0

Abietic acid 0 0.040 0 0.006 0 0.039 0

2-Nitro-p-phenylenediamine 1 0.853 1 0.449 0 0.859 1

p-Methylhydrocinnamic aldehyde 0 0.010 0 0.000 0 0.010 0

1-Phenyloctane-1,3-dione 0 0.100 0 0.073 0 0.116 0

1-(20,50-Dimethylphenyl)butane-1,3-dione 0 0.296 0 0.432 0 0.335 0

Glycerol 0 0.738 1 0.653 1 0.740 1

Propylene glycol 0 0.158 0 0.088 0 0.160 0

b-Propriolactone 1 0.822 1 0.710 1 0.828 1

7,12-Dimethylbenz(a)anthracene 1 0.979 1 0.986 1 0.980 1

R(+)-Limonene 0 0.158 0 0.088 0 0.160 0

Sulphanilamide 0 0.784 1 0.169 0 0.785 1

1-Iodohexane 1 0.902 1 0.992 1 0.905 1

1-Bromononane 0 0.002 0 0.000 0 0.003 0

1-Bromoundecane 0 0.002 0 0.000 0 0.002 0

1-Methyl-3-nitro-1-nitrosoguanidine 1 0.782 1 0.968 1 0.788 1

1-Butanol 0 0.016 0 0.000 0 0.015 0

7-Bromotetradecane 0 0.001 0 0.000 0 0.001 0

a-Butyl cinnamic aldehyde 0 0.004 0 0.000 0 0.004 0

Isopropyl isoeugenol 1 0.216 0 0.312 0 0.212 0

1-Bromotridecane 0 0.001 0 0.000 0 0.001 0

Linalool 0 0.053 0 0.003 0 0.054 0

Lilial(p-tert-butyl-a-ethyl hydrocinnamal 0 0.012 0 0.001 0 0.012 0

Diethylphthalate 0 0.156 0 0.366 0 0.156 0

Hexahydrophthalic anhydride 1 0.880 1 0.979 1 0.888 1

Phthalic anhydride 1 0.278 0 0.654 1 0.276 0

2-Acetylcyclohexanenone 0 0.220 0 0.014 0 0.217 0

Diphenylcyclopropenone 1 0.675 1 0.803 1 0.680 1

Coumarin 0 0.624 1 0.424 0 0.630 1

Predicted accuracy (%) 87.5 92.5 87.5
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test sets are randomly selected from the original dataset,

the best way to compare the significance of the models

from the GMAX, EMAX and GEMAX matrices is to make

test set predictions by employing additional compounds.

Based on the above results, a smaller training set of 63

compounds was randomly selected from the original

training set. This then led to an augmented test set having

an additional 28 compounds. The same PLS-CLR method

was applied to the new training set using the corresponding

new GMAX, EMAX and GEMAX matrices. The resulting

PLS-CLR QSAR models are Eqs. 20–22 for GMAX,

EMAX and GEMAX, respectively. All three QSAR

models contain four PLS components.

LogitðP1Þ¼�3:531þ1:406�xscr1þ1:488�xscr5

þ1:384�xscr9þ2:856�xscr13 ð20Þ

LogitðP1Þ¼�1:391þ0:567�xscr1þ0:404�xscr3

þ0:565�xscr9þ0:664�xscr11 ð21Þ

LogitðP1Þ¼�2:633þ0:593�xscr1þ0:504�xscr3

þ0:752�xscr11þ1:274� xscr17 ð22Þ

Comparing the PLS-CLR models above to the PLS-CLR

models given by Eqs. 17–19 reveals that the PLS-CLR

GMAX QSAR model (Eq. 20) shares the same descriptors

as Eq. 17, and the corresponding regression coefficients of

the two models differ only slightly. This suggests that

reducing the size of the training set has little impact on

QSAR model construction. The corresponding difference

in the prediction accuracy of the two training sets indicates

a slight decrease for the smaller training set, 89.2%,

compared to 90.9%.

The PLS-CLR EMAX QSAR model (Eq. 21) contains

one less descriptor than Eq. 18. Both QSAR models have

two identical descriptors, xscr1 and xscr9. Also, fewer

descriptors in Eq. 21 seemingly lead to a lower prediction

accuracy for the training set: 92.1% (Eq. 21) compared to

95.0% (Eq. 18). Still the PLS-CLR QSAR model yields

higher predictivity for the test set: 96.4% compared to

90.9% for Eq. 18.

The 4D-FP QSAR model generated from the excited

state data has better predictivity than the corresponding

ground state model. The GEMAX QSAR model (Eq. 22)

is distinct from Eq. 19 and also has better predictivity for

both the training and test sets than in Eq. 19. The pre-

dicted probability of being a ‘‘strong-extreme sensitizer’’

for both the training and test sets, as well as the predicted

accuracy measures for Eqs. 20–22, are listed in Tables 3

and 4, respectively. The higher prediction accuracy found

for the augmented test set for the models built from the

EMAX and GEMAX datasets indicates that the 4D-FP

information derived from the excited state geometry and

charge distribution are significant in constructing optimal

2-state models. This also suggests that when downsizing

the training set from 91 to 63 compounds there is no

correspondingly diminished capacity to construct QSAR

models that meaningfully differentiate ‘‘sensitizers’’ from

‘‘non-sensitizers’’ for the GAMX, EMAX and GEMAX

datasets.

PLS-CLR analysis for building 3-state models

With success at distinguishing the predictive behaviors of

the EMAX and GEMAX PLS-CLR 2-state models using

the augmented test set, this set (and corresponding

training set) was also employed in the 3-state modeling

Table 2 Predicted probabilities and corresponding classifications for the test set using LR 2-state categorical QSAR models for the calculated

data from the ground state (GMAX), excited state (EMAX) and the combination of ground and excited state(GEMAX) descriptor pools

Chemical name Observed

class

GMAX EMAX GEMAX

Predicted

probability

Predicted

class

Predicted

probability

Predicted

class

Predicted

probability

Predicted

class

2-Hydroxypropyl methacrylate 0 0.173 0 0.041 0 0.162 0

6-Methylcoumarin 0 0.381 0 0.031 0 0.384 0

Phenyl Benzoate 0 0.849 1 0.916 1 0.856 1

Ethyl benzoylacetate 0 0.158 0 0.216 0 0.179 0

Benzocaine 0 0.171 0 0.111 0 0.164 0

Benzoyl peroxide 1 0.461 0 0.002 0 0.476 0

2-Aminophenol 1 0.726 1 0.929 1 0.734 1

Eugenol 0 0.391 0 0.140 0 0.384 0

2-Ethyl butaldehyde 0 0.005 0 0.005 0 0.004 0

Benzoyl chloride 1 0.269 0 0.775 1 0.276 0

4-Hydrobenzoic acid 0 0.683 1 0.813 1 0.688 1

Predicted accuracy (%) 63.6 72.7 63.6
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Table 3 Predicted probabilities and corresponding classifications for

