Skip to main content
Log in

Cardio-vascular safety beyond hERG: in silico modelling of a guinea pig right atrium assay

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

As chemists can easily produce large numbers of new potential drug candidates, there is growing demand for high capacity models that can help in driving the chemistry towards efficacious and safe candidates before progressing towards more complex models. Traditionally, the cardiovascular (CV) safety domain plays an important role in this process, as many preclinical CV biomarkers seem to have high prognostic value for the clinical outcome. Throughout the industry, traditional ion channel binding data are generated to drive the early selection process. Although this assay can generate data at high capacity, it has the disadvantage of producing high numbers of false negatives. Therefore, our company applies the isolated guinea pig right atrium (GPRA) assay early-on in discovery. This functional multi-channel/multi-receptor model seems much more predictive in identifying potential CV liabilities. Unfortunately however, its capacity is limited, and there is no room for full automation. We assessed the correlation between ion channel binding and the GPRA’s Rate of Contraction (RC), Contractile Force (CF), and effective refractory frequency (ERF) measures assay using over six thousand different data points. Furthermore, the existing experimental knowledge base was used to develop a set of in silico classification models attempting to mimic the GPRA inhibitory activity. The Naïve Bayesian classifier was used to built several models, using the ion channel binding data or in silico computed properties and structural fingerprints as descriptors. The models were validated on an independent and diverse test set of 200 reference compounds. Performances were assessed on the bases of their overall accuracy, sensitivity and specificity in detecting both active and inactive molecules. Our data show that all in silico models are highly predictive of actual GPRA data, at a level equivalent or superior to the ion channel binding assays. Furthermore, the models were interpreted in terms of the descriptors used to highlight the undesirable areas in the explored chemical space, specifically regions of low polarity, high lipophilicity and high molecular weight. In conclusion, we developed a predictive in silico model of a complex physiological assay based on a large and high quality set of experimental data. This model allows high throughput in silico safety screening based on chemical structure within a given chemical space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) Cell 81:299

    Article  CAS  Google Scholar 

  2. Jackman WM, Clark M, Friday KJ, Aliot EM, Anderson J, Lazzara R (1984) Med Clin North Am 68:1079

    CAS  Google Scholar 

  3. Roden DM (2004) N Engl J Med 350:1013

    Article  CAS  Google Scholar 

  4. Cavero I, Mestre M, Guillon JM, Crumb W (2000) Expert Opin Pharmacother 1:947

    Article  CAS  Google Scholar 

  5. Redfern WS, Carlsson L, Davis AS, Lynch WG, MacKenzie I, Palethorpe S, Siegl PK, Strang I, Sullivan AT, Wallis R, Camm AJ, Hammond TG (2003) Cardiovasc Res 58:32

    Article  CAS  Google Scholar 

  6. Miyahara JT, Akau CK, Yasumoto T (1979) Res Commun Chem Pathol Pharmacol 25:177

    CAS  Google Scholar 

  7. Palaoglu O, Soydan S, Bokesoy TA (1982) Pharmacology 25:183

    Article  CAS  Google Scholar 

  8. Studenik C, Lemmens-Gruber R, Heistracher P (1999) Pharmazie 54:330

    CAS  Google Scholar 

  9. Kobayashi Y, Hoshikuma K, Nakano Y, Yokoo Y, Kamiya T (2001) Planta Med 67:244

    Article  CAS  Google Scholar 

  10. Vasconcelos CM, Araujo MS, Silva BA, Conde-Garcia EA (2005) Braz J Med Biol Res 38:1113

    Article  CAS  Google Scholar 

  11. Aronov AM (2006) J Med Chem 49:6917

    Article  CAS  Google Scholar 

  12. Aronov AM, Goldman BB (2004) Bioorg Med Chem 12:2307

    Article  CAS  Google Scholar 

  13. Dubus E, Ijjaali I, Petitet F, Michel A (2006) ChemMedChem 1:622

    Article  CAS  Google Scholar 

  14. Farid R, Day T, Friesner RA, Pearlstein RA (2006) Bioorg Med Chem 14:3160

    Article  CAS  Google Scholar 

  15. O’Brien SE, de Groot MJ (2005) J Med Chem 48:1287

    Article  Google Scholar 

  16. Pearlstein RA, Vaz RJ, Kang J, Chen XL, Preobrazhenskaya M, Shchekotikhin AE, Korolev AM, Lysenkova LN, Miroshnikova OV, Hendrix J, Rampe D (2003) Bioorg Med Chem Lett 13:1829

