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Abstract Computational methods for docking ligands

have been shown to be remarkably dependent on precise

protein conformation, where acceptable results in pose

prediction have been generally possible only in the artifi-

cial case of re-docking a ligand into a protein binding site

whose conformation was determined in the presence of the

same ligand (the ‘‘cognate’’ docking problem). In such

cases, on well curated protein/ligand complexes, accurate

dockings can be returned as top-scoring over 75% of the

time using tools such as Surflex-Dock. A critical applica-

tion of docking in modeling for lead optimization requires

accurate pose prediction for novel ligands, ranging from

simple synthetic analogs to very different molecular scaf-

folds. Typical results for widely used programs in the

‘‘cross-docking case’’ (making use of a single fixed protein

conformation) have rates closer to 20% success. By making

use of protein conformations from multiple complexes,

Surflex-Dock yields an average success rate of 61% across

eight pharmaceutically relevant targets. Following dock-

ing, protein pocket adaptation and rescoring identifies

single pose families that are correct an average of 67% of

the time. Consideration of the best of two pose families

(from alternate scoring regimes) yields a 75% mean suc-

cess rate.

Keywords Docking � Cross-docking � Protein flexibility �
Pose prediction � Surflex � Surflex-Dock

Introduction

The field of molecular docking for the purpose of small

molecule drug design is relatively mature. The 1980s saw

the establishment of the field with the pioneering work of

Blaney and Kuntz on rigid docking of small molecules to

protein structures [1]. The 1990s saw the introduction of

flexible docking systems from a number of groups,

including the predecessor to Surflex-Dock, called Ham-

merhead [2], and others such as FlexX, Gold, and

AutoDock [3–5], making use of a number of different

approaches to scoring intermolecular interactions [6–8].

During the current decade, a number of methods have

achieved fairly wide use, including Surflex-Dock [9–11]

and other approaches, both academic and commercial, such

as AutoDock, DOCK, Glide, Gold, FlexX, Fred, and

SLIDE (for a review, see [12] or [13]).

In a theoretical sense, solution of the docking problem

lies in correctly computing the combination of enthalpic and

entropic effects that come from the formation and destruc-

tion of interactions among the protein, ligand, and solvent in

the form of hydrogen bonds, Van der Waals interactions,

formally charged interactions, and the entropy losses of the

protein and ligand balanced against the entropy gains of

the solvent. Direct methods exist to estimate DGbind through

the partition function, but these involve enumeration of all

states of the system (bounded reasonably by energy) along

with all corresponding energies [14]. An accurate picture of

a protein/ligand interaction would involve an ensemble of

the most probable protein and ligand conformations given

an accurate calculation of the free energies attributable to

each state. This is not feasible for many docking applica-

tions, given the speed requirements.

In a computational sense, due to the complexity

requirements, the docking problem is typically formulated
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as a search for a global optimum in a landscape that is

defined by a scoring function, protein structure, ligand

structure, and the degrees of freedom to be explored. The

scoring function and search strategy combine to yield the

solutions that a method will report. In nearly all high-

throughput docking approaches, protein conformation is

not among the degrees of freedom being searched. So,

changes in the protein structure influence the shape of the

energy landscape, not just the starting point of the search,

and this also affects the solutions that will be reported. The

energy landscape itself is usually characterized by a scor-

ing function that is driven by inter-molecular energetics,

treating intra-ligand energetics in a reduced fashion and

largely ignoring the protein energetics. Generally, docking

methods report a small number of poses, with evaluations

tending to focus on either the accuracy of the geometric

configuration of the top scoring pose or on some aspect of

the score of the top pose (e.g. whether scores rank true

ligands above non-ligands).

As the field has matured, use of shared benchmarking,

especially by independent investigators, has become more

common [12, 15–19]. This has revealed three key things.

First, while a number of methods appear to produce similar

performance in tests of geometric docking accuracy

(roughly 60–80% success in producing correct top-ranked

dockings of ligands to their cognate protein structure), the

methods work much less well when making use of non-

cognate protein structures (closer to 20–40% correct).

Second, the methods are highly target dependent with

respect to performance on pose prediction or screening

enrichment. Third, there is no reliable correlation between

predicted scores and binding affinities of ligands at the

level required for guidance in lead optimization. A recent

issue of the Journal of Computer-Aided Molecular Design

was devoted to these issues, particularly these papers:

[20–23].

The challenge of docking non-cognate ligands is illus-

trated in Fig. 1, where two ligands of PDE4b are shown

[adenosine-50-monophosphate (AMP) and 8-bromo-AMP].

The single atom change (hydrogen to bromine) results in a

180� flip of the heterocycle despite the fact that a more

subtle shift could accommodate the additional steric bulk.

Overall, the protein structure changes relatively little, with

the largest shift being with a methionine sidechain in the

active site. The flipped ligand is significantly easier to

‘‘predict’’ given the cognate protein structure for bromo-

AMP than it is for the cognate protein structure for AMP

itself, despite the relatively slight protein movements.

When protein movements are slight, as in this case, an

acceptable pose can often be identified among the top

scoring set when docking against a non-cognate structure.

However, the challenge lies in correctly discriminating the

correct pose when the difference between top ranked

(incorrect pose) and lower ranked (correct pose) is fre-

quently \1 kcal/mol.

The work reported here deviates from concentration on a

single protein conformation, a single ‘‘best’’ predicted

ligand conformation, and strict reliance on a scoring

function that is dominated by inter-molecular effects.

Protein conformational variation is considered on a large

scale by using multiple protein structures for individual

targets, and it is considered on a small scale by exploring

local optimization of protein atomic coordinates in com-

plex with a docked ligand. Instead of predicted ligand

poses being considered separately, ligand pose families are

considered, yielding ensembles of geometrically related

poses whose ranks are determined in a probabilistic man-

ner. In computing the scores of pose families, protein/

ligand inter-molecular interactions are, of course, consid-

ered, but intra-molecular interactions, both non-covalent

and covalent, for both the ligand and protein, are also

considered.

Another, somewhat different, avenue involves the

appropriate use of pre-existing knowledge in docking. The

use of information about the bound pose of a cognate

ligand in re-docking that ligand to the cognate protein can

lead to serious problems of bias [23, 24]. However, in

Fig. 1 Two PDE4b structures (1R09 and 1RoR) are shown super-

imposed. The former, shown in red is in complex with 8-bromo-AMP

(yellow carbons), and the latter, shown in blue, is in complex with

AMP (green carbons). The single atom change from hydrogen to

bromine results in a complete flip of the adenosine, where a common

hydrogen bond is made by different atoms on the heterocycle. The

protein conformational shift is subtle, with the largest change being in

the position of MET-431 (indicated with an arrow). However,

docking into the cognate structure, the correct pose of 8-bromo-AMP

is ranked much higher than when docking into the structure

determined with AMP instead
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practice, modelers seek to exploit their knowledge of well-

studied ligands in making better predictions about new

ligands, especially those that share structural features (e.g.

a common P1 binding element for a serine protease

inhibitor or a common hinge-binding moiety for a kinase

inhibitor). In good hands, this can have a very positive

impact on the performance of docking algorithms, but it

can also lead to problems if overgeneralizations are

enforced as hard constraints. The approach taken here

makes use of small numbers of fragments of the cognate

ligands from a small set of protein structures that are to be

used to guide the docking of new ligands. The methods

used are fully automatic and lead to no ‘‘contamination’’ of

results, since the ligands to be used to evaluate perfor-

mance are never used as information that affects the input

to docking protocols. This approach leads to more efficient

and deeper searching of binding modes that are related to

those known to exist for ligands with common subfrag-

ments, but the constraints are not strict so alternative

binding modes are explored as well.