training set using the PLS-CLR 2-state categorical QSAR models for

the calculated data from the ground state (GMAX), excited state

(EMAX), and the ground and excited state(GEMAX) descriptors

based on the diminished training sets

Chemical name Observed

class

GMAX EMAX GEMAX

Predicted

probability

Predicted

class

Predicted

probability

Predicted

probability

Predicted

class

Predicted

probability

4-Methoxyacetophenone 0 0.000 0 0.029 0 0.020 0

4-Nitrobenzyl bromide 1 0.997 1 0.952 1 0.963 1

Benzyl bromide 1 0.760 1 0.435 0 0.656 1

Benzaldehyde 0 0.000 0 0.063 0 0.001 0

Cyclamen aldehyde 0 0.029 0 0.110 0 0.003 0

Cinnamic alcohol 0 0.000 0 0.058 0 0.000 0

1, 4-Phenylenediamine 1 0.998 1 0.997 1 1.000 1

p-Benzoquinone 1 1.000 1 0.996 1 0.991 1

Hydroxycitronellal 0 0.250 0 0.012 0 0.004 0

Maleic anhydride 1 1.000 1 0.981 1 0.934 1

3-Phenylenediamine 1 0.789 1 0.980 1 1.000 1

1-Chloromethylpyrene 1 1.000 1 0.966 1 0.999 1

2,4,6-Trichloro-1,3,5-triazine (cyanuric chloride) 1 0.983 1 0.999 1 0.930 1

Chlorobenzene 0 0.000 0 0.023 0 0.000 0

1-Bromobutane 0 0.000 0 0.015 0 0.000 0

Hexane 0 0.087 0 0.228 0 0.009 0

2,2,6,6-Tetramethyl-heptane-3,5-dione 0 0.019 0 0.145 0 0.445 0

1-Bromooctadecane 0 0.000 0 0.001 0 0.000 0

Benzyl benzoate 0 0.446 0 0.151 0 0.030 0

Ethyl vanillin 0 0.003 0 0.007 0 0.001 0

Propyl gallate 1 1.000 1 0.822 1 0.879 1

a-Amyl cinnamic aldehyde 0 0.001 0 0.203 0 0.002 0

Hydroquinone 1 1.000 1 0.998 1 0.972 1

Octanoic acid 0 0.002 0 0.006 0 0.001 0

Dodecylthiosulphonate 1 0.106 0 0.028 0 0.016 0

1-(30,40,50-Trimethoxyphenyl)-4-dimethylpentane-1,

3,-dione

0 0.005 0 0.003 0 0.000 0

5-Methyl-2,3-hexanedione 0 0.127 0 0.421 0 0.724 1

4-Nitroso-N,N-dimethylaniline 1 0.984 1 0.553 1 0.969 1

4-Allylanisole 0 0.000 0 0.089 0 0.038 0

Ethyl acrylate 0 0.000 0 0.042 0 0.002 0

1-Bromododecane 0 0.076 0 0.005 0 0.000 0

Oxalic acid 0 0.009 0 0.533 1 0.130 0

2-Mercaptobenzothiazole 0 0.001 0 0.084 0 0.000 0

5,5-Dimethyl-3-thiocyanatomethyl-2(3H)-furanone 1 0.341 0 0.285 0 0.963 1

3-Ethoxy-1-(2’,3’,4’,5’-tetramethylphenyl)propane-1,

3-dione

0 0.128 0 0.270 0 0.000 0

C11-Azlactone 0 0.000 0 0.001 0 0.000 0

6-Methyleugenol 0 0.000 0 0.017 0 0.013 0

5-Methyleugenol 0 0.383 0 0.069 0 0.073 0

3-Methyleugenol 0 0.021 0 0.040 0 0.011 0

5-Methylisoeugenol 1 0.126 0 0.062 0 0.598 1

cis-6-Nonenal 0 0.000 0 0.036 0 0.006 0

1-Chlorotetradecane 0 0.335 0 0.007 0 0.000 0

Butyl glycidyl ether 0 0.422 0 0.060 0 0.138 0
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analysis. The third state, as compared to the 2-state

models, includes ‘‘moderate’’ skin-sensitizers in the

GMAX, EMAX and GEMAX datasets. The PLS-CLR

methodology was used to build the 3-state models in this

study.

The optimal 3-state models are given by Eqs. 23–28 for

GMAX, EMAX and GEMAX datasets, respectively.

GMAX

Logit P2ð Þ ¼ � 2:425þ 0:216 � xscr1þ 0:289 � xscr4

þ 0:432 � xscr5þ 0:446 � xscr10

þ 0:379 � xscr12 ð23Þ

Logit P2 þ P1ð Þ ¼ 0:215þ 0:216 � xscr1þ 0:289 � xscr4

þ 0:432 � xscr5þ 0:446 � xscr10

þ 0:379 � xscr12 ð24Þ

EMAX

Logit P2ð Þ ¼ � 2:450þ 0:342 � xscr1þ 0:249 � xscr2

þ 0:366 � xscr3þ 0:187 � xscr4

þ 0:193 � xscr7þ 0:625 � xscr9

þ 0:356 � xscr12þ 0:392 � xscr13

þ 0:312 � xscr14 ð25Þ

Logit P2 þ P1ð Þ ¼ 0:639þ 0:342 � xscr1þ 0:249 � xscr2

þ 0:366 � xscr3þ 0:187 � xscr4

þ 0:193 � xscr7þ 0:625 � xscr9

þ 0:356 � xscr12þ 0:392 � xscr13

þ 0:312 � xscr14 ð26Þ

GEMAX

Logit P2ð Þ ¼ � 3:772þ 0:187 � xscr1þ 0:394 � xscr4

þ 0:637 � xscr5þ 0:745 � xscr10

� 0:609 � xscr11þ 0:570 � xscr12

þ 0:330 � xscr13þ 0:505 � xscr16

þ 0:606 � xscr18 ð27Þ

Logit P2 þ P1ð Þ ¼ 0:326þ 0:187 � xscr1þ 0:394 � xscr4

þ 0:637 � xscr5þ 0:745 � xscr10

� 0:609 � xscr11þ 0:570 � xscr12

þ 0:330 � xscr13þ 0:505 � xscr16

þ 0:606 � xscr18 ð28Þ

As described in the Material and methodology section,

in a given dataset, Logit(P2) and Logit(P2 + P1) have the

Table 3 continued

Chemical name Observed

class

GMAX EMAX GEMAX

Predicted

probability

Predicted

class

Predicted

probability

Predicted

probability

Predicted

class

Predicted

probability

4-Amino-m-cresol 1 1.000 1 0.964 1 0.999 1

Lyral 0 0.372 0 0.013 0 0.000 0

4,4,4-Trifluro-1-phenylbutane-1,3-dione 0 0.000 0 0.323 0 0.000 0

Oleyl methane sulphonate 0 0.000 0 0.001 0 0.000 0

Methyl hexadecyl sulphonate 0 0.000 0 0.000 0 0.000 0

1-Iodododecane 0 0.089 0 0.005 0 0.000 0

Furil 0 0.000 0 0.032 0 0.469 0

Chlorpromazine hydrochloride 1 0.974 1 0.512 1 0.605 1

Piperonyl butoxide 0 0.000 0 0.000 0 0.000 0

Abietic acid 0 0.000 0 0.000 0 0.000 0

2-Nitro-p-phenylenediamine 1 0.954 1 0.892 1 1.000 1

p-Methylhydrocinnamic aldehyde 0 0.002 0 0.226 0 0.097 0

1-Phenyloctane-1,3-dione 0 0.113 0 0.437 0 0.098 0

1-(20,50-Dimethylphenyl)butane-1,3-dione 0 0.010 0 0.378 0 0.211 0

Glycerol 0 0.059 0 0.301 0 0.175 0

Propylene glycol 0 0.002 0 0.084 0 0.013 0

b-Propriolactone 1 0.996 1 0.995 1 0.662 1

7,12-Dimethylbenz(a)anthracene 1 1.000 1 0.942 1 0.980 1

R(+)-Limonene 0 0.002 0 0.084 0 0.013 0

Sulphanilamide 0 0.000 0 0.032 0 0.153 0

Predicted accuracy (%) 95.2 92.1 96.8
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same 4D-FP set and regression coefficient value for each