    Article  CAS  Google Scholar 

  17. Rajamani R, Tounge BA, Li J, Reynolds CH (2005) Bioorg Med Chem Lett 15:1737

    Article  CAS  Google Scholar 

  18. Roche O, Trube G, Zuegge J, Pflimlin P, Alanine A, Schneider G (2002) Chembiochem 3:455

    Article  CAS  Google Scholar 

  19. Sanguinetti MC, Mitcheson JS (2005) Trends Pharmacol Sci 26:119

    Article  CAS  Google Scholar 

  20. Pearlstein R, Vaz R, Rampe D (2003) J Med Chem 46:2017

    Article  CAS  Google Scholar 

  21. Ekins S (2004) Drug Discov Today 9:276

    Article  CAS  Google Scholar 

  22. Aronov AM (2005) Drug Discov Today 10:149

    Article  CAS  Google Scholar 

  23. Rogers D, Brown RD, Hahn M (2005) J Biomol Screen 10:682

    Article  CAS  Google Scholar 

  24. Ghose AK, Viswanadhan VN, Wendoloski JJ (1998) J Phys Chem A 102:3762

    Article  CAS  Google Scholar 

  25. Csizmadia F, Tsantili-Kakoulidou A, Panderi I, Darvas F (1997) J Pharm Sci 86:865

    Article  CAS  Google Scholar 

  26. Tetko IV, Tanchuk VY, Kasheva TN, Villa AE (2001) J Chem Inf Comput Sci 41:1488

    CAS  Google Scholar 

  27. Tetko IV, Bruneau P, Mewes HW, Rohrer DC, Poda GI (2006) Drug Discov Today 11:700

    Article  CAS  Google Scholar 

  28. Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H (2000) Bioinformatics 16:412

    Article  CAS  Google Scholar 

  29. Mehta CR, Patel NR, Tsiatis AA (1984) Biometrics 40:819

    Article  CAS  Google Scholar 

  30. Barnard JM, Downs GM (1992) J Chem Inf Comput Sci 32:644

    CAS  Google Scholar 

  31. Engels MF, Thielemans T, Verbinnen D, Tollenaere JP, Verbeeck R (2000) J Chem Inf Comput Sci 40:241

    CAS  Google Scholar 

  32. Tetko IV, Sushko I, Pandey AK, Zhu H, Tropsha A, Papa E, Oberg T, Todeschini R, Fourches D, Varnek A (2008) J Chem Inf Model 48:1733

    Article  CAS  Google Scholar 

  33. Hoffmann P, Warner B (2006) J Pharmacol Toxicol Methods 53:87

    Article  CAS  Google Scholar 

  34. Scholz EP, Zitron E, Kiesecker C, Lueck S, Kathofer S, Thomas D, Weretka S, Peth S, Kreye VA, Schoels W, Katus HA, Kiehn J, Karle CA (2003) Naunyn Schmiedebergs Arch Pharmacol 368:404

    Article  CAS  Google Scholar 

  35. Sanchez-Chapula JA, Ferrer T, Navarro-Polanco RA, Sanguinetti MC (2003) Mol Pharmacol 63:1051

    Article  CAS  Google Scholar 

  36. Mitcheson JS, Chen J, Lin M, Culberson C, Sanguinetti MC (2000) Proc Natl Acad Sci USA 97:12329

    Article  CAS  Google Scholar 

  37. Buyck C, Tollenaere J, Engels M, De Clerck F (2002) Designing drugs and crop protectants: processes, problems and solutions. EuroQSAR 2002

  38. Müller-Ehmsen J, Näbauer M, Schwinger RHG (1999) Naunyn Schmiedebergs Arch Pharmacol 359:60

    Article  Google Scholar 

  39. Schiffmann H, Rizouli V, Luers F, Hackmann F, Hoebel D, Pfahlberg A, Hellige G (2003) Pediatr Res 54:875

    Article  CAS  Google Scholar 

  40. Hoey A, Amos GJ, Wettwer E, Ravens U (1994) J Cardiovasc Pharmacol 23:907

    Article  CAS  Google Scholar 

  41. Budriesi R, Cosimelli B, Ioan P, Lanza CZ, Spinelli D, Chiarini A (2002) J Med Chem 45:3475

    Article  CAS  Google Scholar 

  42. Hansen RS, Diness TG, Christ T, Demnitz J, Ravens U, Olesen SP, Grunnet M (2006) Mol Pharmacol 69:266

    CAS  Google Scholar 

  43. Wang L, Chiamvimonvat N, Duff HJ (1993) J Pharmacol Exp Ther 264:1056

    CAS  Google Scholar 

  44. Shirayama T, Inoue D, Inoue M, Tatsumi T, Yamahara Y, Asayama J, Katsume H, Nakagawa M (1991) J Pharmacol Exp Ther 259:884

    CAS  Google Scholar 

Download references

Acknowledgments

This work was a collaborative effort of the ADME-Tox, Molecular Informatics, Enabling Technologies (HTS) departments and the Centre of Excellence for Cardiovascular Safety Research at J&J-PRD, Beerse. Our thanks go to all members of the departments involved and in particular to Danny Geyskens for the generation of the large high quality GPRA-assay dataset and Luc Gys for generation of the receptor binding data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca A. Fenu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(XLS 178 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fenu, L.A., Teisman, A., De Buck, S.S. et al. Cardio-vascular safety beyond hERG: in silico modelling of a guinea pig right atrium assay. J Comput Aided Mol Des 23, 883–895 (2009). https://doi.org/10.1007/s10822-009-9306-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-009-9306-z

Keywords

Navigation