Skip to main content
Log in

A critical cross-validation of high throughput structural binding prediction methods for pMHC

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

T-cells recognize antigens via their T-cell receptors. The major histocompatibility complex (MHC) binds antigens in a specific way, transports them to the surface and presents the peptides to the TCR. Many in silico approaches have been developed to predict the binding characteristics of potential T-cell epitopes (peptides), with most of them being based solely on the amino acid sequence. We present a structural approach which provides insights into the spatial binding geometry. We combine different tools for side chain substitution (threading), energy minimization, as well as scoring methods for protein/peptide interfaces. The focus of this study is on high data throughput in combination with accurate results. These methods are not meant to predict the accurate binding free energy but to give a certain direction for the classification of peptides into peptides that are potential binders and peptides that definitely do not bind to a given MHC structure. In total we performed approximately 83,000 binding affinity prediction runs to evaluate interactions between peptides and MHCs, using different combinations of tools. Depending on the tools used, the prediction quality ranged from almost random to around 75% of accuracy for correctly predicting a peptide to be either a binder or a non-binder. The prediction quality strongly depends on all three evaluation steps, namely, the threading of the peptide, energy minimization and scoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1
Fig 2
Fig 3

Similar content being viewed by others

References

  1. Saxova P, Buus S, Brunak S, Kesmir C (2003) Predicting proteasomal cleavage sites: a comparison of available methods. Int Immunol 15(7):781–787. doi:10.1093/intimm/dxg084

    Article  CAS  Google Scholar 

  2. Korber B, LaBute M, Yusim K (2006) Immunoinformatics comes of age. PLOS Comput Biol 2(6):e71. doi:10.1371/journal.pcbi.0020071

    Article  Google Scholar 

  3. Tsurui H, Takahashi T (2007) Prediction of T-cell epitope. J Pharmacol Sci 105(4):299–316. doi:10.1254/jphs.CR0070056

    Article  CAS  Google Scholar 

  4. Sousa SF, Fernades P, Ramos MJ (2006) Protein-ligand docking current status and future challanges. Proteins 65:15–26. doi:10.1002/prot.21082

    Article  CAS  Google Scholar 

  5. Gowthaman U, Agrewala JN (2008) In silico tools for predicting peptides binding to HLA-class II molecules: more confusion than conclusion. J Proteome Res 7(1):154–163. doi:10.1021/pr070527b

    Article  CAS  Google Scholar 

  6. Miller PJ, Pazy Y, Conti B, Riddle D, Appella E, Collins EJ (2007) Single MHC mutation eliminates enthalpy associated with T cell receptor binding. J Mol Biol 373(2):315–327. doi:10.1016/j.jmb.2007.07.028

    Article  CAS  Google Scholar 

  7. Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG (1991) Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351:290–296. doi:10.1038/351290a0

    Article  CAS  Google Scholar 

  8. Kjer-Nielsen L, Clements CS, Purcell AW et al (2003) A structural basis for the selection of dominant alphabeta T cell receptors in antiviral immunity. Immunity 18(1):53–64. doi:10.1016/S1074-7613(02)00513-7

    Article  CAS  Google Scholar 

  9. Bergman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28(1):235–242. doi:10.1093/nar/28.1.235

    Article  Google Scholar 

  10. Peters B, Bui HH, Frankild S et al (2006) A community resource benchmarking predictions of peptide binding to MHC-I molecules. PLOS Comput Biol 2(6):e65. doi:10.1371/journal.pcbi.0020065

    Article  Google Scholar 

  11. Rognan D, Zimmermann N, Jung G, Folkers G (1992) Molecular dynamics study of a complex between the human histocompatibility antigen HLA-A2 and the IMP58–66 nonapeptide from influenza virus matrix protein. Eur J Biochem 208(1):101–113. doi:10.1111/j.1432-1033.1992.tb17163.x

    Article  CAS  Google Scholar 

  12. Zoete V, Michielin O (2007) Comparison between computational alanine scanning and per-residue binding free energy decomposition for protein-protein association using MM-GBSA: Application to the TCR-p-MHC complex. Proteins 67(4):1026–1047. doi:10.1002/prot.21395

