Skip to main content
Log in

How the energy evaluation method used in the geometry optimization step affect the quality of the subsequent QSAR/QSPR models

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The quantitative influence of the choice of energy evaluation method used in the geometry optimization step prior to the calculation of molecular descriptors in QSAR and QSPR models was investigated. A total of 11 energy evaluation methods on three molecular datasets (toxicological compounds, aromatic compounds and PPARγ agonists) were studied. The methods employed were: MMFF94 s, MM3* with ε r (relative dielectric constant) = 1, MM3* with ε r  = 80, AM1, PM3, HF/STO-3G, HF/6-31G, HF/6-31G(d,p), B3LYP/STO-3G, B3LYP/6-31G, and B3LYP/6-31G(d,p). The 3D-descriptors used in the QSAR/QSPR models were calculated with commercially available molecular descriptor programs primarily directed toward pharmaceutical research. In order to evaluate the uncertainties involved in the QSAR/QSPR predictions bootstrapping was used to validate all models using 1,000 drawings for each data set. The scale free error-term, q 2, was used to compare the relative quality of the models resulting from different optimization methods on the same set of molecules. Depending on the dataset, the average 0.632 bootstrap estimated q 2 varies from 0.55 to 0.57 for the toxicological compounds, from 0.58 to 0.62 for the aromatic compounds, and from 0.69 to 0.75 for the PPARγ agonists. The B3LYP/6-31G(d,p) provided the best overall results, albeit the increase in q 2 was small in all cases. The results clearly indicate that the choice of the energy evaluation method has very limited impact. This study suggests that QSAR or QSPR studies might benefit from the choice of a rapid optimization method with little or no loss in model accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

QSPR:

Quantitative structure property relationship

QSAR:

Quantitative structure activity relationship

MM3*:

Allinger’s molecular mechanics

AM1:

Austin model 1

PM3:

Parameterized model 3, HF, Hartree–Fock

B3LYP:

The hybrid exchange–correlation functional based on work from Becke, Lee, Yang and Par

PLS:

Partial least squares

RMSD:

Root mean square distance

MCMM:

Monte Carlo multiple minimum

References

  1. Agüero-Chapin G, Varona-Santos J, de la Riva GA, Antunes A, Gonzáles-Villa T, Uriarte E, González-Díaz H (2009) J Proteome Res 8:2122–2128

    Article  CAS  Google Scholar 

  2. Pasha FA, Nez MM, Cho SJ, Ansari M, Mishra SK, Tiwari S (2009) Chem Biol Drug Des 73:537–544

    Article  CAS  Google Scholar 

  3. Jensen BF, Sørensen MD, Kissmeyer A-M, Björkling F, Sonne K, Engelsen SB, Nørgaard L (2003) J Comput Aid Mol Des 17:849–859

    Article  CAS  Google Scholar 

  4. Thorsteinson N, Ban F, Santos-Filho O, Tabaei SMH, Miguel-Queralt S, Underhill C, Cherkasov A, Hammond GL (2009) Toxicol Appl Pharm 234:47–57

    Article  CAS  Google Scholar 

  5. Foresman JB, Frisch A (1996) Exploring chemistry with electronic structure methods, 2nd edn. Gaussian, Pittsburgh, pp 157–158

    Google Scholar 

  6. Hudáky I, Hudáky I, Perczel A (2004) J Comput Chem 25:1522–1531

    Article  CAS  Google Scholar 

  7. Swart M, Snijders JG (2003) Theor Chem Acc 110:34–41

    CAS  Google Scholar 

  8. Bayari S, Saglam S, Ustundag HF (2005) J Mol Struct 726:225–232

    CAS  Google Scholar 

  9. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  10. Stewart JJP (1989) J Comput Chem 10:209–220

    Article  CAS  Google Scholar 

  11. Roothaan CCJ (1951) Rev Mod Phys 23:69–89

    Article  CAS  Google Scholar 

  12. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  13. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  14. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  15. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  16. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724–728

    Article  CAS  Google Scholar 

  17. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  18. Hariharan PC, Pople JA (1974) Mol Phys 27:209–214

    Article  CAS  Google Scholar 

  19. Gordon MS (1980) Chem Phys Lett 76:163–168

    Article  CAS  Google Scholar 

  20. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  21. Fletcher R, Reeves CM (1964) Computer J 7:149–154

