Skip to main content
Log in

Molecular dynamics simulation study of PTP1B with allosteric inhibitor and its application in receptor based pharmacophore modeling

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Allosteric inhibition of protein tyrosine phosphatase 1B (PTP1B), has paved a new path to design specific inhibitors for PTP1B, which is an important drug target for the treatment of type II diabetes and obesity. The PTP1B1–282-allosteric inhibitor complex crystal structure lacks α7 (287–298) and moreover there is no available 3D structure of PTP1B1–298 in open form. As the interaction between α7 and α6–α3 helices plays a crucial role in allosteric inhibition, α7 was modeled to the PTP1B1–282 in open form complexed with an allosteric inhibitor (compound-2) and a 5 ns MD simulation was performed to investigate the relative orientation of the α7–α6–α3 helices. The simulation conformational space was statistically sampled by clustering analyses. This approach was helpful to reveal certain clues on PTP1B allosteric inhibition. The simulation was also utilized in the generation of receptor based pharmacophore models to include the conformational flexibility of the protein-inhibitor complex. Three cluster representative structures of the highly populated clusters were selected for pharmacophore model generation. The three pharmacophore models were subsequently utilized for screening databases to retrieve molecules containing the features that complement the allosteric site. The retrieved hits were filtered based on certain drug-like properties and molecular docking simulations were performed in two different conformations of protein. Thus, performing MD simulation with α7 to investigate the changes at the allosteric site, then developing receptor based pharmacophore models and finally docking the retrieved hits into two distinct conformations will be a reliable methodology in identifying PTP1B allosteric inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cicirelli MF, Tonks NK, Diltz CD, Weiel JE, Fischer EH, Krebs EG (1990) Proc Natl Acad Sci USA 87:5514. doi:10.1073/pnas.87.14.5514

    Article  CAS  Google Scholar 

  2. Ahmad F, Li PM, Meyerovitch J, Goldstein BJ (1995) J Biol Chem 270:20503. doi:10.1074/jbc.270.35.20503

    Article  CAS  Google Scholar 

  3. Johnson TO, Ermolieff J, Jirousek MR (2002) Nat Rev Drug Discov 1:696. doi:10.1038/nrd895

    Article  CAS  Google Scholar 

  4. Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A, Haj F, Wang Y, Minokoshi Y et al (2002) Dev Cell 2:489. doi:10.1016/S1534-5807(02)00148-X

    Article  CAS  Google Scholar 

  5. Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL et al (1999) Science 283:1544. doi:10.1126/science.283.5407.1544

    Article  CAS  Google Scholar 

  6. Hooft van Huijsduijnen R, Sauer WH, Bombrun A, Swinnen D (2004) J Med Chem 47:4142. doi:10.1021/jm030629n

    Article  CAS  Google Scholar 

  7. Frangioni JV, Beahm PH, Shifrin V, Jost CA, Neel BJ (1992) Cell 68:545. doi:10.1016/0092-8674(92)90190-N

    Article  CAS  Google Scholar 

  8. Iversen LF, Moller KB, Pedersen AK, Peters GH, Petersen AS, Andersen HS et al (2002) J Biol Chem 277:19982. doi:10.1074/jbc.M200567200

    Article  CAS  Google Scholar 

  9. Asante-Appiah E, Ball K, Bateman K, Skorey K, Friesen R, Desponts C et al (2001) J Biol Chem 276:26036. doi:10.1074/jbc.M011697200

    Article  CAS  Google Scholar 

  10. Sun JP, Fedorov AA, Lee SY, Guo XL, Shen Lawrence DS, Almo SC et al (2003) J Biol Chem 278:12406. doi:10.1074/jbc.M212491200

    Article  CAS  Google Scholar 

  11. Puius YA, Zhao Y, Sullivan M, Lawrence DS, Almo SC, Zhang ZY (1997) Proc Natl Acd Sci 94:13420. doi:10.1073/pnas.94.25.13420

    Article  CAS  Google Scholar 

  12. Asante-Appiah E, Patel S, Desponts C, Taylor JM, Lau C, Dufresne C et al (2006) J Biol Chem 281:8010. doi:10.1074/jbc.M511827200