Results are quantified for pose prediction accuracy in

cross-docking, where ligands were docked into pharma-

ceutically relevant targets whose structural determination

was done with different ligands. Eight targets, with a total

of 211 test ligands, comprised the benchmark. Use of

multiple protein structures per target with the standard

Surflex-Dock scoring scheme yielded performance for top

scoring poses of *50% correct (B2.0 Å rmsd), compared

with roughly 25% correct using a single arbitrarily chosen

protein structure. The level of performance seen with

multi-structure docking is close to that of cognate docking

on ‘‘hard’’ benchmarks (e.g. the 100 complex Vertex set

[10, 18]). Through the use of post-docking protein pocket

adaptation, pose family ensembles, and generalized scor-

ing, examination of just two pose families per ligand

yielded a mean success rate of 75% across the eight targets

(single pose family performance averaged 64%). The level

of performance obtained considering two pose families

approaches what is observed on cognate docking (single

top-scoring pose) with ‘‘clean’’ benchmarks (e.g. the 85

complex set of Hartshorn et al. [25]).

The approaches presented here are practical for use in

lead optimization exercises. The docking protocol

employing multiple protein structures takes just a few

minutes per ligand. The rescoring protocol that performs

protein pocket adaptation takes *30 s per pose per protein

pocket when moving heavy atoms as well as protons. With

five protein structures per target and ten poses per ligand,

rescoring times were typically 30 min per ligand. While

this is an expensive computation, use of multi-core, multi-

node computing clusters means that sets of tens of ligands

can be fully processed in less than an hour on widely

available servers.

Methods and data

The present study makes use of two publicly available data

sets to demonstrate improvements, both tangible and

operational, in docking novel ligands to targets of phar-

maceutical significance. Neither set was constructed for

this study, rather being the work-product of third par-

ties that were kind enough to share their data. Neither set

was ‘‘cherry-picked’’ in any fashion. The following

describes the molecular data sets, computational methods,

detailed computational procedures, and quantification of

performance.

Molecular data sets

Two data sets are used here to establish performance in

geometric docking accuracy. The first, a cognate docking

set, from Hartshorn et al. [25], contains 85 protein/ligand

complexes. These were selected by the authors to represent

a diverse, high-quality assortment in which questions about

structure quality or uncertainty in ligand placement are at a

minimum. The authors provided two alternative protein

structures, one with protons optimized in the presence of

the ligand with GoldScore, and one with ChemScore. For

this work, the GoldScore variant (protein_opt_h_gs.mol2)

was used (the other variant was not tested). Cognate

ligands were provided as MDL mol files with all protons

expected at physiological pH. These ligands were ran-

domized (free torsions and alignments) and minimized to

produce starting points for docking. This set will be

referred to in what follows as the Astex85 set. This set was

used primarily to establish an upper bound on how well

docking can work in the case where the protein confor-

mation is known to be maximally hospitable to the ligand

to be docked. Note, however, that the proton optimization

that was carried out was not done with the Surflex-Dock

scoring function, so there is no particular bias in the proton

coordinates that favored the minima that this scoring

function prefers.

The second set, a cross-docking set, was provided by

Jeffry Sutherland (personal communication). It consists of

eight protein targets, each represented with up to ten dif-

ferent co-aligned structures from different protein/ligand

complexes. For each target, the first five structures were

used as input to molecular docking. A total of 211 ligands

from different complexes were available for testing.

Figure 2 shows all of the cognate ligands for PDE4b,

CDK2, and ESR1 (above the line), and typical examples of

non-cognate ligands used for testing below the line. The

shaded moieties are geometrically equivalent in terms of

their protein interactions. Figure 3 shows cognate ligands

for thrombin (F2), MAPK14, and MMP8 (only four ligands

are shown for two proteins due to space considerations).
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The remaining two protein targets were PDE5a and

MMP13, and structures are not shown in the interest of

space. Results for PDE4b/5a and MMP8/13 are combined

in what follows, since the total numbers of ligands for the

target variants were small. This set will be referred to as the

CrossDock211 set.

Protein structures for docking were prepared from the

original PDB files and aligned to the structures that formed

the original data set, due to a small number of errors in the

original structures. These structures were optimized with

their cognate ligands in order to eliminate large effects on

computed internal energies of binding pockets that would

otherwise result from differences between nominal optimal

bond lengths, angles, etc. between those used for crystal-

lographic structure solution and those used for scoring

predicted protein/ligand complexes. Note that this does not

result in contamination of prediction results, since the

ligands used in the optimization process were different

from those used in docking.

Ligand structures for docking were treated in two ways.

For the 211 test ligands, docking was carried out using

randomized test ligand conformations as well as using

minimized versions of bound poses. The latter was done to

simulate a typical modeling workflow, where the modeler

builds ligands ‘‘in place’’ based upon a best guess as to the

bound pose of a new ligand (including a sensible guess as
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test ligands shown below the line. Light shaded circles highlight

corresponding moieties on the ligands within each target (H-bond

acceptor interacting with the sidechain amide of GLN-443 within

PDE4b, H-bond acceptor interacting with amide proton of LEU-83

within CDK2, hydroxyl interacting with the carboxylate of GLU-353

within ESR1). Note that a single atom change (hydrogen to bromine)

causes a 180� moiety flip among the top two ligands of PDE4b (the

pyrimidine flips relative to the remainder of the ligand in order to

roughly superimpose the highlighted nitrogens)
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to tautomeric state and probable ring conformations).

Results were slightly better using the latter scheme, as

would be expected, but success rates in docking were not

statistically significantly different either within a single

target or over all targets (based on Fisher’s exact test at

p = 0.05 of successful docking with a threshold of

2.0 Å rmsd). In what follows, the results refer to the latter

scheme unless otherwise noted.

All protein and ligand structures as well as preparation

protocols are available for download (see http://www.

jainlab.org for details).

Computational methods

The core computational methods within Surflex-Dock have

been reported in previous papers and will be described only

briefly here. Those methods that represent modifications

and enhancements will be presented in detail.

Scoring function and search strategy

Surflex-Dock employs an empirically derived scoring

function, where the parameters of the function are based on

protein-ligand complexes of known affinities and structures.

The function may also be tuned by using information from

non-binding ligands or hard docking failures (see [11, 26,

27] for extensive details on the Surflex-Dock scoring func-

tion as well as a review of its relationship to other

approaches). Conceptually, the scoring function, as with the

entire family of empirical scoring functions, borrows

heavily from the approach of Bohm [6], with terms for

hydrophobic contact, polar interactions, and entropic fixa-

tion costs for loss of torsional, translational, and rotational

degrees of freedom. However, the Surflex-Dock scoring

function makes a significant departure from other approa-

ches in two important respects. First, the function is

composed of a sum of non-linear terms and it is continuous

and first-order piecewise differentiable. Second, the

parameter estimation regime for the function takes direct

account of the problem of ligand pose variation. Very small

changes in ligand pose can yield large differences in the

nominal value of a scoring function. Rather than taking the

precise pose from a crystal structure, the approach is to find

the nearest local optimum and define the score at that opti-

mum as the score for the ligand. This follows the approach

developed for Compass, which established the conceptual

framework for this approach, termed multiple instance

learning within the computational machine learning field

[28, 29]. For a more detailed discussion of the Surflex-Dock

scoring function, please refer to the specific reports of the

derivation and refinement of the function [7, 11, 26].

