Skip to main content
Log in

Interactions between cycloguanil derivatives and wild type and resistance-associated mutant Plasmodium falciparum dihydrofolate reductases

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Comparative molecular field analysis (CoMFA) and quantum chemical calculations were performed on cycloguanil (Cyc) derivatives of the wild type and the quadruple mutant (Asn51Ile, Cys59Arg, Ser108Asn, Ile164Leu) of Plasmodium falciparum dihydrofolate reductase (PfDHFR). The represented CoMFA models of wild type (\( r_{\text{cv}}^{2} = 0.727 \) and r 2 = 0.985) and mutant type (\( r_{\text{cv}}^{2} = 0.786 \) and r 2 = 0.979) can describe the differences of the Cyc structural requirements for the two types of PfDHFR enzymes and can be useful to guide the design of new inhibitors. Moreover, the obtained particular interaction energies between the Cyc and the surrounding residues in the binding pocket indicated that Asn108 of mutant enzyme was the cause of Cyc resistance by producing steric clash with p-Cl of Cyc. Consequently, comparing the energy contributions with the potent flexible WR99210 inhibitor, it was found that the key mutant residue, Asn108, demonstrates attractive interaction with this inhibitor and some residues, Leu46, Ile112, Pro113, Phe116, and Leu119, seem to perform as second binding site with WR99210. Therefore, quantum chemical calculations can be useful for investigating residue interactions to clarify the cause of drug resistance.

Graphical Abstract

CoMFA steric contour maps of Cyc derivatives against the quadruple mutant PfDHFR.

Electrostatic van der Waals surface interaction of Cyc and the key resistance residue Asn108.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Prapunwattana P, Sirawaraporn W, Yuthavong Y, Santi DV (1996) Mol Biochem Parasitol 83:93

    Article  CAS  Google Scholar 

  2. Dasgupta T, Anderson KS (2008) Biochemistry 47(5):1336

    Article  CAS  Google Scholar 

  3. Yuthavong Y, Kamchonwongpaisan S, Leartsakulpanich U, Chitnumsub P (2006) Future Microb 1(1):113

    Article  CAS  Google Scholar 

  4. Yuthavong Y, Yuvaniyama J, Chitnumsub P, Vanichtanankul J, Chusacultanachai S, Tarnchompoo B, Vilaivan T, Kamchonwongpaisan S (2005) Parasitology 130:249

    Article  CAS  Google Scholar 

  5. Yuvaniyama J, Chitnumsub P, Kamchonwongpaisan S, Vanichtanankul J, Sirawaraporn W, Taylor P, Walkinshaw MD, Yuthavong Y (2003) Nat Struct Biol 10:357

    Article  CAS  Google Scholar 

  6. Yuthavong Y (2002) Microbes Infect 4:175

    Article  CAS  Google Scholar 

  7. Nzila A (2006) Drug Discov Today 11(19–20):936

    Google Scholar 

  8. Cody V, Schwalbe CH (2006) Crystallog Rev 12(4):301

    Article  CAS  Google Scholar 

  9. Martin S (2007) ChemMedChem 2(7):944

    Article  Google Scholar 

  10. Warhurst DC (2002) Sci Prog 85:89

    Article  CAS  Google Scholar 

  11. Hastings IM, Donnelly MJ (2005) Drug Resist Updates 8:43

    Article  CAS  Google Scholar 

  12. Nzila A (2006) J Antimicrob Chemother 57:1043

    Article  CAS  Google Scholar 

  13. Gregson A, Plowe CV (2005) Pharmacol Rev 57:117

    Article  CAS  Google Scholar 

  14. Uhlemann AC, Yuthavong Y, Fidock DA (2005) Mol Approaches Malar. ASM Press, Washington DC, pp 429–461

  15. Rastelli G, Sirawaraporn W, Sompornpisut P, Vilaivan T, Kamchonwongpaisan S, Quarrell R, Lowe G, Thebtaranonth Y, Yuthavong Y (2000) Bioorg Med Chem 8:1117

    Article  CAS  Google Scholar 

  16. Peterson DS, Milhous WK, Wellems TE (1990) Proc Natl Acad Sci USA 87:3018

    Article  CAS  Google Scholar 

  17. Sirawaraporn W, Yongkiettrakul S, Sirawaraporn R, Yuthavong Y, Santi DV (1997) Exp Parasitol 87:245

    Article  CAS  Google Scholar 

  18. Kamchonwongpaisan S, Quarrell R, Charoensetakul N, Ponsinet R, Vilaivan T, Vanichtanankul J, Tarnchompoo B, Sirawaraporn W, Lowe G, Yuthavong Y (2004) J Med Chem 47:673