PLS-component descriptor. The only difference between

the equations is the regression constant. Moreover,

the GMAX models (Eqs. 23, 24) are very similar to the

GEMAX models (Eqs. 27, 28), and all descriptors in the

GMAX models also appear in the GEMAX models. This

suggests that the final GEMAX models not only contain

all 4D-FP information from the GMAX dataset, but also

4D-FP information from EMAX. The EMAX models are

not very similar to GMAX models, which may mean that

the 4D-FP information inherent to the EMAX models is

different from that contained in the GMAX model. The

extracted PLS components in the GEMAX dataset are

hybrids of both the GMAX and EMAX datasets.

This hybrid composition of the EMAX PLS components

is also present in the PLS-CLR 2-state models (Eqs.

17–22), but it is more obvious in the 3-state categorical

QSAR models.

Prediction accuracy for the training set using Eqs.

23–28 for GMAX, EMAX and GEMAX are 63.4, 72.04

and 78.5%, respectively. Table 5 lists the predicted

probabilities for being a ‘‘non-weaker’’ sensitizer, ‘‘mod-

erate’’ sensitizer, and ‘‘strong-extreme’’ sensitizer for each

test set compound. The prediction accuracy values for the

test set using GMAX, EMAX and GEMAX, are 48.5,

87.9 and 72.7%, respectively. The GEMAX QSAR model

generates the highest predicted accuracy for the training

set of the three, but the EMAX QSAR model is most

predictive for the test set. Both the EMAX and GEMAX

models have greater prediction accuracy values than the

Table 4 Predicted probabilities and corresponding test set classifications using PLS-CLR 2-state QSAR models for the calculated data from

GMAX, EMAX and GEMAX based on the augmented test set

Chemical

name

Observed

class

GMAX EMAX GEMAX

Predicted

probability

Predicted

class

Predicted

probability

Predicted

class

Predicted

probability

Predicted

class

1-Iodohexane 1 0.075 0 0.999 1 1.000 1

1-Bromononane 0 0.001 0 0.004 0 0.001 0

1-Bromoundecane 0 0.000 0 0.003 0 0.003 0

1-Methyl-3-nitro-1-nitrosoguanidine 1 1.000 1 1.000 1 0.002 0

1-Butanol 0 0.000 0 0.034 0 0.000 0

7-Bromotetradecane 0 0.000 0 0.004 0 0.001 0

a-Butyl cinnamic aldehyde 0 0.102 0 0.054 0 0.000 0

Isopropyl isoeugenol 1 0.048 0 0.455 0 0.934 1

1-Bromotridecane 0 0.000 0 0.007 0 0.149 0

Linalool 0 0.470 0 0.237 0 0.000 0

Lilial(p-tert-butyl-a-ethyl hydrocinnamal 0 0.000 0 0.122 0 0.001 0

Diethylphthalate 0 0.001 0 0.091 0 0.004 0

Hexahydrophthalic anhydride 1 0.998 1 0.635 1 0.999 1

Phthalic anhydride 1 0.434 0 0.861 1 0.585 1

2-Acetylcyclohexanenone 0 0.092 0 0.063 0 0.001 0

Diphenylcyclopropenone 1 0.997 1 0.992 1 1.000 1

Coumarin 0 0.151 0 0.117 0 0.000 0

2-Hydroxypropyl methacrylate 0 0.005 0 0.005 0 0.005 0

6-Methylcoumarin 0 0.130 0 0.259 0 0.000 0

Phenyl Benzoate 0 0.062 0 0.473 0 0.987 1

Ethyl benzoylacetate 0 0.151 0 0.184 0 0.153 0

Benzocaine 0 0.010 0 0.166 0 0.041 0

Benzoyl peroxide 1 0.834 1 0.967 1 1.000 1

2-Aminophenol 1 0.735 1 0.951 1 0.996 1

Eugenol 0 0.005 0 0.132 0 0.292 0

2-Ethyl butaldehyde 0 0.006 0 0.102 0 0.000 0

Benzoyl chloride 1 0.864 1 0.845 1 0.954 1

4-Hydrobenzoic acid 0 0.021 0 0.125 0 0.028 0

Predicted accuracy (%) 89.2 96.4 92.8
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GMAX model yields for the training and test sets. These

results indicate that the extracted PLS components from

the excited state 4D-FP provide significant information

for the reliable categorical classification of skin-sensiti-

zation potency across a structurally diverse set of

compounds.

PLS-CLR analysis for building two-2-state models

As described in the Material and methodology section, the

two-2-state models were constructed using a two-step pro-

cess. The first step uses the entire training set divided into

two sets: ‘‘non-weak sensitizers’’ assigned a 0 classification

Table 5 Predicted probabilities and corresponding test set classifications using the PLS-CLR 3-state QSAR models for the calculated 4D-FP

from GMAX, EMAX and the GEMAX based on augmented test set

Chemical

name

Obs.

Class

GMAX EMAX GEMAX

Pred. probability to be Pred.

class

Pred. probability to be Pred.

Class

Pred. probability to be Pred.

class
2 1 0 2 1 0 2 1 0

N-Methyl-N-nitrosourea 2 0.487 0.443 0.070 2 0.998 0.002 0.000 2 0.130 0.770 0.100 1

1-Bromononane 0 0.005 0.059 0.936 0 0.002 0.041 0.957 0 0.000 0.020 0.979 0

1-Bromoundecane 0 0.007 0.082 0.911 0 0.005 0.093 0.903 0 0.004 0.202 0.793 0

1-Bromodocosane 1 0.008 0.096 0.896 0 0.099 0.608 0.294 1 0.004 0.178 0.819 0

1-Methyl-3-nitro-1-nitrosoguanidine 2 0.000 0.000 1.000 0 1.000 0.000 0.000 2 0.000 0.000 1.000 0

1-Butanol 0 0.003 0.033 0.964 0 0.002 0.044 0.953 0 0.000 0.007 0.993 0

7-Bromotetradecane 0 0.017 0.182 0.801 0 0.013 0.212 0.775 0 0.001 0.034 0.965 0

a-Butyl cinnamic aldehyde 0 0.026 0.249 0.724 0 0.004 0.077 0.919 0 0.004 0.178 0.818 0

Isopropyl isoeugenol 2 0.415 0.494 0.091 1 0.375 0.555 0.071 1 0.406 0.570 0.024 1

N-ethyl-N-nitrosourea 1 0.029 0.264 0.708 0 0.835 0.156 0.009 2 0.194 0.741 0.065 1