    Article  Google Scholar 

  22. Stewart JPP (1989) Comput Chem 13:157–158

    Article  CAS  Google Scholar 

  23. Dennis JE, More JJ (1977) SIAM Rev 19:46–89

    Article  Google Scholar 

  24. He L, Jurs PC (2005) J Mol Graphics Modell 23:503–523

    Article  CAS  Google Scholar 

  25. Agantovic-Kustrin S, Beresford R, Pauzi A, Yusof M (2001) J Pharm Biomed Anal 26:241–254

    Article  Google Scholar 

  26. Rücker C, Scarsi M, Meringer M (2006) Bioorg Med Chem 14:5178–5195

    Article  CAS  Google Scholar 

  27. Dennington II R, Keith T, Milliam J, Eppinnett K, Hovell WL, Gilliland R (2003) GaussView, Version 3.09, Semichem, Inc., Shawnee Mission. http://www.gaussian.com

  28. Schrödinger LLC (2007) http://www.schrodinger.com

  29. Halgren TA (1999) J Comput Chem 20:720–729

    Article  CAS  Google Scholar 

  30. Polak E, Ribiere G (1969) Revenue Francaise Inform Rech Operationelle 16:35

    Google Scholar 

  31. Allinger NL, Yuh YH, Lii J-H (1989) J Am Chem Soc 111:8551–8566

    Article  CAS  Google Scholar 

  32. Hehre WJ, Stewart RF, Pople JA (1969) J Chem Phys 51:2657–2664

    Article  CAS  Google Scholar 

  33. Peng CY, Ayala PY, Schlegel HB, Frisch MJ (1996) J Comp Chem 17:49–56

    Article  CAS  Google Scholar 

  34. Vamp 6.5 (1997) Oxford Software Limited

  35. Talete srl (2009) DRAGON for Windows (Software for Molecular Descriptor Calculations) http://www.talete.mi.it

  36. Schuur JH, Selzer P, Gasteiger J (1996) J Am Chem Soc 36:334–344

    CAS  Google Scholar 

  37. Todeschini R, Lasagni M (1994) J Chemom 8:263–272

    Article  CAS  Google Scholar 

  38. Consonni V, Todeschini R, Pavan M, Gramatica P (2002) J Chem Inf Comput Sci 42:693–705

    CAS  Google Scholar 

  39. Martens H, Martens M, Næs T (2001) Multivariate analysis of quality. John Wiley, Chichester, pp 111–125

    Google Scholar 

  40. Wehrens R, Putter H, Buydens LMC (2000) Chemom Intell Lab Syst 54:35–52

    Article  CAS  Google Scholar 

  41. Efron B, Gong G (1983) Am Stat 37:36–48

    Article  Google Scholar 

  42. Consonni V, Ballabio D, Todeschini R (2009) J Chem Inf Model 49:1669–1678

    Article  CAS  Google Scholar 

  43. Howell JF, Games PA (1974) Brit J Math Stat Psy 27:72–81

    Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr VrevenT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 03 revision C02. Gaussian Inc, Wallingford

    Google Scholar 

  45. The Mathworks ™ (2009) USA, http://www.mathworks.com

  46. Puzyn T, Suzuki N, Haranczyk M, Rak J (2008) J Chem Inf Model 48:1174–1180

    Article  CAS  Google Scholar 

  47. Rocha GB, Freire RO, Simas AM, Stewart JJP (2006) J Comput Chem 27:1101–1111

    Article  CAS  Google Scholar 

  48. Stewart JJP (2007) J Mol Model 13:1173–1213

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the KU-LIFE strategic research project BEST for the financial funding of Åsmund Rinnan and the project Build Your Food ((FFS05-9) sponsored by the Ministry of Agriculture and Fisheries for the financial funding for Niels Johan Christensen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Åsmund Rinnan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 96 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinnan, Å., Christensen, N.J. & Engelsen, S.B. How the energy evaluation method used in the geometry optimization step affect the quality of the subsequent QSAR/QSPR models. J Comput Aided Mol Des 24, 17–22 (2010). https://doi.org/10.1007/s10822-009-9308-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-009-9308-x

Keywords

Navigation