Skip to main content
Log in

Fragment-based lead generation: identification of seed fragments by a highly efficient fragment screening technology

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

For the detection of the precise and unambiguous binding of fragments to a specific binding site on the target protein, we have developed a novel reporter displacement binding assay technology. The application of this technology for the fragment screening as well as the fragment evolution process with a specific modelling based design strategy is demonstrated for inhibitors of the protein kinase p38alpha. In a fragment screening approach seed fragments were identified which were then used to build compounds from the deep-pocket towards the hinge binding area of the protein kinase p38alpha based on a modelling approach. BIRB796 was used as a blueprint for the alignment of the fragments. The fragment evolution of these deep-pocket binding fragments towards the fully optimized inhibitor BIRB796 included the modulation of the residence time as well as the affinity. The goal of our study was to evaluate the robustness and efficiency of our novel fragment screening technology at high fragment concentrations, compare the screening data with biochemical activity data and to demonstrate the evolution of the hit fragments with fast kinetics, into slow kinetic inhibitors in an in silico approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Congreve M, Chessari G, Tisi D, Woodhead AJ (2008) J Med Chem 51:3661–3680. doi:10.1021/jm8000373

    Article  CAS  Google Scholar 

  2. Hann MM, Leach AR, Harper G (2001) J Chem Inf Comput Sci 41:856–864. doi:10.1021/ci000403i

    CAS  Google Scholar 

  3. Hann MM, Oprea TI (2004) Curr Opin Chem Biol 8:255–263. doi:10.1016/j.cbpa.2004.04.003

    Article  CAS  Google Scholar 

  4. Sutherland JJ, Higgs RE, Watson I, Vieth M (2008) J Med Chem 51:2689–2700. doi:10.1021/jm701399f

    Article  CAS  Google Scholar 

  5. Babaoglu K, Shoichet B (2006) Nat Chem Biol 2:720–723. doi:10.1038/nchembio831

    Article  CAS  Google Scholar 

  6. Copeland RA, Pompliano DL, Meek TD (2007) Nat Rev Drug Discov 5:730–739. doi:10.1038/nrd2082

    Article  Google Scholar 

  7. Swinney DC (2004) Nat Rev Drug Discov 3:801–808. doi:10.1038/nrd1500

    Article  CAS  Google Scholar 

  8. Swinney DC (2006) Curr Top Med Chem 6:461–478. doi:10.2174/156802606776743093

    Article  CAS  Google Scholar 

  9. Wood ER, Truesdale AT, McDonald OB (2004) Cancer Res 64:6652–6659. doi:10.1158/0008-5472.CAN-04-1168

    Article  CAS  Google Scholar 

  10. Backes AC, Zech B, Felber B, Klebl B, Müller G (2008) Expert Opin Drug Discov 3:1409–1425. doi:10.1517/17460440802579975

    Article  CAS  Google Scholar 

  11. Backes AC, Zech B, Felber B, Klebl B, Müller G (2008) Expert Opin Drug Discov 3:1427–1449. doi:10.1517/17460440802580106

    Article  CAS  Google Scholar 

  12. Pargellis C, Tong L, Churchill L, Cirillo PF, Gilmore T, Graham AG (2002) Nat Struct Biol 9:268–272. doi:10.1038/nsb770

    Article  CAS  Google Scholar 

  13. Regan J, Pargellis CA, Cirillo PF, Gilmore T, Hickey ER, Peet GW (2003) Bioorg Med Chem Lett 13:3101–3104. doi:10.1016/S0960-894X(03)00656-5

    Article  CAS  Google Scholar 

  14. Frembgen-Kesner T, Elcock AH (2006) J Mol Biol 359:202–214. doi:10.1016/j.jmb.2006.03.021

    Article  CAS  Google Scholar 

  15. Gill AL, Frederickson M, Cleasby A, Woodhead SJ, Carr MG, Woodhead AJ, Walker MT, Congreve MS, Devine LA, Tisi D, O’Reilly M, Seavers LC, Davis DJ, Curry J, Anthony R, Padova A, Murray CW, Carr RA, Jhoti H (2005) J Med Chem 48:414–426. doi:10.1021/jm049575n

    Article  CAS  Google Scholar 

  16. Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, Wolff J, Genest M, Hagler MT (1988) Protein Struct Funct Genet 4:31. doi:10.1002/prot.340040106

    Article  CAS  Google Scholar 

  17. Cheng Y-C, Prusoff WH (1973) Biochem Pharmacol 22:3099–3108. doi:10.1016/0006-2952(73)90196-2

    Article  CAS  Google Scholar 

  18. Zaman GJ, van der Lee MM, Kok JJ, Nelissen RL, Loomans EE (2006) Assay Drug Dev Technol 4(4):411–420

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Stephanie Gspurning and Birgit Flicke for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris Hafenbradl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumann, L., Ritscher, A., Müller, G. et al. Fragment-based lead generation: identification of seed fragments by a highly efficient fragment screening technology. J Comput Aided Mol Des 23, 501–511 (2009). https://doi.org/10.1007/s10822-009-9288-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-009-9288-x

Keywords

Navigation