1-Bromotridecane 0 0.023 0.223 0.754 0 0.029 0.367 0.604 0 0.013 0.434 0.553 0

Linalool 0 0.034 0.294 0.672 0 0.005 0.101 0.894 0 0.009 0.332 0.660 0

Lilial(p-tert-butyl-a-ethyl hydrocinnamal 0 0.123 0.539 0.338 1 0.043 0.454 0.503 0 0.030 0.622 0.348 1

Diethylphthalate 0 0.103 0.514 0.382 1 0.005 0.091 0.904 0 0.004 0.180 0.816 0

Hexahydrophthalic anhydride 2 0.362 0.526 0.112 1 0.490 0.464 0.045 2 0.343 0.626 0.031 1

Phthalic anhydride 2 0.465 0.459 0.076 2 0.573 0.394 0.033 2 0.674 0.318 0.008 2

2-Acetylcyclohexanenone 0 0.076 0.459 0.465 0 0.005 0.100 0.895 0 0.000 0.022 0.978 0

Diphenylcyclopropenone 2 0.959 0.038 0.003 2 0.995 0.005 0.000 2 0.973 0.027 0.000 2

1-Naphthol 1 0.055 0.393 0.552 0 0.088 0.591 0.321 1 0.005 0.221 0.774 0

Coumarin 0 0.085 0.480 0.435 1 0.012 0.202 0.786 0 0.006 0.272 0.722 0

2-Hydroxypropyl methacrylate 0 0.001 0.015 0.984 0 0.003 0.057 0.940 0 0.000 0.001 0.999 0

6-Methylcoumarin 0 0.072 0.448 0.481 0 0.012 0.201 0.787 0 0.001 0.052 0.947 0

2-methoxy-4-methylphenol 1 0.029 0.266 0.705 0 0.077 0.569 0.354 1 0.008 0.319 0.673 0

2-Phenyl Propionaldehyde 1 0.129 0.546 0.325 1 0.182 0.648 0.170 1 0.216 0.727 0.057 1

Phenyl Benzoate 0 0.559 0.387 0.053 2 0.515 0.444 0.041 2 0.009 0.351 0.640 0

Ethyl benzoylacetate 0 0.079 0.466 0.456 1 0.042 0.448 0.510 0 0.004 0.194 0.801 0

Benzocaine 0 0.011 0.128 0.860 0 0.017 0.258 0.725 0 0.000 0.003 0.997 0

Benzoyl peroxide 2 0.944 0.052 0.004 2 0.970 0.029 0.001 2 0.825 0.172 0.004 2

2-Aminophenol 2 0.410 0.497 0.093 1 0.865 0.128 0.007 2 0.999 0.001 0.000 2

Eugenol 0 0.049 0.368 0.583 0 0.170 0.648 0.182 1 0.027 0.601 0.371 1

2-Ethyl butaldehyde 0 0.050 0.374 0.576 0 0.014 0.228 0.757 0 0.000 0.021 0.979 0

Benzoyl chloride 2 0.650 0.313 0.037 2 0.887 0.107 0.006 2 0.934 0.065 0.001 2

4-Hydrobenzoic acid 0 0.006 0.076 0.917 0 0.027 0.352 0.621 0 0.001 0.040 0.959 0

Predicted accuracy (%) 60.6 87.9 72.7

The definitions in the ‘‘Pred. Probability to be’’ columns are: 2 means ‘‘strong-extreme’’ sensitizer, 1 means ‘‘moderate’’ sensitizer, 0 means

‘‘non-weak’’ sensitizer
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value and ‘‘moderate-strong-extreme sensitizers’’ with a

value of 1. A PLS-CLR 2-state model is then constructed

from each of the GMAX, EMAX, and GEMAX datasets. If

the predicted class of a training set molecule correctly fits

the observed class using the PLS-CLR 2-state model, this

molecule is then employed in the second step of the model-

building process. The PLS-CLR 2-state models of the first

step for GMAX, EMAX and GEMAX datasets are,

respectively,

LogitðP1Þ ¼ 1:035þ 0:699 � xscr1þ 0:398 � xscr2

þ 0:366 � xscr3þ 0:234 � xscr6

þ 0:291 � xscr7þ 0:589 � xscr8

þ 0:826 � xscr11þ 0:851 � xscr17 ð29Þ

LogitðP1Þ ¼ 1:263þ 0:734 � xscr1þ 0:618 � xscr3

þ 0:601 � xscr4þ 0:338 � xscr6

þ 0:825 � xscr8þ 0:534 � xscr9

þ 0:626 � xscr12þ 0:630 � xscr16

þ 0:981 � xscr17þ 0:811 � xscr20 ð30Þ

LogitðP1Þ ¼ 1:084þ 0:488 � xscr1þ 0:298 � xscr2

þ 0:310 � xscr3þ 0:148 � xscr6

þ 0:190 � xscr7þ 0:499 � xscr8

þ 0:449 � xscr11þ 0:748 � xscr17 ð31Þ

A total of 108, 111 and 108 compounds were predicted

correctly by Eqs. 29, 30 and 31, respectively. From the

correctly predicted compounds, random selection is used to

create the GMAX, EMAX and GEMAX training and test

sets for the second step in the model-building process. In

order to compare the two-2-state models built from the

three datasets, the same number of training set compounds

is used in all three datasets, and the remainder of the

compounds are put into the test sets. Table 6 shows the

distributions of ‘‘non-weak sensitizers’’ and ‘‘moderate-

strong-extreme sensitizers’’ across the three datasets, as

well as the total numbers of training set and test set

compounds. The ‘‘non-weak sensitizer’’ compound sets and

the ‘‘moderate-strong-extreme sensitizer’’ compound sets

were used to perform individual PLS-CLR 2-state analyses.

Step-2 PLS-CLR analysis of the ‘‘non’’ and ‘‘weak’’

sensitizer sets

PLS-CLR analysis was performed using the correctly

predicted ‘‘non-weak sensitizer’’ compounds in the first

step of building the two-2-step QSAR models for each of

the three datasets. The second-step, 2-state QSAR models

for the GMAX, EMAX and GEMAX datasets are given by

Eqs.(32–34), respectively,

LogitðP1Þ ¼ 2:175þ 0:405 � xscr3þ 0:341 � xscr4

þ 0:456 � xscr8 ð32Þ

LogitðP1Þ ¼ 2:300þ 0:362 � xscr3þ 0:295 � xscr4

þ 0:521 � xscr8 ð33Þ

LogitðP1Þ ¼ 3:933þ 0:399 � xscr1þ 0:399 � xscr2

þ 0:212 � xscr4þ 0:579 � xscr8 ð34Þ

The GMAX model has he exact same descriptors as the

EMAX model, but there are slight differences in the

regression coefficient values and the regression constant.

QSAR models Eqs. 32 and 33 also show similar prediction

accuracies for the training set, which are reported in

Table 6. The predicted probability and corresponding

classification of each compound in the training and test

set are listed in Tables 7a and 8a.