A detailed account of the Surflex-Dock search algorithm

can be found in the original paper [9], and additional

refinements were described in a more recent publication

[10]. The method employs an idealized active site ligand

(called a protomol) as a target to generate putative poses of

molecules or molecular fragments. The protomols utilize

CH4, C=O, and N–H molecular fragments. The molecular

fragments are tessellated in the protein active site and

optimized based on the scoring function. High scoring

fragments are retained, with redundant fragments being

eliminated. The protomol is intended to mimic the ideal

interactions made by a perfect ligand to the protein active

site that will be the subject of docking. Surflex-Dock

utilizes a molecular-similarity based alignment engine to

generate putative alignments of fragments of an input

ligand to the protomol. Poses of the molecular fragments

that tend to maximize similarity to the protomol are used as

input to the scoring function and are subject to thresholds

on protein interpenetration followed by local optimization.

The partially optimized poses of the fragments form the

basis for further elaboration of the optimal pose of the full

input ligand. The procedure identifies high scoring frag-

ments that have compatible geometries to allow for

merging in order to construct a high scoring pose of the full

input ligand. The whole molecules that result are pruned

based on docking score and are subjected to further gra-

dient-based score optimization. The procedure returns a

fixed number of top scoring poses.

Recent improvements to this basic procedure include

implementation of a covalent force-field, which supports

all-atom Cartesian ligand optimization, either before or

after docking, as well as a general approach to ring flexi-

bility. Screening performance can be dramatically

improved by making use of docking protocols that employ

these methods [10]. The other recently reported improve-

ment with specific relevance to the work reported here is a

procedure for making use of molecular fragments of known

binding geometry to help guide docking. Frequently, one is

exploring a chemical structural space of analogs of well-

studied series of compounds, as is modeled in the cross-

docking data set under consideration. In these cases, it is

reasonable to posit that a particular substructure has an

especially favorable interaction within an active site (as

with, for example, metal chelation moieties), making direct

use of that knowledge to focus the search offers advantages

in terms of workflow, speed, and direct comparison of

different analogs. Using this procedure, one can specify a

collection of placed molecular fragments. In cases, where a

ligand to be docked contains a particular substructural

fragment, the known geometry of that fragment is used to

explore the space of docked poses in which the matching

part of the ligand is congruent with the placed fragment.

Importantly for the work reported here, the fragment-

based docking approach is not used in place of the standard

unbiased docking protocol, but in addition to it. So, placed

J Comput Aided Mol Des (2009) 23:355–374 359

123

http://www.jainlab.org
http://www.jainlab.org


fragments ensure that known binding geometries of par-

ticular moieties are explored, but alternative dockings that

score higher will be reported as well. From the example in

Fig. 1, knowledge of the binding geometry of the AMP

heterocycle does not prevent identifying the correct bind-

ing mode of the 8-bromo derivative. The primary focus of

the current study is on improving performance in cross-

docking geometric accuracy. So, clever choice of which

fragments to use in the docking procedure could yield very

significant effects on performance. Consequently, an

automated computational procedure was implemented that

made use of only the cognate ligands of the five protein

structures for each target. Figure 4 shows the automatically

chosen fragments for PDE4b that interact with GLN-443.

An additional two fragments (not shown) represent other,

less central interactions.

Protein conformational variability

Several groups have approached the problem of protein

flexibility in docking, with a number of notable successes.

McCammon’s group introduced the relaxed complex
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method, which made use of multiple protein structures

sampled from molecular dynamics, and both the initial

work and subsequent refinements has shown the utility of

using multiple structures coupled with sophisticated scor-

ing schemes [30, 31]. Osterberg et al. [32] showed how

explicit considerations of residue movement (and structural

waters) can substantially increase docking accuracy for

AutoDock in HIV protease. The approach made use of a

combined grid of interaction energies instead of a single

one. Kairys and Gilson [33] reported on an extension to the

Mining Minima method where, on a number of protein

targets, mobility in hydroxyls and sidechains improved

docking accuracy. Cavasotto and Abagyan [34] extended

the ICM approach to allow for multiple discrete protein

conformations (which included backbone changes), and

they showed improvements both in screening utility and

cross-docking accuracy. Shoichet’s group established that

accounting for variations in energy among different protein

conformations can lead to significant improvements in

screening utility [35]. More recently, the developers of

Glide have made progress in sampling of sidechains and

limited backbone movement within a docking process that

employs iterations of ligand sampling and protein sampling

[36], but the process takes hours for a single docking of a

single ligand.

The approach here was informed by this earlier work.

However, rather than relying on computational methods to

sample large motions of proteins, multiple experimentally

determined protein structures are used. Large motions,

such as those encountered with agonist versus antagonist

bound forms of nuclear hormone receptors are extremely

challenging to predict accurately enough for operational

use in lead optimization guided by docking. In practical

situations, in lead optimization exercises that are being

guided by in-house crystallography, the larger motions are

likely to be captured by experimental structure determi-

nations. Smaller motions, including both sidechain and

backbone atomic movement, are explored in Cartesian

space with a blended scoring function that includes both

the non-covalent intermolecular forces as well as the

covalent and non-covalent intramolecular forces for both

the ligand and the protein. This approach takes a small

number of initial protein conformation samples (five in this

work) and makes use of local optimization after docking in

order to gain the effect of finer sampling of protein con-

formational space.

Fig. 4 Automatically chosen

fragments of the cognate ligands

for PDE4b. Each makes a

critical interaction with GLN-

443. The fragment on the lower

right is able to make a hydrogen

bond with its cognate protein

conformation (1XOT, shown in

green), whereas the other three

are able to make interactions

with the same protein

conformation (1RO9, shown

in blue)
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For a single ligand docked to N protein conformations,

with M poses returned, rescoring each of the poses is

performed against all N protein conformations, optionally

with K small random perturbations in order to generate a

fine-grained sampling of the scores to be expected. For the

results reported here, N was five, M was ten, and K was

zero (no random perturbations) in order to keep computa-

tional costs low, but this still resulted in 50 alternative

protein/ligand complex configurations per docking. Better

results are possible with increased sampling (e.g. M of 20

and K of 4), which results in 500 configurations per docked

ligand. One of the features of such sampling is that rare

configurations can occur, which have nominally favorable

energetics, but which lie within a very tiny slice of con-

figurational space and therefore are not the most probable

biologically important pose. To address this sampling

issue, and to produce an improved workflow where a very

small number of solutions must be considered, rather than

reporting results on single configurations, pose families are

constructed that surround significantly different central

poses. These families are scored using a Boltzmann

weighted probability scheme, with pose families with high

probability ranked above those with lower probabilities.

These procedures are detailed as follows.

Multi-structure docking: The generalization from single

protein conformation docking to multiple conformations

was straightforward, simply iterating the docking process

that has been described extensively in prior reports [9, 10].

The implementation allows specification of a set of protein

structures, each with one or more protomols, in a single

file. Each independent docking shares a final pose set of

fixed size (default of 20), which contains the best poses

based on intermolecular non-covalent scores over all pro-

tein conformations. In this process, no movement of

protein atomic coordinates occurs. All of the options that

control standard docking (e.g. pre-docking ligand minimi-

zation, post-docking all-atom ligand optimization, dynamic

ring search, etc.) are available.

Note, however, that there are opportunities for addi-

tional efficiencies that will be pursued in future

refinements. In particular, since the protein structures are

aligned in a common coordinate frame, the process of

ligand pose generation need not proceed independently for

each of the individual protein conformations. Instead,

generation of putative alignments could take place once,

with the alignments being scored within each pocket var-

iant separately. The focus of the work reported here has

been to establish the feasibility of an operationally practical

workflow rather than an optimal one in terms of compu-

tational efficiency, so such refinements remain as future

work.

