Skip to main content
Log in

Design of compound libraries for fragment screening

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Approaches to the design of libraries for fragment screening are illustrated with reference to a 20 k generic fragment screening library and a 1.2 k generic NMR screening library. Tools and methods for library design that have been developed within AstraZeneca are described, including Foyfi fingerprints and the Flush program for neighborhood characterization. It will be shown how Flush and the BigPicker, which selects maximally diverse sets of compounds, are used to apply the Core and Layer method for library design. Approaches to partitioning libraries into cocktails are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Congreve M, Chessari G, Tisi D, Woodhead AJ (2008) J Med Chem 51:3661–3680. doi:10.1021/jm8000373

    Article  CAS  Google Scholar 

  2. Hesterkamp T, Whittaker M (2008) Curr Opin Chem Biol 12:260–268. doi:10.1016/j.cbpa.2008.02.005

    Article  CAS  Google Scholar 

  3. Hajduk PJ, Greer J (2007) Nat Rev Drug Discov 6:211–219. doi:10.1038/nrd2220

    Article  CAS  Google Scholar 

  4. Albert JS, Blomberg N, Breeze AL, Brown AJH, Burrows JN, Edwards PD, Folmer RHA, Geschwindner S, Griffen EJ, Kenny PW, Nowak T, Olsson L-L, Sanganee H, Shapiro AB (2007) Curr Top Med Chem 7:1600–1629. doi:10.2174/156802607782341091

    Article  CAS  Google Scholar 

  5. Jhoti H, Cleasby A, Verdonk M, Williams G (2007) Curr Opin Chem Biol 11:485–493. doi:10.1016/j.cbpa.2007.07.010

    Article  CAS  Google Scholar 

  6. Barker J, Courtney S, Hesterkamp T, Ullmann D, Whittaker M (2005) Exp Opin Drug Discov 1:225–236. doi:10.1517/17460441.1.3.225

    Article  Google Scholar 

  7. Hartshorn MJ, Murray CW, Cleasby A, Frederickson M, Tickle IJ, Jhoti H (2005) J Med Chem 48:403–413. doi:10.1021/jm0495778

    Article  CAS  Google Scholar 

  8. Erlanson DA, McDowell RS, O’Brien T (2004) J Med Chem 47:3463–3482. doi:10.1021/jm040031v

    Article  CAS  Google Scholar 

  9. DeLano WL (2002) Curr Opin Struct Biol 12:14–20. doi:10.1016/S0959-440X(02)00283-X

    Article  CAS  Google Scholar 

  10. Bogan AA, Thorn KS (1998) J Mol Biol 280:1–9. doi:10.1006/jmbi.1998.1843

    Article  CAS  Google Scholar 

  11. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Science 274:1531–1534. doi:10.1126/science.274.5292.1531

    Article  CAS  Google Scholar 

  12. Allen KN, Bellamacina CR, Ding X, Jeffery CJ, Mattos C, Petsko GA, Ringe D (1996) J Phys Chem 100:2605–2611. doi:10.1021/jp952516o

    Article  CAS  Google Scholar 

  13. Miranker A, Karplus M (1991) Prot Struct Funct Genet 11:29–34. doi:10.1002/prot.340110104

    Article  CAS  Google Scholar 

  14. Boehm H-J (1992) J Comput Aided Mol Des 6:61–78. doi:10.1007/BF00124387

    Article  CAS  Google Scholar 

  15. Goodford PJ (1985) J Med Chem 28:849–857. doi:10.1021/jm00145a002

    Article  CAS  Google Scholar 

  16. Jencks WP (1981) Proc Natl Acad Sci USA 78:4046–4050. doi:10.1073/pnas.78.7.4046

    Article  CAS  Google Scholar 

  17. Teague SJ, Davis AM, Leeson PD, Oprea T (1999) Angew Chem Int Ed 38:3743–3748. doi:10.1002/(SICI)1521-3773(19991216)38:24<3743::AID-ANIE3743>3.0.CO;2-U

    Article  CAS  Google Scholar 

  18. Colclough N, Hunter A, Kenny PW, Kittlety RS, Lobedan L, Tam KY, Timms MA (2008) Bioorg Med Chem 16:6611–6616. doi:10.1016/j.bmc.2008.05.021