Compared to the GMAX dataset, three more compounds

are correctly categorized for the EMAX dataset in the first

Table 6 Total number of

compounds in the training test

sets and the predicted accuracies

for the training and test sets

based on Eqs. (32–37) using the

4D-FP data from the GMAX,

EMAX and GEMAX datasets

Non

sensitizer

Weak

sensitizer

Moderate

sensitizer

Strong-extreme

sensitizer

GMAX Training set 15 24 20 19

Pred. accuracy 76.90% 79.4%

Test set 9 6 7 8

Pred. accuracy 66.7% 73.3%

EMAX Training set 14 25 20 19

Pred. accuracy 79.4% 76.9%

Test set 9 9 6 9

Pred. accuracy 72.2% 86.7%

GEMAX Training set 13 26 20 19

Pred. accuracy 82.1% 87.8%

Test set 10 8 4 8

Pred. accuracy 77.8% 91.7%
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step of the two-2-state model-building process. But this

time the same number of training set compounds was used

for all three datasets in the second step of the two-2-state

model construction. Thus, the EMAX test set contains

three additional compounds. Two of these compounds,

phenyl benzoate and eugenol, are found incorrectly cate-

gorized by Eq. 29 in the GMAX PLS-CLR analysis, but are

correctly predicted by Eq. 30 in the EMAX PLS-CLR

analysis. Therefore, these two compounds do not appear in

GMAX test set but are found in the EMAX test set.

Further, each compound is also correctly categorized by

Eq. 33, of the second step in building the EMAX two-

2-state model.

One compound, coumarin, is correctly categorized by

Eq. 29 in the first step, but is incorrectly predicted by

Eq. 30. Therefore, this coumarin appears in the GMAX

test set but not the EMAX test set. Also, this compound is

incorrectly categorized by Eq. 32. Such behavior leads to

an overall lower prediction accuracy for the GMAX test

set compared to the test set prediction accuracies for both

EMAX and GEMAX. Coumarin is correctly categorized

by Eq. 31 in the first step, but not by Eq. 34. However,

Eq. 34 does correctly categorize ethyl benzoylacetate,

which is correctly categorized in the first step for all three

datasets, but both Eqs. 32 and 33 incorrectly predict it.

1-bromononane appears in both the EMAX and GEMAX

test sets. Only the GEMAX QSAR model (Eq. 33) cor-

rectly categorizes it. As seen in Fig. 1a, the prediction

accuracy of the training set is higher in EMAX and

GEMAX, and an 18% increase in specificity for GEMAX

compared with GMAX models, although the sensitivity is

decreased by 2.5% when comparing GEMAX with

GMAX. These results, in composite, suggest that the

EMAX and GEMAX QSAR models have a better pre-

dictivity than the GMAX QSAR model, based on both the

training and test set findings for the ‘‘non’’ and ‘‘weak’’

sensitizer classifications.

Step-2 PLS-CLR analysis for the ‘‘moderate’’

and ‘‘strong-extreme’’ sensitizer sets

PLS-CLR analysis was applied to each of the three datasets

based on the correctly predicted ‘‘moderate-strong-extreme

sensitizer’’ compounds of the first step to building the two-

2-state models. The resulting categorical models for dis-

criminating ‘‘moderate’’ and ‘‘strong-extreme’’ sensitizers

are listed below for the GMAX, EMAX and GEMAX

datasets, respectively.

LogitðP1Þ¼�2:802þ0:932� xscr1þ1:504�xscr5

�0:608� xscr6þ1:403� xscr13 ð35Þ

LogitðP1Þ ¼ �0:250þ 0:347 � xscr1þ 0:393 � xscr2

þ 0:789 � xscr13 ð36Þ

LogitðP1Þ ¼ �0:282þ 0:215 � xscr1þ 0:247 � xscr2

þ 0:512 � xscr13 ð37Þ

In this case, the EMAX model, Eq. 36, is quite similar to

the GEMAX model, Eq. 37. Both have the same

descriptors but slightly different corresponding regression

coefficients and regression constants. They also have

similar prediction accuracies for the training set, listed in

Table 6. The predicted probability values of each

compound in the training and test sets, using Eqs. 35–37,

are listed in Tables 7b, and 8b respectively.

In general, most compounds in each of the three test sets

for the GMAX, EMAX and GEMAX datasets are correctly

Prediction of training sets on none and weak sensitizers with GMAX, EMAX,
GEMAX models
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Fig. 1 Predicted accuracy, sensitivity, and specificity for (a) the non-

weak sensitizers and (b) the moderate and strong sensitizers in

training sets based on PLS-CLR two-2-state Eqs. 31–33 using the

4D-FP data from the GMAX, EMAX and GEMAX datasets
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classified by Eqs. 35–37. 1-Methyl-3-nitro-1-nitrosogua-

nidine appears in all test sets of the three datasets. The

GMAX categorical QSAR model, Eq. 35, incorrectly cat-

egorizes this compound, and, actually, predicts the

probability of this compound being a strong-extreme sen-

sitizer as 0. Conversely, the QSAR categorical models

from the EMAX and GEMAX datasets correctly predict

1-methyl-3-nitro-1-nitrosoguanidine as being a strong-

extreme sensitizer, with a probability of 1. Phthalic anhy-

dride also appears in all three dataset test sets, and none of

the models, Eqs. 35–37, correctly classify this compound.

Both 3-aminophenol and diethyl sulfate appear in the

GMAX dataset test set, but not in the GEMAX dataset test

set. 3-aminophenol also does not appear in the EMAX

dataset test set. These two compounds are selected into

their respective training sets. N-ethyl-N-nitrosourea

appears in both the GMAX and EMAX test sets, but is

incorrectly classified by Eqs. 35 and 36, respectively. This

compound is not selected in the first step of PLS-CLR

analysis for the GEMAX dataset.

It appears that the first-step PLS-CLR analysis in

building the two-2-state models serves as a partial filter to

eliminate some of the more difficult to characterize and

predict, or ‘‘bad’’, sample compounds, thus enhancing the

second-step PLS-analysis to yield models with high pre-

diction accuracies for the ‘‘non’’ and ‘‘weak’’ sensitizers.

Moreover, higher prediction accuracies realized for both

EMAX and GEMAX training and test sets, as compared to

the GMAX training and test set, for ‘‘non-’’ and ‘‘weak-’’

sensitizer classifications again suggests that both of the

EMAX and GEMAX datasets include more significant

4D-FP information than is found in the GMAX dataset (see

Figs. 1, 2). This result is consistent with previous studies,

suggesting that the excited state of skin-sensitizing com-

pounds can better access its ‘‘receptor’’ than the ground

state structure of the compound [7].

Discussion

The novel aspect of this study has been to introduce the

excited state 4D-FP descriptors, along with the ground state

4D-FP, into the initial descriptor pool to build categorical

skin-sensitization potency QSAR models. By finding a way

to compute 4D-FP for any state of a molecule provides (as

far as we are aware) the only means to create a set of

common and comparable universal QSAR descriptors

across the electronic states available to a molecule. How-

ever, as to which electronic state(s) to include in a QSAR

study cannot be addressed by the 4D-QSAR paradigm. In

performing this study of skin sensitization we took into

consideration that transport of the sensitizer to its target

and its chemical reactivity are each integral components to

the overall skin-sensitization mechanism of action. The

choice of using the ground state to model transport is rel-

atively clear, but the selection of the electronic state(s) to

model reactivity is less apparent. Our working assumption

was that the first excited state of each compound would be

relevant in this study. We have felt justified in this

approach because across the 2-state, 3-state and two-2-state

categorical QSAR models, the inclusion of the EMAX and/

or GEMAX 4D-FP descriptor sets with the GMAX dataset,

or in some cases alone, generate better models than those

produced solely from the GMAX 4D-FP descriptor sets.

