Skip to main content
Log in

Conserved network properties of helical membrane protein structures and its implication for improving membrane protein homology modeling at the twilight zone

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Homology modeling techniques remain an important tool for membrane protein studies and membrane protein-targeted drug development. Due to the paucity of available structure data, an imminent challenge in this field is to develop novel computational methods to help improve the quality of the homology models constructed using template proteins with low sequence identity. In this work, we attempted to address this challenge using the network approach developed in our group. First, a structure pair dataset of 27 high-resolution and low sequence identity (7–36%) comparative TM proteins was compiled by analyzing available X-ray structures of helical membrane proteins. Structure deviation between these pairs was subsequently confirmed by calculating their backbone RMSD and comparing their potential energy per residue. Next, this dataset was further studied using the network approach. Results of these analyses indicated that the network measure applied represents a conserved feature of TM domains of similar folds with various sequence identities. Further comparison of this salient feature between high-resolution template structures and their homology models at the twilight zone suggested a useful method to utilize this property for homology model refinement. These findings should be of help for improving the quality of homology models based on templates with low sequence identity, thus broadening the application of homology modeling techniques in TM protein studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

TM:

Transmembrane

GPCRs:

G-protein coupled receptors

PDB:

Protein Data Bank

3D:

Three-dimensional

2D:

Two-dimensional

RMSD:

Root-mean-squared deviation

References

  1. Fleming KG (2000) Curr Opin Biotechnol 11:67–71

    Article  CAS  Google Scholar 

  2. Klabunde T, Hessler G (2002) Chembiochem 3:928–944

    Article  CAS  Google Scholar 

  3. Drews J (1996) Nat Biotechnol 14:1516–1518

    Article  CAS  Google Scholar 

  4. White SH (2004) Protein Sci 13:1948–1949

    Article  CAS  Google Scholar 

  5. Sanchez R, Sali A (1997) Curr Opin Struct Biol 7:206–214

    Article  CAS  Google Scholar 

  6. Fanelli F, De Benedetti PG (2005) Chem Rev 105:3297–3351

    Article  CAS  Google Scholar 

  7. Visiers I, Ballesteros JA, Weinstein H (2002) Methods Enzymol 343:329–371

    Article  Google Scholar 

  8. Gershengorn MC, Osman R (2001) Endocrinology 142:2–10

    Article  CAS  Google Scholar 

  9. Ballesteros J, Palczewski K (2001) Curr Opin Drug Discov Devel 4:561–574

    CAS  Google Scholar 

  10. Abagyan RA, Batalov S (1997) J Mol Biol 273:355–368

    Article  CAS  Google Scholar 

  11. Baker D, Sali A (2001) Science 294:93–96

    Article  CAS  Google Scholar 

  12. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  13. Krystek SR Jr, Kimura SR, Tebben AJ (2006) J Comput Aided Mol Des 20:463–470

    Article  CAS  Google Scholar 

  14. Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (1995) Proteins 23:318–326

    Article  CAS  Google Scholar 

  15. Forrest LR, Tang CL, Honig B (2006) Biophys J 91:508–517

    Article  CAS  Google Scholar 

  16. Fleishman SJ, Ben-Tal N (2002) J Mol Biol 321:363–378

    Article  CAS  Google Scholar 

  17. Park Y, Helms V (2006) Proteins 64:895–905

    Article  CAS  Google Scholar 

  18. Pabuwal V, Li Z (2008) Protein Eng Des Sel 21:55–64

    Article  CAS  Google Scholar 

  19. Muppirala UK, Li Z (2006) Protein Eng Des Sel 19:265–275

    Article  CAS  Google Scholar 

  20. Gao J, Li Z (2008) Protein Eng Des Sel (in press)

  21. Greene LH, Higman VA (2003) J Mol Biol 334:781–791

    Article  CAS  Google Scholar 

  22. Sathyapriya R, Brinda KV, Vishveshwara S (2006) J Chem Inf Model 46:123–129

    Article  CAS  Google Scholar 

  23. Vendruscolo M, Dokholyan NV, Paci E, Karplus M (2002) Phys Rev E Stat Nonlin Soft Matter Phys 65:061910-1–061910-4

    Google Scholar 

  24. Reddy C, Vijayasarathy K, Srinivas E, Sastry GM, Sastry GN (2006) Comput Biol Chem 30:120–126

    Article  CAS  Google Scholar 

  25. Tusnady GE, Dosztanyi Z, Simon I (2005) Nucleic Acids Res 33:D275–D278

    Article  CAS  Google Scholar 

  26. Pearl FM, Bennett CF, Bray JE, Harrison AP, Martin N, Shepherd A, Sillitoe I, Thornton J, Orengo CA (2003) Nucleic Acids Res 31:452–455

    Article  CAS  Google Scholar 

  27. Livingstone CD, Barton GJ (1993) Comput Appl Biosci 9(6):745–756

    CAS  Google Scholar 

  28. Pieper U, Eswar N, Braberg H, Madhusudhan MS, Davis FP, Stuart AC, Mirkovic N, Rossi A, Marti-Renom MA, Fiser A, Webb B, Greenblatt D, Huang CC, Ferrin TE, Sali A (2004) Nucleic Acids Res 32:D217–D222

    Article  CAS  Google Scholar 

  29. Case DA, Darden TA, Cheatham ITE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Wang B, Pearlman DA, Crowley M, Brozell S, Tsui V, Gohlke H, Mongan J, Hornak V, Cui G, Beroza P, Schafmeister C, Caldwell JW, Ross WS, and Kollman PA (2004) Amber8. University of California, San Francisco

  30. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Nucleic Acids Res 17:3389–3402

    Article  Google Scholar 

  31. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) Science 318:1258–1265

    Article  CAS  Google Scholar 

  32. Miyazawa S, Jernigan RL (1993) Protein Eng 6:267–278

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Peter Meek at University of the Sciences in Philadelphia for comments on the manuscript. We acknowledge the use of the MODBASE database (http://modbase.compbio.ucsf.edu/modbase-cgi/search_form.cgi) in this work. This work was supported by the Researcher Starter Grant in Informatics from the PhRMA Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, J., Li, Z. Conserved network properties of helical membrane protein structures and its implication for improving membrane protein homology modeling at the twilight zone. J Comput Aided Mol Des 23, 755–763 (2009). https://doi.org/10.1007/s10822-008-9220-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-008-9220-9

Keywords

Navigation