Protein pocket adaptation: The mechanical aspects of

protein pocket adaptation were implemented previously, in

order to study the bias effects of protein coordinate opti-

mization on cognate docking [10, 23]. The process is

straightforward. For a particular ligand pose within a par-

ticular initial protein conformation, the protein atoms near

the ligand (those whose van der Waals surface distances are

\4.0 Å) are identified and marked. If the selected protocol

calls for moving protein protons only, then heavy atoms are

unmarked. In all cases, protein atoms that chelate metal

ions are unmarked (as are the metals themselves). A

scoring function is instantiated that includes three terms:

(1) the inter-molecular non-covalent components of the

Surflex-Dock scoring function; (2) the intra-molecular non-

covalent terms of the Surflex-Dock scoring function (for

both the ligand and the protein); and (3) the intra-molecular

covalent terms for both the ligand and the protein. The

covalent terms for the protein include all bond length, bond

angle, and torsional terms where at least one atom of the

protein is marked. The total complex score (computed as

kcal/mol) is minimized. The resulting score is reported in

several ways, including the total score, the separate com-

ponents, an estimate of ligand strain, and a scaled complex

score (called ‘‘CScale’’) that normalizes the protein score

components so that ligand poses that contact different

numbers of protein atoms are more directly comparable.

The implementation of the functions includes analytical

computation of gradients, and the optimization itself is

carried out using a modified quasi-Newton scheme [10].

During the optimization process, the gradients for the

protein atoms that are unmarked (and therefore not sup-

posed to move) are zeroed. All atoms to be optimized are

moved simultaneously in the procedure (an earlier imple-

mentation iterated protein movement with ligand

movement). Selectable parameters control the weighting of

the protein covalent force-field (here set to 0.6) and the

ligand covalent force-field (here set to 1.0) and whether or

not non-covalent intra-molecular interactions should be

included (here these were included). Systematic optimiza-

tion of parameter choices was not carried out; instead, a

small number of complexes from the previously studied

Vertex docking set were used to identify acceptable

parameters for application to the data in this study [10, 18].

Typical run-times for optimization of single complexes

(all pocket atoms) on a single-processor were 30 s of wall-

clock time on standard Intel-based hardware running on

Linux systems (e.g. 2.0 GHz Core 2 T7200).

There are a number of potential efficiencies to be pur-

sued to improve over the current implementation of serial

optimization of multiple ligand poses against multiple

protein conformations. Some are purely technical, having

to do with local optimization approaches that scale more

efficiently than the current one in the number of parameters

under optimization. Others will involve extensive pre-

computation of subtle variations in protein conformations
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and storage and use of intermediate results for use in

subsequent optimization steps. Even without further

improvements, the procedures are operationally feasible,

requiring roughly 30 min per ligand on a single processor

in the protocol used for the results presented here.

Pose family clustering: Input to the pose family proce-

dure is a set of ligand poses along with a set of scores.

Here, the scores were taken as the standard Surflex-Dock

scores (converted to kcal/mol) for pose family computa-

tions on original dockings and the CScale scores mentioned

earlier for poses resulting from pocket optimization (with

either protons only or all protein pocket atoms). For each

pose of the Q total number of poses, a Q-dimensional

binary vector is computed, with values set to 1 for those

poses that were similar (\1.5 Å rmsd) to the pose in

question. Each pose is also assigned a probability based on

its Boltzmann-weighted share of the total from all poses.

Each pose, along with its marked neighbors, may form a

pose family for ranking and output, but the pose families

are produced from most probable (total probability over all

poses within the pose family) to least, and less probable

pose families that are similar to more probable ones are

skipped. The similarity threshold is user settable and is

expressed as a Tanimoto similarity between the binary pose

family vectors. For this work, pose families had to be

nearly non-overlapping (Tanimoto \0.05) in order to sur-

vive the process. Also, in order to ‘‘thin’’ the number of

poses produced per pose family and focus attention upon

those poses that had meaningful contributions, the contri-

bution of a pose to the overall docked ensemble had to be

greater than an individual probability of 10-6 in order to be

shown in the output structure file comprising the pose

family.

This computation did not add appreciably to the total

times for ligand processing. The net result of these pro-

cedures was, for each ligand, three ranked sets of pose

families, with one from the initial docking, and one for

each of the two methods of rescoring with pocket adapta-

tion (protons only or all atoms). In what follows, only the

top-ranked pose families from each scoring method were

used.

Computational procedures

Details of computational procedures in studies, such as this

can have a remarkable impact on results, both with respect

to the actual performance of algorithms but also as to the

comparability of different methods that have been run on

nominally the same benchmarks. The publicly available

data archive associated with this paper contains all protein,

ligand, and protomol structures as well as example scripts

for the primary experiments described. The following

summarizes the procedures used at a level of detail

intended to give a clear picture of the key choices made for

the current study.

Astex85 set preparation: For the Astex85 set, proteins

were used unmodified, with cognate ligands being sub-

jected to torsional randomization followed by minimization

prior to docking. Protomols were generated using default

procedures, as described previously [10].

CrossDock211 set preparation: For the CrossDock211

set, protein preparation for docking relied upon an auto-

mated procedure for generating SYBYL mol2 files from

original PDB files, resulting in protonated proteins and

ligands, with tautomeric states being enumerated and

chosen to yield complementary bound states. Ligand bond

orders were automatically assigned and were reviewed

manually to correct the small number of cases where the

automatic assignment was incorrect. Proteins and ligands

were transformed to a common alignment based on the

structures from the original data set. Protein active sites

were trimmed to include residues within 15 Å of the cog-

nate ligand. The resulting complexes were then optimized

in two different ways, one allowing for protein pocket

adaptation of protons only and the other allowing for all

pocket atoms to move (using the Surflex-Dock ‘‘popt’’

command).

For each protein structure prepared as described, pro-

tomols were generated using default procedures, with the

union of cognate ligand structures for all five protein

conformations used to identify the scope of the active sites.

Generation of molecular fragments was done automatically

based solely on the structures of the five cognate ligands

for each target using the Surflex-Dock ‘‘fragmentize’’

command. Selection of which fragments to use to guide

docking was also fully automatic, operating on a collated

set of fragments from all cognate ligands and on a collated

set of the ligands themselves (using the ‘‘choose_frags’’

command). The 211 non-cognate test ligands were used

as provided in the original data set, followed by automatic

protonation/minimization, optionally including torsion

randomization prior to minimization.

Docking procedures: Baseline results for both the

Astex85 and CrossDock211 sets were generated using

default geometric docking parameters with a single struc-

ture per protein (e.g. sf-dock.exe -pgeom dock_list

test.mol2 p1-protomol2.mol2 protein.mol2 log). For the

Astex85 set, this was a cognate docking test. For the

CrossDock211 set, both cognate and non-cognate baseline

results were generated. The non-cognate results employed

the 211 novel ligands, and the cognate test employed

the protein/ligand complexes used as targets for the

cross-docking experiments (five structures for each of

eight targets). The primary results of the study involved

multi-structure docking on the CrossDock211 set using

the cognate molecular fragments to help guide search,
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followed by protein pocket optimization for each docked

pose, and generation of pose families. The procedure that

made use of heavy atom pocket adaptation was as follows:

1. sf-dock.exe -div_rms 0.25 -fmatch cdk2/train-ligands/

chosenfrags.mol2 mdock_list cdk2/test.mol2 Targets-

cdk2 cdk2/log

This command performs a multi-structure docking,

with a guarantee that no output poses will be\0.25 Å

rmsd from any other, using the placed fragment

specified to guide docking. The pathnames to the five

protein structure files along with their corresponding

protomols is in Targets-cdk2.