The ground and excited state 4D-FP descriptors differ

from one another because of the changes in the geometry

and the electron charge density distribution that result

when going from the ground state to an excited state. The

actual distribution of IPE types across a molecule can also

change for an excited state relative to the ground state

because of the electron redistribution in the molecule. But

in this study, the ground state and first excited states both

have very similar 4D-FP descriptor sets, {ei(u, v)}; this is

illustrated for all test sets in Table 2, and the corresponding

calculated e1(any, np) and e2(any, np) listed in Table 9.

The correlation coefficient between e1(any, np)g and

e1(any, np)e is as high as 0.997, and the correlation coef-

ficient between e2(any, np)g and e2(any, np)e is as high as

0.992. High cross-correlations occur across the entire set of

LLNA compounds for many ground and corresponding

excited state 4D-FP descriptors, and this observation is not

restricted to only the e1(any, np) or e2(any, np) 4D-FPs of

the test set compounds. Nevertheless, the similarities and

differences contained in the ground and excited state

4D-FP models (GMAX and EMAX) combine to lead to an

optimized GEMAX model with a unique set of descriptor

and coefficients that contains essential information from

both the GMAX and the EMAX models. The 4D-FP

descriptors can also differ in the LR models for the GMAX

and EMAX datasets as is seen between Eqs. 14 and 15.

Still the difference between Eq. 14 and Eq. 15 is only

the addition of a term, +394.70*e7(np, hs)e, and the

ranking of importance and coefficient for the (np, hs) term.

It is interesting that a nonpolar and non-hydrogen eigen-

value are constructive for the GMAX model (Eq. 14), yet

destructive for the EMAX model (Eq. 15). Additionally,

this eigenvalue is ranked in the top half (ranked 8th, 5th,

and 8th for GMAX, EMAX, and GEMAX, respectively)

for all model types. While these IPE types should not be

influenced by shifts in electron density, or other electronic

structure properties, it is interesting to see their markedly

different use in the GMAX and EMAX models.

The extracted PLS components also exhibit high simi-

larities and differences across the ground and excited state

models and corresponding predictions; the predicted

probability and class for models constructed from GMAX,
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Table 7 Predicted probabilities and corresponding training set classifications using the PLS-CLR two-2-state QSAR models for the 4D-FP data

from the GMAX, EMAX and GEMAX datasets for (a) ‘‘non’’ and ‘‘weak’’ sensitizers and (b) ‘‘moderate’’ and ‘‘strong-extreme’’ sensitizers

Chemical

Name

Obs.

class

GMAX EMAX GEMAX

Pred.

probability

Pred.

class

Pred.

probability

Pred.

class

Pred.

probability

Pred.

class

(a) ‘‘Non’’ and ‘‘weak’’ sensitizers

4-Metoxyacetophenone 0 0.876 1 0.846 1 0.71 1

Benzaldehyde 0 0.697 1 0.729 1 0.793 1

Cyclamen aldehyde 1 – – 0.978 1 – –

Cinnamic alcohol 1 – – 0.937 1 0.955 1

Hydroxycitronellal 1 0.819 1 0.884 1 0.705 1

Chlorobenzene 0 0.505 1 0.535 1 0.748 1

1-Bromobutane 0 0.038 0 0.068 0 0.081 0

Hexane 0 0.028 0 0.044 0 0.074 0

1-Bromooctadecane 1 0.981 1 0.987 1 0.999 1

Benzyl benzoate 1 0.74 1 0.594 1 1 1

Ethyl vanillin 0 0.295 0 0.441 0 0.173 0

a-Amyl cinnamic aldehyde 1 0.983 1 0.979 1 0.991 1

Octanoic acid 0 0.632 1 0.571 1 0.244 0

1-(30,40,50-Trimethoxyphenyl)-4-

dimethylpentane-1,

3,-dione

0 0.077 0 0.178 0 0.272 0

4-Allylanisole 1 0.915 1 0.919 1 0.921 1

Ethyl acrylate 1 0.698 1 0.687 1 0.428 0

1-Bromododecane 1 0.946 1 0.959 1 0.979 1

Oxalic acid 1 0.129 0 0.122 0 0.37 0

2-Mercaptobenzothiazole 1 0.903 1 0.952 1 0.974 1

3-Ethoxy-1-(20,30,40,50-
tetramethylphenyl)propane-1,

3-dione

1 0.852 1 0.789 1 0.913 1

C15 Azlactone 1 0.881 1 0.832 1 0.96 1

6-Methyleugenol 1 0.892 1 0.934 1 0.901 1

3-Methyleugenol 1 0.918 1 0.951 1 0.947 1

cis-6-Nonenal 1 0.682 1 0.72 1 0.566 1

1-Chlorotetradecane 1 0.966 1 0.98 1 0.994 1

Butyl glycidyl ether 1 – – – – 0.789 1

Lyral 1 0.965 1 0.966 1 0.955 1

4,4,4-Trifluro-1-phenylbutane-1,3-dione 1 0.428 0 0.438 0 0.194 0

Oleyl methane sulphonate 1 0.946 1 0.948 1 0.991 1

Methyl hexadecyl sulphonate 0 0.639 1 0.582 1 0.455 0

1-Iodododecane 1 0.944 1 0.96 1 0.978 1

Furil 0 0.319 0 0.247 0 0.097 0

Abietic acid 1 0.767 1 0.849 1 0.988 1

Piperonyl butoxide 0 0.011 0 0.028 0 0.039 0

1-Phenyloctane-1,3-dione 1 0.908 1 0.855 1 0.875 1

1-(20,50-Dimethylphenyl)butane-1,3-dione 1 0.907 1 0.874 1 0.813 1

Glycerol 0 0.135 0 0.177 0 0.368 0

Propylene glycol 0 0.158 0 0.184 0 0.266 0

R(+)- Limonene 1 0.158 0 0.184 0 0.266 0

Sulphanilamide 0 0.092 0 0.091 0 0.126 0

1-Bromononane 0 0.58 1 – – – –

1-Bromoundecane 1 0.846 1 – – – –
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Table 7 continued

Chemical

Name

Obs.

class

GMAX EMAX GEMAX

Pred.

probability

Pred.

class

Pred.

probability

Pred.

class

Pred.

probability

Pred.