    Article  CAS  Google Scholar 

  13. Wrobel J, Sredy J, Moxham C, Dietrich A, Li Z, Sawicki DR et al (1999) J Med Chem 42:3199. doi:10.1021/jm990260v

    Article  CAS  Google Scholar 

  14. Wiesmann C, Barr KJ, Kung J, Zhu J, Erlanson DA, Shen W et al (2004) Nat Struct Mol Biol 11:730. doi:10.1038/nsmb803

    Article  CAS  Google Scholar 

  15. Barford D, Flint AJ, Tonks NK (1994) Science 263:1397. doi:10.1126/science.8128219

    Article  CAS  Google Scholar 

  16. Jia Z, Barford D, Flint AJ, Tonks NK (1995) Science 268:1754. doi:10.1126/science.7540771

    Article  CAS  Google Scholar 

  17. Kolmodin K, Aqvist J (2001) FEBS Lett 498:208. doi:10.1016/S0014-5793(01)02479-6

    Article  CAS  Google Scholar 

  18. Montalibet J, Skorey K, McKay D, Scapin G, Asante-Appiah E, Kennedy B (2006) J Biol Chem 281:5258. doi:10.1074/jbc.M511546200

    Article  CAS  Google Scholar 

  19. Kamerlin KCL, Rucker R, Boresch S (2006) Biochem Biophys Res Commun 345:1161. doi:10.1016/j.bbrc.2006.04.181

    Article  CAS  Google Scholar 

  20. Kamerlin KCL, Rucker R, Boresch S (2007) Biochem Biophys Res Commun 356:1011. doi:10.1016/j.bbrc.2007.03.093

    Article  CAS  Google Scholar 

  21. Deng J, Lee KW, Sanchez T, Cui M, Neamati N, Briggs JM (2005) J Med Chem 48:1496. doi:10.1021/jm049410e

    Article  CAS  Google Scholar 

  22. Berendsen HJC, van der Spoel D, van Drunen R (1995) Comput Phys Commun 91:43. doi:10.1016/0010-4655(95)00042-E

    Article  CAS  Google Scholar 

  23. van der Spoel D, Lindahl E, Hess B, van Buuren AR, Apol E, Meulenhoff PJ, et al (2005) Gromacs User Manual version 3.3, http://www.gromacs.org

  24. Schuettelkopf AW, van Aalten DMF (2004) Acta Crystallogr D Biol Crystallogr 60:1355. doi:10.1107/S0907444904011679

    Article  CAS  Google Scholar 

  25. Discovery Studio 1.7, Accelrys Inc., San Diego, CA, USA

  26. CATALYST 4.11, Accelrys Inc., San Diego, CA, USA

  27. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267:727. doi:10.1006/jmbi.1996.0897

    Article  CAS  Google Scholar 

  28. Bharatham N, Bharatham K, Lee KW (2007) J Mol Graph Model 25:813. doi:10.1016/j.jmgm.2006.08.002

    Article  CAS  Google Scholar 

  29. Bharatham N, Bharatham K, Lee KW (2007) Arch Pharm Res 30:533

    Article  CAS  Google Scholar 

  30. Bharatham K, Bharatham N, Park KH, Lee KW (2008) J Mol Graph Model 26:1202. doi:10.1016/j.jmgm.2007.11.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Kavitha Bharatham and Nagakumar Bharatham were recipients of fellowships from the BK21 Programs and this work was supported by grants from the MOST/KOSEF for the Environmental Biotechnology National Core Research Center (grant #:R15-2003-012-02001-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keun Woo Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10822_2008_9229_Fig8_ESM.jpg

Docking conformations of compound-1 (yellow) and compound-3 (grey) in the initial structure (a and d) and cluster 10 representative structure (b and d). The mapping of compounds onto CLU10HYPO (c and f) respectively. The allosteric site is represented by α3, α6, α7 shown as ribbons and the interacting residues are shown as sticks (JPG 1743 kb)

Molecular structures of compound-1 (a) and compound-3 (b) (JPG 73 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bharatham, K., Bharatham, N., Kwon, Y.J. et al. Molecular dynamics simulation study of PTP1B with allosteric inhibitor and its application in receptor based pharmacophore modeling. J Comput Aided Mol Des 22, 925–933 (2008). https://doi.org/10.1007/s10822-008-9229-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-008-9229-0

Keywords

Navigation