2. sf-dock.exe -ntweak 0 -maxposes 10 ?pflex ?hprot -

pcov 0.6 ?self_score rescore_multi cdk2/log Targets-

cdk2 rescoreheavy

This command rescores a multi-structure docking run,

using no random perturbations of the final dockings,

considering a maximum of ten poses per ligand, with

protein pocket flexibility including heavy atoms

(covalent force-field weight of 0.6), and where intra-

molecular interactions count in the scores along with

the inter-molecular interactions.

3. sf-dock.exe posefam cdk2/log-rescoreheavy

This command generates pose families for all ligands

from the docking run, based on the scores in the log

file along with the associated poses in an archive

prefixed with the log file name.

The result of the sequence of operations was a set of

pose families for each test ligand (e.g. log-rescoreheavy-

ligand-1-fam-*.mol2). In the results that follow, ‘‘baseline’’

performance refers to the multi-structure docking with no

pocket adaptation or rescoring, and two forms of rescoring

with pocket optimization refer to moving heavy atoms or

just protons (analogous to the above procedure but with

‘‘-hprot’’ instead of ‘‘?hprot’’).

Results and discussion

In multiple reports, a group of docking methods (Glide,

GOLD, and Surflex-Dock) performed close to equivalently

with respect to docking accuracy. The absolute perfor-

mance varied based on the benchmark. Percentage of

top-scoring correct poses (B2.0 Å rmsd) in the cognate

docking problem ranged from 50 to 60% in a 100 complex

benchmark from Vertex [10, 18]. The percentage of correct

poses within the top 20 returned (but not necessarily top-

ranked) ranged from 75 to 85%. On an independently run

benchmark of 100 complexes from Rognan’s group com-

paring eight docking methods [19], the comparable

numbers for the three methods were about 55% and

75–80%. On a benchmark constructed with very careful

attention to quality of crystal structures (resolution, density

covering the ligands, etc.) from Hartshorn et al. [25],

GOLD performed at 71–87% correct for top scoring correct

poses, depending upon the precise conditions (binding site

definitions, initial ligand geometry, search depth, etc.). In

the much more relevant cross-docking situation, perfor-

mance for all methods is quite a bit lower, but with the

same methods performing well. Warren et al. [12] studied

eight targets using several docking methods, with addi-

tional methods tested subsequent to the original publication

[37]. Comparing the average rank-order of performance

across the eight targets, among Dock4, Dockit, FRED,

FlexX, Flo, GOLD, Glide, Ligfit, MOE, Surflex-Dock, the

top three (in order) for top-ranked pose were Surflex-Dock,

GOLD, and Glide and for best pose were GOLD, Surflex-

Dock, and Flo (with Glide coming in fourth). However, the

absolute performance was significantly worse.

So, in cases where we can guarantee that a protein

structure is near-optimal for the particular ligand being

docked (e.g. as in the Hartshorn study), we observe very

good performance: nearly 80% correct for top-scoring

poses. As the quality of structures becomes more variable,

even in the cognate docking case, the performance is

reduced to about 55% for multiple methods (e.g. on the

Vertex data set). As we move to the operationally impor-

tant cross-docking case, that of docking a novel ligand into

a protein whose structure was determined with a different

ligand, we see a further significant reduction in prediction

accuracy. Figure 5 illustrates this point on the Astex85

docking set and the CrossDock211 set. In the cognate

docking case, without any optimization of docking proto-

col, Surflex-Dock achieved 76% correct for top scoring

poses at the 2.0 Å threshold, with over 95% of the doc-

kings having a correct solution within the top 20 poses

returned. However, in the cross-docking case, top scoring

pose accuracy decreased to 25% and best pose success

dropped to 60%.

Note, however, that the comparison of cross-docking on

the CrossDock211 set to cognate docking on the Astex85

set represents a hardest-case to easiest-case comparison,

since the Astex85 set was cleanly curated to include par-

ticularly high-quality structures by multiple criteria, apart

from being a cognate docking test. Performance of Surflex-

Dock was evaluated on the cognate protein/ligand struc-

tures from the CrossDock211 set as well. Success for

top-scoring pose was 65% and for best pose of top 20 was

90%, which was lower than that observed with the Astex85

cognate-docking (76% and 95%, respectively), but not

statistically significantly so (by Fisher’s exact test at

p = 0.05). In a similar comparison, Verdonk et al. [38],

considered cognate docking on their Astex85 set with

cross-docking of novel ligands into 65 of the 85 protein

structures. They observed cognate docking performance
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(top scoring poses B2.0 Å rmsd) of 80% for the 65 cognate

cases, with a reduction to 61% for the cross-docking per-

formance. This reduction in performance, while significant,

was much less than observed here for Surflex-Dock on the

CrossDock211 set. Apart from their set containing different

targets and different ligands, they also included only those

structures that contained the same set of binding site atoms

present in the cognate structures and where the novel

ligands were bound to protein forms that closely matched

the reference structures in terms of protonation states,

tautomers, and side-chain flips. Sutherland et al. [39]

published cross-docking results for CDocker and Fred on

the set used here, with success rates for top-scoring pose

prediction ranging from 16 to 26%, paralleling what was

observed here for single-structure cross-docking. Both

groups considered the improvements possible by making

use of using multiple structures, as will be done here in

what follows.

As discussed above, there are marked differences in

docking accuracy as we vary the degree to which we can

expect the protein conformation to be ‘‘correct’’ for the

purpose of accurately identifying the binding mode of a

ligand. Proteins vary in their degrees of binding pocket

flexibility, and some protein conformations can provide an

inhospitable geometry for docking particular ligands. In the

operational application of docking, we are never docking a

ligand into the structure of a protein whose geometry is

known, a priori, to be optimally complementary for the

bound ligand. Figure 6 shows the degree of conformational

variation for PDE4b and CDK2 among five different

experimentally determined complex structures. PDE4b is

comparatively rigid, but as we saw in Fig. 1, even small

motions can influence docking preferences. CDK2 is

clearly much more flexible, creating a more significant

challenge in the cross docking scenario. Estrogen receptor

(not shown) forms a middle ground, with relatively little

variation among agonist-bound forms or antagonist-bound

forms, but the differences between the agonist and antag-

onist forms are large.

Effects of multiple structures and fragment knowledge

Figure 7 shows the effect of moving from a single protein

structure to five per target and of making use of placed

fragments from the cognate ligands of the five protein

structures to help guide docking. There is a statistically

significant improvement through the use of multiple pro-

tein structures under the same docking protocol as used for
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Fig. 5 Performance of Surflex-Dock using default geometric docking

parameters on the Astex Diverse set of 85 cognate protein/ligand

complexes (left plot) and on the cross docking set of 211 novel

ligands docked to eight different protein targets (right plot). Overall

performance in cognate-docking for top scoring poses was 76%

success at a 2 Å rmsd threshold (cumulative histogram shown with

solid line). The best pose of the top 20 was within 2 Å 94% of the

time (dashed line). This level of performance is statistically

indistinguishable from that of GOLD from the original paper. For

cross-docking, the comparable performance levels were 25 and 60%

for top-scoring and best pose, respectively. Among the cases where a

good pose existed among the top scoring, the success rate for cognate-

docking was 81%, but for cross-docking was 42%, highlighting the

difficulty in ranking among poses under the latter real-world

conditions

J Comput Aided Mol Des (2009) 23:355–374 365

123



single structures (green curves vs. red curves in the plots).

Success rates at the 2 Å rmsd threshold improved to 45%

from 27% for top scoring pose and to 82% from 60% for

best pose by rmsd of the top twenty returned. Note, how-

ever, that median docking times increased by fivefold,

since the procedure itself is essentially a sequential docking

to each structure, with minimal additional efficiencies.