    Article  CAS  Google Scholar 

  19. Maitarad P, Saparpakorn P, Hannongbua S, Kamchonwongpaisan S, Tarnchompoo B, Yuthavong Y (2008) Particular interaction between pyrimethamine derivatives and quadruple mutant type dihydrofolate reductase of Plasmodium falciparum: CoMFA and quantum chemical calculations studies. J Enzym Inhib Med Chem. doi:JEIMC07/1339

    Google Scholar 

  20. Kubinyi H (1993) QSAR: hansch analysis and related approaches. VCH, Weinheim

    Book  Google Scholar 

  21. Hansch C, Leo A (1995) Exploring QSAR. Fundamentals and applications in chemistry and biology. American Chemical Society, Washington, DC

    Google Scholar 

  22. Cramer RDIII, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5959

    Article  CAS  Google Scholar 

  23. Kubinyi H, Flokers G, Martin YC (1998) Perspect Drug Discov Des 12–14:v–vii

  24. Cramer RDIII, Patterson DE, Bunce JD (1989) Prog Clin Biol Res 291:161

    CAS  Google Scholar 

  25. SYBYL 7.0, Tripos Associates Inc., 1699 South Hanley Road, Suite 303, St Louis, Missouri 63144, USA

  26. Golbraikh A, Tropsha A (2002) J Mol Graph Mod 20:269

    Article  CAS  Google Scholar 

  27. Nilsson J, De Jong S, Smilde AK (1997) J Chemom 11:511

    Article  CAS  Google Scholar 

  28. Hannongbua S, Nivesanond K, Lawtrakul L, Pungpo P, Wolschann P (2001) J Chem Inf Comput Sci 41:848

    CAS  Google Scholar 

  29. Cornell WD, Cieplak P, Bayly CI, Kollman PA (1993) J Am Chem Soc 115:9620

    Article  CAS  Google Scholar 

  30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B.05. Gaussian, Inc., Pittsburgh

    Google Scholar 

  31. AMBER parameter database. http://www.pharmacy.manchester.ac.uk/bryce/amber/

  32. Cummins PL, Ramnarayan K, Singh UC, Gready JE (1991) J Am Chem Soc 113(22):8247

    Article  CAS  Google Scholar 

  33. Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER9.0

  34. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  35. Saen-oon S, Kuno M, Hannongbua S (2005) Proteins 61:859

    Article  CAS  Google Scholar 

  36. Kuno M, Hongkrengkai R, Hannongbua S (2006) Chem Phys Lett 424:172

    Article  CAS  Google Scholar 

  37. Saen-oon S, Aruksakunwong O, Wittayanarakul K, Sompornpisut P, Hannongbua S (2007) J Mol Graph Model 26:720

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Thai Graduate Institute of Science and Technology (TGIST) Funds (TG-22-11-845D) under the National Science and Technology Development Agency, Thailand. S.H. is grateful to the Thailand Research Fund (RTA5080005). The Postgraduate Education and Research Program in Petroleum Petrochemical Technology and Advanced Materials, the Commission on Higher Education (CHE), the Kasetsart University Research and Development Institute (KURDI), and the Graduate School Kasetsart University Scholarship are gratefully acknowledged for financial support. The authors would like to thank the Large-Scale Research Laboratory of the National Electronics and Computer Technology (NECTEC), the National Center for Genetic Engineering and Biotechnology (BIOTEC), LCAC, and the computing center of KU for computing research facilities. This work has been partially supported by the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through its Center of Excellence Network program. Medicines for Malaria Venture (MMV), Wellcome Trust, and UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR) for Y.Y. and S.K. S.K. is an international research scholar of Howard Hughes Medical Institute (HHMI), USA. Finally, P.M. would like to thank Dr. Chak Sangma and Dr. Witcha Treesuwan for their AMBER supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supa Hannongbua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maitarad, P., Kamchonwongpaisan, S., Vanichtanankul, J. et al. Interactions between cycloguanil derivatives and wild type and resistance-associated mutant Plasmodium falciparum dihydrofolate reductases. J Comput Aided Mol Des 23, 241–252 (2009). https://doi.org/10.1007/s10822-008-9254-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-008-9254-z

Keywords

Navigation