    Article  CAS  Google Scholar 

  19. Schuffenhauer A, Ruedisser S, Marzinzik A, Jahnke W, Selzer P, Jacoby E (2005) Curr Top Med Chem 5:751–762. doi:10.2174/1568026054637700

    Article  CAS  Google Scholar 

  20. Baurin N, Aboul-Ela F, Barril X, Davis B, Drysdale M, Dymock B, Finch H, Fromont C, Richardson C, Simmonite H, Hubbard RE (2004) J Chem Inf Comput Sci 44:2157–2166. doi:10.1021/ci049806z

    CAS  Google Scholar 

  21. Fejzo J, Lepre CA, Peng JW, Bemis GW, Ajay Murcko, MA MooreJM (1999) Chem Biol 6:755–769. doi:10.1016/S1074-5521(00)80022-8

    Article  CAS  Google Scholar 

  22. Erlanson DA, Wells JA, Braisted AC (2004) Annu Rev Biophys Biomol Struct 33:199–223. doi:10.1146/annurev.biophys.33.110502.140409

    Article  CAS  Google Scholar 

  23. Thanos CD, Randal M, Wells JA (2003) J Am Chem Soc 125:15280–15281. doi:10.1021/ja0382617

    Article  CAS  Google Scholar 

  24. Congreve M, Carr R, Murray C, Jhoti H (2003) Drug Discov Today 8:876–877. doi:10.1016/S1359-6446(03)02831-9

    Article  Google Scholar 

  25. Petros AM, Dinges J, Augeri DJ, Baumeister SA, Betebenner DA, Bures MG, Elmore SW, Hajduk PJ, Joseph MK, Landis SK, Nettesheim DG, Rosenberg SH, Shen W, Thomas S, Wang X, Zanze I, Zhang H, Fesik SW (2006) J Med Chem 49:656–663. doi:10.1021/jm0507532

    Article  CAS  Google Scholar 

  26. Hann MM, Leach AR, Harper G (2001) J Chem Inf Comput Sci 41:856–864. doi:10.1021/ci000403i

    CAS  Google Scholar 

  27. Boehm H-J, Boehringer M, Bur D, Gmuender H, Huber W, Klaus W, Kostrewa D, Kuehne H, Luebbers T, Meunier-Keller N, Mueller F (2000) J Med Chem 43:2664–2674. doi:10.1021/jm000017s

    Article  CAS  Google Scholar 

  28. Hohwy M, Spadola L, Lundquist B, Hawtin P, Dahmén J, Groth-Clausen I, Nilsson E, Persdotter S, Von Wachenfeldt K, Folmer RHA, Edman K (2008) J Med Chem 51:2178–2186. doi:10.1021/jm701509k

    Article  CAS  Google Scholar 

  29. Geschwindner S, Olsson L-L, Albert JS, Deinum J, Edwards PD, De Beer T, Folmer RHA (2007) J Med Chem 50:5903–5911. doi:10.1021/jm070825k

    Article  CAS  Google Scholar 

  30. Edwards PD, Albert J, Sylvester M, Aharony D, Andisik D, Campbell J, Chessari G, Congreve M, Folmer RHA, Geschwindner S, Koether G, Kolmodin K, Krumrine J, Mauger RC, Olsson L-L, Patel S, Spear N, Tian G (2007) J Med Chem 50:5912–5925. doi:10.1021/jm070829p

    Article  CAS  Google Scholar 

  31. Black E, Breed J, Breeze AL, Embrey K, Garcia R, Gero TW, Godfrey L, Kenny PW, Morley AD, Minshull CA, Pannifer AD, Read J, Rees A, Russell DJ, Toader D, Tucker J (2005) Bioorg Med Chem Lett 15:2503–2507. doi:10.1016/j.bmcl.2005.03.068

    Article  CAS  Google Scholar 

  32. Breeze AL, Green OM, Hull KG, Ni H, Hauck SI, Mullen GB, Hales NJ, Timms D (2005) Preparation of pyrroles as antibacterial agents. (2005) WO 2005026149