By making use of sub-fragments whose bound geometry

is known, the process of docking is faster, and the space of

solutions that share common features with known ligands is

searched at a greater relative depth. Using this approach,

top scoring pose success (at 2.0 Å rmsd) increased to 50%

from 45%. This is not significant in a statistical sense at a

single threshold (e.g. by using a test of difference of pro-

portions), but the overall shift in the distribution of rmsd

values is marginally significant. Interestingly, the distri-

butions of rmsd values for best poses was essentially

unchanged under the two conditions. The primary effect of

the use of fragment knowledge was deeper search within

the space of a priori favorable poses, which resulted in the

slight improvement in top scoring pose identification.

Docking using the constraint of multiple fragments is

relatively fast, and it eliminates the need for docking from

multiple initial ligand conformations (which is done in the

standard docking protocol for geometric accuracy). In the

multi-structure protocol yielding the best performance in

Fig. 7 (the blue curves), the overall docking speed was just

1.7-fold longer than the single-protein method. The median

time to dock each ligand was just 4 min, with ligand

flexibility ranging widely, but with typical ligands having

roughly seven rotatable bonds.

The performance levels shown here represent a lower-

bound in the sense that, while the docking protocol was

designed to mimic that of an actual modeler making use of

knowledge of multiple structures and well-understood

interactions, the choice of protein structures was arbitrary,

and the choice of fragment hints was made using no deep

knowledge of the systems. For example, in the case of

thrombin, a reasonable modeler would ensure that all

common P1 binding elements would be represented among

the fragment hints to be used by a docking system. Here,

however, neither the very common amidine nor the more

recent non-basic chlorophenyl P1 pocket binding elements

were among the fragments used in docking, whereas they

were very common in the test ligands (e.g. the ligands of

1KTS and 1WAY). In addition, while a number of ligands

of thrombin were present that require chelation of a metal

ion such as Zn2? (e.g. the test ligand from 1C1W), none of

the five example protein structures contained the required

chelation moiety. In a real-world modeling exercise, when

designing around a common binding element such as the

P1 element in thrombin or any known metal chelation

moiety, one would include preferred binding modes for

those ligand components.

Verdonk et al. [38] showed a modest increase in top-

scoring pose prediction (from 61 to 67%) in a multiple

structure approach on their highly curated cross-docking

data set. Sutherland et al. [39] showed a more substantial

improvement on the data set used here, from 16% to 26%

success for single-structure cross-docking to 36–46% suc-

cess for multiple structures depending on the method of

arbitration used to choose among the multiple dockings.

Results for Surflex-Dock were of similar magnitude in

terms of relative improvement (from 27% to 50%). Note

that the protocol used here with Surflex-Dock made use

just five alternate protein conformations per target, chosen

a priori, whereas that used by Sutherland et al. used an all-

by-all cross-docking.

Fig. 6 Protein flexibility is

significantly different among

the targets. At left, the five

conformations of PDE4b are

shown along with a single

ligand. At right, five

conformations of CDK2 are

shown, also with a ligand.

PDE4b exhibits very little

movement overall and has

relatively little backbone

variation. CDK2 contrasts by

exhibiting movement in all

atoms

366 J Comput Aided Mol Des (2009) 23:355–374

123



Effects of protein pocket adaptation and pose families

The results thus far have deviated from most widely used

docking methods and protocols by using multiple protein

structures, but these structures have been treated as com-

pletely fixed. Further, top scoring poses have been treated

as the singular solution to the docking computation. It is

well understood that protein/ligand complexes are not

accurately portrayed as the singular snapshot one often sees

in a high-resolution crystal structure. Even in the case

where a single joint configuration dominates others by

having substantially lower free energy than significantly

different configurations, the complex exists as an ensemble

of configurations over short time scales where the coordi-

nate changes may be small but are nonetheless real.

Figure 8 shows the docking of the CDK2 ligand from

1HO8 into the five protein conformations. At left is the

ligand and protomol for 1OIU (one of the five structures

used), with a particular subfragment of the cognate ligand

shown in thicker sticks. That particular fragment was

responsible for helping to guide the docking of the test

ligand, which is shown in the middle panel in two

poses (atom color), along with the fragment (blue), and

the two alternative bound poses of the ligand from the

experimentally determined structure (green). In this

depiction, the effects of pocket adaptation are shown (red

protein structure at right) along with the effects of identi-

fying pose families. For the results of docking without

pocket adaptation, the top scoring pose was 2.0 Å rmsd

distant from the further of the two experimentally deter-

mined ligand poses. Pose families derived from the initial

docking failed to group the two alternate solutions together.

The closest poses to the correct pair of experimental ones

were too far apart given the original protein coordinates.

Rescoring the final pose set with full atomic adaptation

within the binding pocket yielded significant movement,

especially in the position of a key carboxylate. Generation

of pose families from the rescored pockets identified a

single pose family as being highly probable, with contri-

butions from modifications of three parent protein

structures. This top pose family contained conformations

\1.0 rmsd from each of the experimentally determined

alternatives.

Figure 9 shows all of the poses from the top scoring

pose family resulting from pocket adaptation. They exhibit

reasonable movement in light of the known variation in the

‘‘tail’’ of the ligand in question. Note, however, that the

protocol using full atomic movement identified the correct
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Fig. 7 The left plot shows performance of Surflex-Dock in cross

docking for the top scoring returned pose for each of 211 non-cognate

test ligands across eight different targets. The right plot shows

performance considering the best pose returned among the top 20.

Performance shows a substantial improvement resulting from the use

of multiple protein conformations over a single protein conformation

(green and blue curves, respectively). Making use of fragments from

the structures of the cognate ligands of the protein conformations

leads to deeper exploration of the likely to be correct pose space,

which improves performance further (blue curve). The multi-structure

docking protocol with fragment hints is nearly as fast as the standard

single-protein Surflex-Dock protocol with geometric search

parameters
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family, but the protocol that was restricted to protons only

identified the incorrect family as most probable (the second

most probable contained one of the two correct alterna-

tives). The plot at right in Fig. 9 shows the improvement in

docking accuracy obtained by making use of top-scoring

pose families instead of single top-scoring poses. Baseline

performance (no pose families, just the top scoring pose) is

shown in red, with some improvement seen in computing

pose families without any pocket adaptation (purple line)

that is due mostly to the difference in reporting method.

For pose families, the minimum rmsd to experimental is

computed, so there is a bias toward nominally better

results, especially at the lower end of the curve.

All three methods of pose family generation (no rescor-

ing, rescoring with proton movement in the protein pocket,

and rescoring with all atom movement) yielded very similar

performance at the 2.0 Å threshold: *55%. This level of

performance approaches that seen in cognate docking on

‘‘hard’’ cognate docking benchmarks (see earlier discus-

sion), and the characterization of results resembles a sensible

physical interpretation of protein/ligand binding.

Pose family agreement

As illustrated by the example from Figs. 8 and 9, the dif-

ferent scoring methods can yield different results, but their

overall performance is close to equivalent. Since the

scoring methods are computing only partially related terms,

orthogonal agreement might suggest higher confidence.

Figure 10 shows the relationship between top scoring pose

family agreement among the three methods and prediction

accuracy. Pose family agreement was calculated between

each of the pocket adaptation top families and the top family

from the original docking, with the mean deviation charac-

terizing overall agreement. There is a striking relationship

between nominal agreement and the accuracy of the top

scoring baseline pose family. In over half of the 211 test

cases, the three methods had highly similar top scoring pose

families, and within that subset, the proportion of correct

predictions was 80%. In an operational sense, this is a helpful

feature, since it allows for confidence to be based upon the

stability of the original top scoring pose family to protein

pocket adaptation. This level of success is comparable to that

seen with carefully selected and curated cognate docking sets

(e.g. as in Fig. 5, with the Astex85 set).