    Article  CAS  Google Scholar 

  13. Gregoire C, Lin SY, Mazza G, Rebai N, Luescher IF, Malissen B (1996) Covalent assembly of a soluble T cell receptor-peptide-major histocompatibility class I complex. Proc Natl Acad Sci USA 93(14):7184–7189. doi:10.1073/pnas.93.14.7184

    Article  CAS  Google Scholar 

  14. Toh H, Kamikawaji N, Tana T, Muta S, Sasazuki T, Kuhara S (2000) Magnitude of structural changes of the T-cell receptor binding regions determine the strength of T-cell antagonism: molecular dynamics simulations of HLA-DR4 (DRB1*0405) complexed with analogue peptide. Protein Eng 13(6):423–429. doi:10.1093/protein/13.6.423

    Article  CAS  Google Scholar 

  15. Omasits U, Knapp B, Neumann M et al (2008) Analysis of key parameters for molecular dynamics of pMHC molecules. Mol Simul 34:781–793. doi:10.1080/08927020802256298

    Article  CAS  Google Scholar 

  16. Wan S, Coveney P, Flower DR (2004) Large-scale molecular dynamics simulations of HLA-A*0201 complexed with a tumor-specific antigenic peptide: can the alpha3 and beta2 m domains be neglected? J Comput Chem 25(15):1803–1813. doi:10.1002/jcc.20100

    Article  CAS  Google Scholar 

  17. Knapp B, Omasits U, Schreiner W (2008) Side chain substitution benchmark for peptide/MHC interaction. Protein Sci 17(6):977–982. doi:10.1110/ps.073402508

    Article  CAS  Google Scholar 

  18. Canutescu AA, Shelenkov AA, Dunbrack RL Jr (2003) A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci 12(9):2001–2014. doi:10.1110/ps.03154503

    Article  CAS  Google Scholar 

  19. Xu J (2005) Rapid side-chain prediction via tree decomposition. RECOMB 3500:423–439

    CAS  Google Scholar 

  20. Hartmann C, Antes I, Lengauer T (2007) IRECS: a new algorithm for the selection of most probable ensembles of side-chain conformations in protein models. Protein Sci 16(7):1294–1307. doi:10.1110/ps.062658307

    Article  CAS  Google Scholar 

  21. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    CAS  Google Scholar 

  22. Rognan D, Lauemoller SL, Holm A, Buus S, Tschinke V (1999) Predicting binding affinities of protein ligands from three-dimensional models: application to peptide binding to class I major histocompatibility proteins. J Med Chem 42(22):4650–4658. doi:10.1021/jm9910775

    Article  CAS  Google Scholar 

  23. Wang R, Lai L, Wang S (2002) Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des 16:11–26. doi:10.1023/A:1016357811882

    Article  CAS  Google Scholar 

  24. Huey R, Morris GM, Olson AJ, Goodsell DS (2007) A semiempirical free energy force field with charge-based desolvation. J Comput Chem 28(6):1145–1152. doi:10.1002/jcc.20634

    Article  CAS  Google Scholar 

  25. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1):29–36

    CAS  Google Scholar 

  26. Spearman C (1904) The proof, measurement of association between two things. By C. Spearman, 1904. Am J Psychol 100(3–4):441–471

    Google Scholar 

  27. Roc-macro (2008) Nonparametric comparison of areas under correlated ROC curves. SAS website 2008 July 16. Available from http://support.sas.com/kb/25/017.html. Cited 2008 Jul 16

  28. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44(3):837–845. doi:10.2307/2531595

    Article  CAS  Google Scholar 

  29. Kates L, Petzoldt T proto (2007) An R Package for Prototype Programming. http://cran.r-project.org/web/packages/proto/. Accessed 2 Oct 2008

Download references

Acknowledgment

This work is supported in part by the Austrian Grid Project of the Austrian Ministry of Education, Science and Culture (contract no. GZ 4003/2-VI/4c/2004).

Conflict of interest

The authors declare no conflict of interests. None of the authors is author or co-author of any tool that was discussed and evaluated in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Knapp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knapp, B., Omasits, U., Frantal, S. et al. A critical cross-validation of high throughput structural binding prediction methods for pMHC. J Comput Aided Mol Des 23, 301–307 (2009). https://doi.org/10.1007/s10822-009-9259-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-009-9259-2

Keywords

Navigation