class

(b) ‘‘Moderate’’ and ‘‘strong-extreme’’ sensitizers

4-Nitrobenzyl bromide 1 0.89 1 0.274 0 0.214 0

Benzyl bromide 1 0.464 0 0.149 0 0.216 0

a-Methyl cinnamic aldehyde 0 0.017 0 0.024 0 0.037 0

1, 4-Phenylenediamine 1 0.977 1 0.975 1 0.917 1

p-Benzoquinone 1 0.996 1 0.971 1 0.958 1

1-Chloromethylpyrene 1 1 1 1 1 1 1

Maleic anhydride 1 0.993 1 0.979 1 0.967 1

meta-Phenylene diamine 1 0.945 1 0.959 1 0.86 1

2,4,6-Trichloro-1,3,5-triazine (cyanuric chloride) 1 0.318 0 0.367 0 0.262 0

3-Dimethylaminopropylamine 0 0.045 0 0.589 1 0.456 0

Diethylenetriamine 0 0.032 0 0.396 0 0.38 0

Palmitoyl chloride 0 – – 0.515 1 0.496 0

3,4-Dihydrocoumarin 0 0.384 0 0.167 0 0.189 0

Propyl gallate 1 0.997 1 0.874 1 0.928 1

Benzylidene acetone (4-phenyl-3-buten-2-one) 0 0.045 0 0.046 0 0.067 0

Phenylacetaldehyde 0 0.27 0 0.053 0 0.086 0

Hydroquinone 1 0.775 1 0.964 1 0.954 1

Dodecylthiosulphonate 1 0.236 0 0.685 1 0.686 1

Vinyl pyridine 0 0.154 0 0.045 0 0.09 0

Tetramethylthiuram disulfide 0 0.481 0 0.241 0 0.185 0

4-Nitroso-N,N-dimethylaniline 1 0.903 1 0.428 0 0.502 1

Diethyl maleate 0 0.157 0 0.593 1 0.488 0

Trans-cinnamaldehyde 0 0.268 0 0.109 0 0.173 0

5,5-Dimethyl-3-thiocyanatomethyl-2(3H)-

furanone

1 0.701 1 0.291 0 0.295 0

Bisphenol A-diglycidyl ether 0 0 0 0.118 0 0.229 0

1-(20,50-Diethylphenyl)butane-1,3-dione 0 – – 0.371 0 – –

3-Methylisoeugenol 0 0.252 0 – – – –

5-Methylisoeugenol 1 0.32 0 0.687 1 0.6 1

perilla aldehyde 0 0.277 0 0.129 0 0.138 0

1,2-Benzisothiazolin-3-one (Proxel active) 0 0.025 0 – – – –

2-Methyl-2H-Isothiazol-3-one 0 0.008 0 0.216 0 0.265 0

4-Amino-m-cresol 1 0.884 1 0.795 1 0.848 1

2-(4-Amino-2-nitroanilino)-ethanol 0 0.826 1 0.113 0 0.218 0

5,5-Dimethyl-3-methylene-dihydro-2(3H)-

furanone

0 0.507 1 0.285 0 0.311 0

12-Bromo-1-dodecanol 0 0.245 0 – – – –

3,5,5-Trimethylhexanoyl chloride 0 0.543 1 0.21 0 0.202 0

1-Bromoeicosane 0 0 0 0.034 0 0.048 0

Chlorpromazine hydrochloride 1 0.892 1 0.992 1 0.988 1

2-Nitro-p-phenylenediamine 1 0.976 1 0.943 1 0.834 1

b-Propriolactone 1 0.197 0 0.578 1 0.604 1

7,12-Dimethylbenz(a)anthracene 1 1 1 1 1 1 1

3-Aminophenol 0 – – 0.838 1 0.881 1

Diethyl sulfate 0 – – – – 0.288 0

A ‘‘–‘‘ in the table means the compound is not part of this test set
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EMAX and GEMAX descriptors are shown in Table 2 and

the corresponding PLS components (xscr1, xscr2, xscr7

and xscr8) are listed in Table 10. The first 6 PLS compo-

nents for the GMAX and EMAX datasets are similar with

divergence of the components beginning with the seventh

component. Moreover, the GEMAX has some extracted

PLS components that differ from those of both GMAX and

EMAX, while at the same time sharing similar PLS com-

ponents. This dual nature among the 4D-FP may explain

why Eqs. 32 and 33 and Eqs. 36 and 37 are similar.

Table 8 Predicted probabilities and corresponding test set classifications using the PLS-CLR two-2-state QSAR models for the 4D-FP data from

the GMAX, EMAX and GEMAX datasets for (a) ‘‘non’’ and ‘‘weak’’ sensitizers and (b) ‘‘moderate’’ and ‘‘strong-extreme’’ sensitizers

Chemical

Name

Obs.

class

GMAX EMAX GEMAX

Pred.

probability

Pred.

class

Pred.

probability

Pred.

class

Pred.

probability

Pred.

class

(a) ‘‘Non’’ and ‘‘weak’’ sensitizers

1-Bromononane 0 – – 0.643 1 0.477 0

1-Bromoundecane 1 – – 0.853 1 0.881 1

1-Butanol 0 0.129 0 0.344 0 0.275 0

7-Bromotetradecane 1 0.987 1 0.992 1 0.998 1

a-Butyl cinnamic aldehyde 1 0.929 1 0.925 1 0.921 1

1-Bromotridecane 1 0.968 1 0.979 1 0.992 1

Linalool 1 0.872 1 0.876 1 0.894 1

Lilial(p-tert-butyl-a-ethyl hydrocinnamal 1 0.989 1 0.985 1 0.997 1

Diethylphthalate 0 0.496 0 0.437 0 0.339 0

2-Acetylcyclohexanenone 0 0.871 1 0.842 1 0.650 1

Coumarin 0 0.958 1 – – 0.918 1

2-Hydroxypropyl methacrylate 0 0.051 0 0.102 0 0.015 0

6-Methylcoumarin 0 0.898 1 0.877 1 0.831 1

Phenyl Benzoate 1 – – 0.767 1 1.000 1

Ethyl benzoylacetate 0 0.639 1 0.598 1 0.342 0

Benzocaine 0 0.610 1 0.697 1 0.690 1

Eugenol 1 – – 0.918 1 – –

2-Ethyl butaldehyde 1 0.891 1 0.921 1 0.889 1

4-Hydrobenzoic acid 0 0.361 0 0.415 0 0.428 0

(b) ‘‘Moderate’’ and ‘‘strong-extreme’’ sensitizers

3-Aminophenol 0 0.947 1 – – – –

Diethyl sulfate 0 0.158 0 0.352 0 – –

3-Bromomethyl-5,5-dimethyl-dihydro-2(3H)-

furanone

0 0.342 0 0.258 0 0.251 0

N-Methyl-N-nitrosourea 1 0.829 1 0.979 1 0.964 1

1-Bromodocosane 0 0.000 0 0.452 0 0.428 0

1-Methyl-3-nitro-1-nitrosoguanidine 1 0.000 0 1.000 1 1.000 1

Isopropyl isoeugenol 1 – – 0.785 1 – –

N-ethyl-N-nitrosourea 0 0.998 1 0.992 1 – –

Hexahydrophthalic anhydride 1 0.749 1 0.594 1 0.519 1

Phthalic anhydride 1 0.138 0 0.073 0 0.096 0

Diphenylcyclopropenone 1 1.000 1 0.974 1 0.972 1

1-Naphthol 0 0.329 0 0.300 0 0.314 0

2-Phenylpropionaldehyde 0 0.338 0 0.115 0 0.182 0

Benzoyl peroxide 1 0.995 1 0.935 1 0.866 1

2-Aminophenol 1 0.886 1 0.791 1 0.848 1

Benzoyl chloride 1 0.978 1 0.985 1 0.539 1

A ‘‘–‘‘ in the table means the compound is not part of this test set
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While building the two-2-state models, PLS-CLR

analysis in the first step filtered out ‘‘bad’’ sample

compounds, those incorrectly classified skin sensitizers

of the LLNA dataset. If all of the ‘‘non’’ and ‘‘weak’’

sensitizers, including those incorrectly classified in this

first step, are used to build a second step model to

separate ‘‘non’’ and ‘‘weak’’ sensitizers–again, by per-

forming PLS-CLR analysis–the resulting 2-state ground,

excited and combined QSAR models are as follows:

LogitðP1Þ ¼ 3:578þ 0:536 � xscr2þ 1:019 � xscr5

þ 0:663 � xscr7þ 1:129 � xscr10 ð38Þ

LogitðP1Þ ¼ 2:039þ 0:520 � xscr5þ 1:167 � xscr11

� 1:158 � xscr17 ð39Þ

LogitðP1Þ ¼ 2:694þ 0:198 � xscr4þ 0:551 � xscr8

þ 0:434 � xscr15 ð40Þ

These models differ from their corresponding models,

namely Eqs. 32–34, when the ‘‘bad’’ compounds are

excluded in the second step of model construction.