In the remaining minority set of cases, the top scoring

baseline pose family was correct just 25% of the time.

However, the correct choice could be found 50% of the time

by looking at all three of the top scoring families. Success

rates of 50% approach those observed with cognate docking

on difficult benchmarks, but the comparable rates for those

studies come from consideration of a single top scoring pose

instead of the poses from a trio of families.

Inter-target variation

The tremendous variation in docking system performance

on target choice has been well documented (e.g. [12, 22]).

Fig. 8 Cross docking of the ligand from 1H08 into CDK2. At left, the

protomol, cognate ligand, and a subfragment are shown. The protons

from the steric protomol probes have been hidden, and the subfrag-

ment is shown with fat sticks. In the middle, two conformations from

the top scoring pose family (resulting from heavy-atom pocket

refinement) are shown along with the crystallographic alternatives

(green, with the alternate amine positions numbered 1 and 2) and the

fragment that helped guide the docking (blue). At right, the three

protein structures that contributed to the final pose family are shown

in blue (1DM2, 1H0W, and 1OIU), with the refinements due to post-

docking optimization shown in red. There are significant movements

in the protein that allow the recognition of this pose family as being

optimal, particularly near the carboxylate by the arrow. Pocket

refinement with protons yields an incorrect pose family, and the pose

family without pocket refinement does not span both solutions
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Table 1 shows the performance of the multi-structure

pocket-adaptation protocol for Surflex-Dock over the set of

eight targets. Average success rates for multi-structure

docking with no rescoring or pose family computation

ranged from 40% for thrombin to 79% for estrogen

receptor, with the mean being 61%. Weaker performance

for thrombin was primarily due to extreme ligand flexi-

bility in many cases, along with the previously mentioned

issues of P1 pocket element variability and the presence of

ligands that require metal chelation not present in the

protein structures used for docking. CDK2 represents a

genuinely difficult case, since the protein motions captured

with the five protein conformational snapshots clearly do

not encompass finer motions that are important (Fig. 6).

Rescoring with protein pocket adaptation had large

effects on individual target performance, but due to small

numbers of ligands per target, these were not statistically

significant. Interestingly, the largest difference in perfor-

mance between the two rescoring approaches were

between the proteins representing the two poles of relative

flexibility, with full pocket adaptation performance better

on CDK2 and proton-only adaptation performing better on

PDE4b/5a. The aggregate mean performance differences

were not significant. However, consideration of two pose

families (either the original top family and the top family

from full pocket adaptation or the former plus that from

proton-only pocket adaptation) yielded highly significant

performance improvements over performance without any

pocket adaptation. In terms of the practical impact on

modeling, a requirement to employ judgment given two or

three solution sets (and only in the cases where they dis-

agree) does not seem overly burdensome. Note that

consideration of the two most probable pose families

from the baseline docking (without pocket adaptation)

yielded performance levels that were not statistically

significantly different than those shown in Table 1 for two

pose families obtained using pocket adaptation (Orig ?

Heavy and Orig ? Protons). However, pocket adaptation

allows the computation of pose family agreement (dis-

cussed above) since the protocols employ scoring

variations. Also, pocket-adaptation can yield significant

changes to protein-ligand interactions and pose family

composition (Figs. 8, 9).

Figure 11 shows an example from PDE4b, where the top

scoring pose family from proton-only adaptation was cor-

rect. In this case, the uncertainty in the placement of the
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Fig. 9 At left is a depiction of the top scoring pose family for a

ligand of CDK2. The portion of the ligand that is deep within the

pocket (at top) exhibits relatively little variation, but the portion that

extends toward solvent exhibits a variety of reasonable orientations.

The crystallographic determination yielded two alternative confor-

mations (shown in yellow and green), which are spanned by the pose

family. At right is shown the comparison of using purely the top

scoring pose of a ligand (red line) compared with using the top pose

families from either the initial docking (green line), the result of post-

docking pocket optimization with all protein atoms (blue line), or

post-docking pocket optimization with protons only (purple line). The

use of pose families makes only a nominal improvement at the 2 Å

level, but the physical depiction of pose variation is likely to be

useful, as in this case where an accurate depiction of mobility is made
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chlorophenyl seems warranted in light of the partial density

from the crystal structure in that part of the ligand. Fairly

subtle protons movements (highlighted in the Figure) were

important in proper recognition of the correct pose. In this

case, the ligand to be docked shares some commonality

with the known cognate ligand structures (Fig. 3), but a

number of reasonable ‘‘flips’’ are easily confusable, since

the core heterocycle is functionalized differently, both in

position and content, compared with the nearest known

analog. For PDE4b, the proton-only approach appears more

reliable, probably due to the a priori fact of relative protein

rigidity. The combined force-field within Surflex-Dock in

the pocket adaptation protocol is not reliable in this case

when moving heavy atoms, adding more noise than signal

to the scores.

In the case of estrogen receptor, all three methods

worked quite well, with a high level of agreement and with

a combined performance of 95% correct pose prediction.

Figure 12 shows a typical example for this target, where an

antagonist (from 1UOM, shown also in Fig. 3) was the

subject of docking. This ligand represents the type of

synthetic variation one would encounter in lead optimiza-

tion exercises, where the antagonist ‘‘arm’’ is among the

structures known, but the core structure that binds in the

agonist pocket is quite different from the known ligand

structures. The all-atom pocket adaptation approach is

robust enough to ‘‘rescue’’ the correct pose of the antago-

nist when bound to an agonist-form of the receptor.

However, as can be seen in Fig. 12 (right panel), the pocket

adaptation, while making room for the ligand, does not

even come close to adapting the pocket to the form seen

when binding antagonists. The approach taken here will be

most successful in cases where the large protein motions

are well-represented among a small set of experimentally

determined structures. The only ligand that represented a

failure was that from 1ZKY, which binds the agonist

binding site but has a complex bicyclic structure. In that

case, the top pose family from the protons-only rescoring

was still within 3.0 Å rmsd, which was the closest solution

among all of the dockings returned.

Figure 13 shows the docking of the ligand from 1FPC

into the five alternate thrombin structures (see Fig. 3 for 2D

structures). The original docking contained the correct

solution, but it was ranked a full 2.0 units of pKd lower than

the incorrect solution shown in the left panel. Rescoring

using either pocket adaptation method yielded the correct

family as top-ranking (middle panel). While the movement

of TRP-86 is helpful to accommodate the larger substituent

(compared with the cognate ligands), it is likely that

inclusion of non-covalent ligand self-interaction, which is

part of the pocket-adaptation rescoring procedure, is ben-

eficial for the entire class of thrombin inhibitors with this

typical three-part construction.
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Fig. 10 The top plot shows the relationship between pose family

agreement (see text) and the accuracy of the top scoring pose family

from the non-rescored docking run. There is a very strong relationship

(Kendall’s Tau 0.45, p � 0.01 by permutation). The bottom plot
shows the cumulative histogram of predicted single pose family

accuracy for the cases in which pose family agreement is high (red) or

low (green). In the high agreement cases (120/211 or 57%), the

expectation is that 80% of the time, the top pose family contains

the correct docking. Conversely, for the cases of disagreement (the

remaining 43%), the success rate is closer to 25%. However, if we

consider the top pose family for each of the three scoring methods

(blue), our success rate doubles, to 50%. These differences are highly

statistically significant (Fisher’s exact test on the difference of

proportions of success/failure at 2.0 Å rmsd). Note that the high-

agreement cases involve ligands that do not differ in flexibility than

the low-agreement cases (6.2 vs. 7.4)
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Relationship to other approaches

The work reported here represents a contribution to real-

world docking primarily in four ways. First, the approach is

computationally tractable, with typical per-ligand compu-

tation times of about 30 min. With multi-CPU clusters

being common, ligand sets under consideration in lead-

optimization exercises can be thoroughly studied with

these methods. Second, the benchmark used here contains a

small number of pharmaceutically relevant targets, repre-

sented each with a small number of conformational

snapshots, but the testing was done with a large number of

ligands of highly variable structure in many cases. Further,

the benchmark itself was not constructed by a methods

developer to demonstrate performance of a particular

method; rather it was constructed by an independent active

modeler in order to measure real-world behavior. Third, the

approach offers a way to systematically make use of

modeling knowledge in the form of ligand fragments and

their key interactions, but to do so in a way that does not

lead to undue bias in constraining the prediction space.