  33. Kogej T, Engkvist O, Blomberg N, Muresan S (2006) J Chem Inf Model 46:1201–1213. doi:10.1021/ci0504723

    Article  CAS  Google Scholar 

  34. Fingerprint theory manual, Daylight Chemical Information Systems Inc., Aliso Viejo, CA 92656, USA. http://www.daylight.com/dayhtml/doc/theory/theory.finger.html, accessed 26th November 2008

  35. Flower DR (1998) J Chem Inf Comput Sci 38:379–386. doi:10.1021/ci970437z

    CAS  Google Scholar 

  36. Hsieh P Hash codes. http://www.azillionmonkeys.com/qed/hash.html

  37. Adamson GW, Lynch MF, Town WG (1971) J Chem Soc C 1971:3702–3706. doi:10.1039/j39710003702

    Article  Google Scholar 

  38. Patterson DE, Cramer RD, Ferguson AM, Clark RD, Weinberger LE (1996) J Med Chem 39:3049–3059. doi:10.1021/jm960290n

    Article  CAS  Google Scholar 

  39. Krumrine JR, Maynard AT, Lerman CL (2005) J Med Chem 48:7477–7481. doi:10.1021/jm0501026

    Article  CAS  Google Scholar 

  40. Nilakantan R, Nunn DS (2003) Drug Discov Today 8:668–672. doi:10.1016/S1359-6446(03)02793-4

    Article  CAS  Google Scholar 

  41. Taylor R (1995) J Chem Inf Comput Sci 35:59–67. doi:10.1021/ci00023a009

    CAS  Google Scholar 

  42. Butina D (1999) J Chem Inf Comput Sci 39:747–750. doi:10.1021/ci9803381

    CAS  Google Scholar 

  43. SMARTS theory manual, Daylight Chemical Information Systems Inc., Aliso Viejo, CA 92656, USA. http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html, accessed 19th December 2008

  44. Kenny PW, Sadowski J (2005) Structure modification in chemical databases. Methods and Principles in Medicinal Chemistry, vol 23 (Chemoinformatics in Drug Discovery), pp 271–285. http://dx.doi.org/10.1002/3527603743.ch11

  45. Grant JA, Pickup BT (1995) J Phys Chem 99:3503–3510. doi:10.1021/j100011a016

    Article  CAS  Google Scholar 

  46. Haigh JA, Pickup BT, Grant JA, Nicholls A (2005) J Chem Inf Model 45:673–684. doi:10.1021/ci049651v

    Article  CAS  Google Scholar 

  47. Matzen L, Engesgaard A, Ebert B, Didriksen M, Frølund B, Krogsgaard-Larsen P, Jaroszewski JW (1997) J Med Chem 40:520–527. doi:10.1021/jm9607212

    Article  CAS  Google Scholar 

  48. Herr RJ (2002) Bioorg Med Chem 10:3379–3393. doi:10.1016/S0968-0896(02)00239-0

    Article  CAS  Google Scholar 

  49. Bell PH, Roblin RO (1942) J Am Chem Soc 64:2905–2917. doi:10.1021/ja01264a055

    Article  CAS  Google Scholar 

  50. Lipinski CA, Fiese EF, Korst RJ (1991) Quant Struct Act Relat 10:109–117. doi:10.1002/qsar.19910100205

    Article  CAS  Google Scholar 

  51. ROCS OpenEye Scientific Software, Santa Fe, New Mexico, USA http://www.eyesopen.com/products/applications/rocs.html

Download references

Acknowledgments

It is a pleasure to acknowledge helpful and insightful discussions with Alex Breeze, Gill Burgess, Jeremy Burrows, Richard Button, Kevin Embrey, Rutger Folmer, Andrew Grant, James Haigh, Neil Hales, Jeff Morris, Paul Owen, Jens Petersen, Adam Shapiro, Ellen Simkiss, Steve St-Gallay, Dave Timms and Richard Ward.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. Kenny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blomberg, N., Cosgrove, D.A., Kenny, P.W. et al. Design of compound libraries for fragment screening. J Comput Aided Mol Des 23, 513–525 (2009). https://doi.org/10.1007/s10822-009-9264-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-009-9264-5

Keywords

Navigation