Moreover, the predicted accuracies for these three

models, Eqs. 38–40, for the GMAX, EMAX and

GEMAX test sets are 66.7, 66.7, and 70.8%, respectively.

Each prediction accuracy is obviously lower than the

corresponding prediction accuracy when the ‘‘bad’’

compounds are excluded (see Table 6), especially for

GEMAX. The predicted sensitivity for these three models,

Eqs. 38–40, for the GMAX, EMAX and GEMAX test sets

are 100%, and the predicted specificity is 44.4% for both

and GMAX and EMAX and 60.0% for GEMAX (see

Fig. 2a).

Similarly, if all ‘‘moderate’’ and all ‘‘strong-extreme’’

sensitizers, including the ‘‘bad’’ compounds found in the

first step, are used to build the second step two-2-state

Table 9 The calculated

e1(any, np) and e2(any, np)

4D-FP values for all test set

compounds listed in Table 2

for both the GMAX

and EMAX datasets

Chemical name e1(any, np)g e1(any, np)e e2(any, np)g e2(any, np)e

2-Hydroxypropyl methacrylate 0.4160 0.4190 0.1224 0.1236

6-Methylcoumarin 0.4310 0.4310 0.0994 0.0994

Phenyl Benzoate 0.3391 0.3375 0.1170 0.1177

Ethyl benzoylacetate 0.3499 0.3422 0.0957 0.0999

Benzocaine 0.3697 0.3705 0.0894 0.0890

Benzoyl peroxide 0.3065 0.3028 0.0916 0.0920

2-Aminophenol 0.5614 0.5607 0.1126 0.1123

Eugenol 0.3848 0.3864 0.0940 0.0948

2-Ethyl butaldehyde 0.4557 0.4611 0.0799 0.0797

Benzoyl chloride 0.5400 0.5398 0.1063 0.1064

4-Hydrobenzoic acid 0.5045 0.5048 0.0829 0.0826

Table 10 The extracted PLS components xscr1, xscr2, xscr7 and xscr8 from the 4D-FP descriptors for all test set compounds listed in Table 2

for the GMAX, EMAX and GEMAX datasets

Chemical name xscr1 xscr2 xscr7 xscr8

GMAX EMAX GEMAX GMAX EMAX GEMAX GMAX EMAX GEMAX GMAX EMAX GEMAX

2-Hydroxypropyl

methacrylate

-1.435 -1.483 -2.063 -4.608 -4.513 -6.450 -0.445 -0.012 -0.360 -3.420 -2.556 -4.251

6-Methylcoumarin 0.938 0.959 1.341 -2.796 -2.717 -3.898 -1.144 -0.920 -1.448 -2.220 -2.368 -3.212

Phenyl benzoate 6.815 6.770 9.607 6.826 6.451 9.390 -2.633 -2.396 -3.532 -2.759 -3.286 -4.282

Ethyl benzoylacetate -1.071 -1.044 -1.495 -3.508 -3.438 -4.912 -0.698 -0.582 -0.926 -2.983 -3.219 -4.414

Benzocaine 2.215 2.162 3.095 -7.554 -7.513 -10.656 -0.378 -0.280 -0.517 -0.123 0.007 -0.062

Benzoyl peroxide 6.143 6.160 8.700 2.419 2.314 3.348 2.355 2.640 3.512 -1.535 -2.048 -2.640

2-Aminophenol 7.992 7.946 11.271 -1.138 -1.072 -1.560 0.177 0.005 0.127 1.873 2.041 2.871

Eugenol -0.287 -0.295 -0.412 -4.361 -4.289 -6.117 4.587 4.816 6.624 1.161 2.037 2.274

2-Ethyl butaldehyde -2.003 -2.024 -2.848 0.149 0.192 0.241 -0.293 -0.190 -0.330 0.179 0.553 0.509

Benzoyl chloride 2.140 2.197 3.067 0.440 0.551 0.703 2.155 2.116 3.036 -0.512 -0.660 -0.833

4-Hydrobenzoic acid 4.553 4.515 6.413 -7.542 -7.424 -10.583 -1.494 -1.235 -1.986 -2.528 -2.400 -3.477
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models with PLS-CLR analysis, the following GMAX,

EMAX and GEMAX models result:

LogitðP1Þ ¼ �3:675þ 1:028 � xscr1þ 1:163 � xscr5

þ 1:654 � xscr18þ 1:497 � xscr20 ð41Þ

LogitðP1Þ ¼ � 2:045þ 0:377 � xscr2þ 0:405 � xscr3

þ 0:401 � xscr4þ 0:767 � xscr14

þ 0:982 � xscr17� ð42Þ

LogitðP1Þ ¼ �3:365þ 0:788 � xscr1þ 1:114 � xscr5

� 0:503 � xscr6þ 0:985 � xscr13 ð43Þ

All of these models differ from the corresponding

models, namely Eqs. 35–37, when the ‘‘bad’’ compounds

are excluded in the second step of construction. Prediction

accuracy values for the test sets of each model given by

Eqs. 35–37 are 66.7, 70.8 and 79.1%, respectively. These

prediction accuracies are also significantly lower than those

in Table 6. The predicted sensitivity for these three models,

Eqs. 38–40 for the GMAX, EMAX and GEMAX test sets

are 75.0, 88.9, and 87.5%, and predicted specificity are

71.4, 88.9% for both GMAX and EMAX and 100.0% for

GEMAX, (Fig. 2b). These findings suggest that the first

step PLS-CLR analysis, in addition to building a

categorical QSAR model, is also an effective method for

filtering out ‘‘bad’’ compounds from the training sets used

in step two of the two-2-state PLS-CLR analysis. Also,

GEMAX provides significantly better prediction accuracy

and specificity compared to use of ground states descriptors

or excited states descriptors alone.

We point out that it is not clear that the GEMAX models

are better than corresponding GMAX and/or EMAX

models if we limit such an evaluation to predictions of

individual test compounds. But one must consider the

composite picture of the overall results as measured by

predicitivity, accuracy, specificity and sensitivity, across all

the models developed in the study to make a meaningful

comparison. Under these encompassing criteria, one con-

cludes that the GEMAX models are somewhat more

significant than the EMAX and GMAX models. Thus, the

4D-FP information resulting from the combination of the

ground and first excited states of the LLNA molecules

leads to better categorical QSAR models than those built

using only ground state 4D-FP descriptors. Still, when

building skin-sensitization QSAR models it remains

unclear whether the first excited state is best, or whether

one, or more, other non-ground state(s) should be consid-

ered in deriving the 4D-FP for the initial descriptor pool.
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