Fourth, the workflow yields physically intuitive results:

related pose families under a small number of scoring

conditions that allow for significant protein flexibility

including both sidechain and backbone movements.

These results represent very significant practical

improvements over single-structure non-cognate docking.

Single top-scoring pose family predicted performance

averaged 64% (baseline multi-structure docking, heavy-

atom pocket optimization, and proton-only pocket opti-

mization). When top pose families agreed, 80% correct

prediction was observed. Overall, consideration of the best

Table 1 Performance of Surflex-Dock on a target-specific basis

Target N test

ligands

Mean rot

bonds

Success rates (proportion B 2.0 Å rmsd)

Top pose Original top

pose family

Pocket optimization Two pose families Three

Heavy atom Protons Orig?heavy Orig?protons All 3

ESR1 19 5.9 79 79 74 95 84 95 95

PDE4b/5a 12 5.7 75 75 25 67 83 92 92

MMP8/13 11 10.5 64 82 73 82 82 82 82

MAPK14 20 5.2 60 65 70 60 70 65 70

CDK2 79 5.5 48 53 56 46 65 59 67

F2 (thrombin) 70 8.4 40 46 50 51 60 60 69

Mean 35.2 6.9 60.9 66.6 57.9 66.7 74.0 75.5 79.0

Results are shown using either the single top pose returned from a multi-protein-conformation docking (including use of fragment-based hints),

using the top pose family under different rescoring protocols, or using multiple pose families. The differences in success rates among the single

pose and single pose family protocols are not statistically significant, either in terms of average success rates or in terms of proportion of success

overall. However, use of two pose families or three yields a highly significant improvement compared with using a single pose or single pose

family (Fisher’s exact test of the difference of proportions of success/failure)

Fig. 11 Cross docking of the ligand from 1Y2H into PDE4b. At left,
the top pose family from the proton-based pocket refinement

(probability 1.00), is shown along with the crystallographic pose

(green). There is a good deal of uncertainty in the placement of the

chlorophenyl, which has an impact on the position of the remainder of

the ligand. The center panel shows the original protein conformation

(blue) and the modified one (red) that leads to the most dominant

ligand pose from the pose family. Reorientation of a hydroxyl proton

(TYR233, indicated by an arrow in the middle panel, at bottom on

right) is critical to allow room for the ligand, and minor movement of

a donor proton on GLN443 is also important in yielding correct

recognition. The ligand extends well beyond the density in the area of

the chlorophenyl (right), which suggests that alternative orientations

are reasonable to propose
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prediction from the two top pose families from two

scoring methods yielded correct predictions 75% of the

time, averaged across the targets tested. Cognate dock-

ing on the same set yielded 65% success, so the results

for cross-docking with this multi-pronged approach are

competitive.

This work was positively influenced by much of the

work that has been previously reported addressing protein

flexibility, particularly including that from the groups of

Abagyan, Gilson, Friesner, Goodsell, McCammon, Mo-

itessier, and Shoichet [30–36, 40]. The foregoing work has

generally focused on elegant studies of single targets or all-

Fig. 12 Cross docking of the ligand from 1UOM into ESR1. In this

case, all three scoring methods agreed on the top scoring pose family.

At left, the crystallographic pose is shown with the pose family from

heavy-atom pocket optimization. Only the antagonist structures

(1YIM, 1SJ0, and 2ERT) contributed significantly to the pose family

shown. In the middle, the protein atom movement is shown (red),

which is minimal in this case. The ligand is relatively similar in

structure and binding preference to the three cognate antagonists

among the five structures used. At right, a pose resulting from

docking to an agonist structure (1X7R). This pose is reasonable and

close to correct, but the protein conformation resulting from heavy

atom optimization cannot replicate the wholesale rearrangement of

the protein (ASP351 is marked in both panels with a green arrow).

LEU540 (labeled in the right panel) moves so much in the true

antagonist-bound form that it does not appear in the middle depiction

Fig. 13 Cross docking of the ligand from 1FPC into F2. In this case,

the original baseline docking yielded an incorrect top pose family,

with the guanidinium correctly placed, but with the napthyl

substituent significantly misplaced (shown at left). However, both

methods of rescoring with protein pocket adaptation yielded the

correct pose in the top family (middle panel). Accommodation of the

ethyl-pyridine involves movement of TRP86 when heavy atoms are

allowed to move (right panel). It is likely that ligand non-covalent

self-interaction also contributes toward improved recognition in this

and similar cases
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by-all cross dockings with small total numbers of ligands

(generally 25 or less). The present work has made use of a

very large testing set of realistic construction (211 test

ligands for eight total targets, with five starting protein

conformations per target). It is difficult to make sensible

comparisons in terms of performance levels since the

studies are so different, but the results shown here are

transparently relatable to real-world use scenarios, and

performance levels approach those seen in multiple studies

on ‘‘hard’’ benchmarks for cognate docking. Among the

prior reported methods in which true protein flexibility has

been explored, processing times spanned multiple hours for

single ligands, compared with the 30-min timings typical in

this study (for an initial multi-structure docking, rescoring

with all-atom protein pocket adaptation, and pose family

generation for the baseline and rescored poses).

Conclusions

In recently published work that laid the computational

foundation for the work presented here, the use of protein

coordinate optimization in the presence of cognate ligands

was shown to yield significant bias effects in nominal

performance for pose prediction in cognate docking [10].

In that paper, the following hope was expressed:

… that significant improvements, particularly in

docking accuracy, should be possible and should

not necessarily require combinatorial exploration of

protein configurational space simultaneously with

ligand configurational space. It may be possible to

employ local optimization of protein active site

atoms, after docking, to obtain these benefits without

incurring a burdensome computational cost.

The work reported here demonstrates a step along the

path, with clear improvements in docking accuracy as a

result of considering such pocket adaptation. There remains

much to be done, however. While the computational cost is

not overwhelming, a goal of closer to 5–10 min per ligand

seems attainable at the performance levels observed here.

More importantly, as we have seen in work on scoring

function tuning [11], there is an opportunity to improve the

overall scoring regime, possibly on a target-specific basis.

Tuning of the non-covalent Surflex-Dock scoring function

with protein movement is expected to yield stiffer clashing

penalties along with sharpened terms for both hydrophobic

and polar interactions. Since the number of parameters in

the covalent protein force-field is relatively small, those

parameters should also be amenable to tuning within the

multiple-instance paradigm used previously. There is no

reason to believe that the particular parameters chosen by

Mayo et al. [41] for the DREIDING force-field to optimally

predict small molecule geometries should be particularly

well-suited to scoring the blended interactions within pro-

tein/ligand complexes, as has been done here. This

represents a significant opportunity, but also a challenge,

since parameter optimization must account for the changes

to optimal configurations, and configurational optimization

that includes the protein pockets is computationally

somewhat costly.

Nonetheless, the methods leading to the pose-prediction

performance reported here on a large, realistic, and phar-

maceutically relevant cross-docking benchmark should be

of use to real-world modelers.
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