Skip to main content

Advertisement

Log in

Using a staged multi-objective optimization approach to find selective pharmacophore models

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

It is often difficult to differentiate effectively between related G-protein coupled receptors and their subtypes when doing ligand-based drug design. GALAHAD uses a multi-objective scoring system to generate multiple alignments involving alternative trade-offs between the conflicting desires to minimize internal strain while maximizing pharmacophoric and steric (pharmacomorphic) concordance between ligands. The various overlays obtained can be associated with different subtypes by examination, even when the ligands available do not discriminate completely between receptors and when no specificity information has been used to bias the alignment process. This makes GALAHAD a potentially powerful tool for identifying discriminating models, as is illustrated here using a set of dopaminergic agonists that vary in their D1 vs. D2 receptor selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Just as for bitmaps, the count vector is actually created and manipulated in compressed form.

References

  1. GALAHAD®, Tuplets™, GASP™ and SYBYL® are available from Tripos International, 1699 S. Hanley Rd., St. Louis, MO 63144, USA. http://www.tripos.com

  2. Clark RD, Abrahamian E, Strizhev A (2007) US Patent Application 20070143030. Accessible at http://appft1.uspto.gov/netahtml/PTO/srchnum.html

  3. Richmond NJ, Abrams CA, Wolohan PRN, Abrahamian A, Willett P, Clark RD (2006) J Comput Aided Mol Des 20:567–587. doi:10.1007/s10822-006-9082-y

    Article  CAS  Google Scholar 

  4. Abrahamian E, Fox PC, Nærum L, Christensen IT, Thøgersen H, Clark RD (2003) J Chem Inf Comput Sci 43:458–468. doi:10.1021/ci025595r

    CAS  Google Scholar 

  5. Jones G, Willett P, Glen RC (1995) J Comput Aided Mol Des 9:532–549. doi:10.1007/BF00124324

    Article  CAS  Google Scholar 

  6. Richmond NJ, Willett P, Clark RD (2004) J Mol Graph Model 23:199–209. doi:10.1016/j.jmgm.2004.04.004

    Article  CAS  Google Scholar 

  7. Gillet and coworkers have explored different approaches to incorporating multi-objective fitness and partial match capability into GASP. For details, see: Cottrell SJ, Gillet VJ, Taylor R (2006) J Comput-Aided Mol Des 20:735–749. doi:10.1007/s10822-004-5523-7

    Google Scholar 

  8. Gillet VJ, Khatib W, Willett P, Fleming PJ, Green DVS (2002) J Chem Inf Comput Sci 42:375–385. doi:10.1021/ci010375j

    CAS  Google Scholar 

  9. Coello CAC, Van Veldhuizen DA, Lamont GB (2007) Evolutionary algorithms for solving multi-objective problems. Springer, New York

    Google Scholar 

  10. Clark RD, Fox PC, Abrahamian E (2005) In: Alvarez J, Shoichet B (eds) Virtual screening in drug discovery. CRC Press, Boca Raton, pp 207–225

    Google Scholar 

  11. Abrahamian A, Clark RD, Fox P, Metwally E (2007) US Patent No. 7,212,951

  12. Shepphird JK, Clark RD (2006) J Comput Aided Mol Des 20:763–771. doi:10.1007/s10822-006-9070-2

    Article  CAS  Google Scholar 

  13. Cottrell SJ, Gillet VJ, Taylor R, Wilton DJ (2004) J Comput Aided Mol Des 18:665–682. doi:10.1007/s10822-004-5523-7

    Article  CAS  Google Scholar 

  14. Cvetković D, Coello CAC (2005) In: Jin Y (ed) Knowledge incorporation in evolutionary computation. Springer, New York, pp 479–503

  15. Wilcox RE, Tseng T, Brusniak M-YK, Ginsburg B, Pearlman RS, Teeter M et al (1998) J Med Chem 41:4385–4399. doi:10.1021/jm9800292

    Article  CAS  Google Scholar 

  16. CONCORD® was developed by R. S. Pearlman, A. Rusinko, J. M. Skell and R. Baducci at the University of Texas, Austin, and is distributed exclusively by Tripos International, 1699 S. Hanley Rd., St. Louis, MO 63144

  17. Halgren TA (1999) J Comput Chem 20:730–748. doi:10.1002/(SICI)1096-987X(199905)20:7<730::AID-JCC8>3.0.CO;2-T

    Article  CAS  Google Scholar 

  18. Duewer DL, Clark RD (1991) J Chemometr 5:503–521. doi:10.1002/cem.1180050604

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The suggestions provided by anonymous reviewers contributed significantly to the clarity and readability of this paper, and the authors appreciate their thoughtful criticisms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Clark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, R.D., Abrahamian, E. Using a staged multi-objective optimization approach to find selective pharmacophore models. J Comput Aided Mol Des 23, 765–771 (2009). https://doi.org/10.1007/s10822-008-9227-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-008-9227-2

Keywords

Navigation