Skip to main content
Log in

Docking flexible ligands in proteins with a solvent exposure- and distance-dependent dielectric function

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Physics-based force fields for ligand–protein docking usually determine electrostatic energy with distance-dependent dielectric (DDD) functions, which do not fully account for the dielectric permittivity variance between ~2 in the protein core and ~80 in bulk water. Here we propose an atom–atom solvent exposure- and distance-dependent dielectric (SEDDD) function, which accounts for both electrostatic and dehydration energy components. Docking was performed using the ZMM program, the AMBER force field, and precomputed libraries of ligand conformers. At the seeding stage, hundreds of thousands of positions and orientations of conformers from the libraries were sampled within the rigid protein. At the refinement stage, the ten lowest-energy structures from the seeding stage were Monte Carlo-minimized with the flexible ligand and flexible protein. A search was considered a success if the root mean square deviation (RMSD) of the ligand atoms in the apparent global minimum from the x-ray structure was <2 Å. Calculations on an examining set of 60 ligand–protein complexes with different DDD functions and solvent-exclusion energy revealed outliers in most of which the ligand-binding site was located at the protein surface. Using a training set of 16 ligand–protein complexes, which did not overlap with the examining set, we parameterized the SEDDD function to minimize the RMSD of the apparent global minima from the x-ray structures. Recalculation of the examining set with the SEDDD function demonstrated a 20% increase in the success rate versus the best-performing DDD function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AGM:

Apparent global minimum

RMSD:

Root mean square deviation

PDB:

Protein databank

MC:

Monte Carlo

MCM:

Monte Carlo-minimization

DDD:

Distance-dependent dielectric

SEDDD:

Solvent exposure- and distance-dependent dielectric

References

  1. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  2. Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49:5912–5931

    Article  CAS  Google Scholar 

  3. McInnes C (2007) Virtual screening strategies in drug discovery. Curr Opin Chem Biol 11:494–502

    Article  CAS  Google Scholar 

  4. Gohlke H, Klebe G (2002) Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angew Chem Int Ed Engl 41:2644–2676

    Article  CAS  Google Scholar 

  5. Gilson MK, Zhou HX (2007) Calculation of protein-ligand binding affinities. Annu Rev Biophys Biomol Struct 36:21–42

    Article  CAS  Google Scholar 

  6. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  Google Scholar 

  7. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  Google Scholar 

  8. Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261:470–489

    Article  CAS  Google Scholar 

  9. Goodsell DS, Morris GM, Olson AJ (1996) Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit 9:1–5

    Article  CAS  Google Scholar 

  10. Totrov M, Abagyan R (1997) Flexible protein-ligand docking by global energy optimization in internal coordinates. Proteins Suppl 1:215–220

    Article  Google Scholar 

  11. Meiler J, Baker D (2006) ROSETTALIGAND: protein-small molecule docking with full side-chain flexibility. Proteins 65:538–548

    Article  CAS  Google Scholar 

  12. Zhorov BS (1981) Vector method for calculating derivatives of energy of atom-atom interactions of complex molecules according to generalized coordinates. J Struct Chem 22:4–8

    Article  Google Scholar 

  13. Li Z, Scheraga HA (1987) Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc Natl Acad Sci USA 84:6611–6615

    Article  CAS  Google Scholar 

  14. Fogolari F, Zuccato P, Esposito G, Viglino P (1999) Biomolecular electrostatics with the linearized Poisson-Boltzmann equation. Biophys J 76:1–16

    Article  CAS  Google Scholar 

  15. Mallik B, Masunov A, Lazaridis T (2002) Distance and exposure dependent effective dielectric function. J Comput Chem 23:1090–1099

    Article  CAS  Google Scholar 

  16. Gilson MK (1995) Theory of electrostatic interactions in macromolecules. Curr Opin Struct Biol 5:216–223

    Article  CAS  Google Scholar 

  17. Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268:1144–1149

    Article  CAS  Google Scholar 

  18. Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 112:6127–6129

    Article  CAS  Google Scholar 

  19. Dominy BN, Brooks CL (1999) Development of a generalized born model parametrization for proteins and nucleic acids. J Phys Chem 103:3765–3773

    CAS  Google Scholar 

  20. Momany FA, McGuire RF, Burgess AW, Scheraga HA (1975) Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials of the naturally occurring amino acids. J Phys Chem 79:2361–2381

    Article  CAS  Google Scholar 

  21. Lazaridis T, Karplus M (1999) Effective energy function for proteins in solution. Proteins 35:133–152

    Article  CAS  Google Scholar 

  22. McCammon JA, Wolynes PG, Karplus M (1979) Picosecond dynamics of tyrosine side chains in proteins. Biochemistry 18:927–942

    Article  CAS  Google Scholar 

  23. Weiner SJ, Kollman PA, Case DA, Singh UC, Chio C, Alagona G, Profeta S, Weiner PK (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106:765–784

    Article  CAS  Google Scholar 

  24. Ewing TJ, Makino S, Skillman AG, Kuntz ID (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 15:411–428

    Article  CAS  Google Scholar 

  25. Morris GM, Goodsell DS, Huey R, Olson AJ (1996) Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J Comput Aided Mol Des 10:293–304

    Article  CAS  Google Scholar 

  26. Wang J, Kollman PA, Kuntz ID (1999) Flexible ligand docking: a multistep strategy approach. Proteins 36:1–19

    Article  CAS  Google Scholar 

  27. Finkelstein AV, Ptitsyn O (2002) Protein physics. Academic Press, London

    Google Scholar 

  28. Teschke O, Ceotto G, de Souza EF (2001) Interfacial water dielectric-permittivity-profile measurements using atomic force microscopy. Phys Rev E Stat Nonlin Soft Matter Phys 64:011605

    CAS  Google Scholar 

  29. Rubinstein A, Sherman S (2007) Evaluation of the influence of the internal aqueous solvent structure on electrostatic interactions at the protein-solvent interface by nonlocal continuum electrostatic approach. Biopolymers 87:149–164

    Article  CAS  Google Scholar 

  30. Bockris JO, Reddy AKN (1977) Modern electrochemistry. Plenum Press, New York

    Google Scholar 

  31. Mehler EL, Solmajer T (1991) Electrostatic effects in proteins: comparison of dielectric and charge models. Protein Eng 4:903–910

    Article  CAS  Google Scholar 

  32. Gelpi JL, Kalko SG, Barril X, Cirera J, de La Cruz X, Luque FJ, Orozco M (2001) Classical molecular interaction potentials: improved setup procedure in molecular dynamics simulations of proteins. Proteins 45:428–437

    Article  CAS  Google Scholar 

  33. Morreale A, Gil-Redondo R, Ortiz AR (2007) A new implicit solvent model for protein-ligand docking. Proteins 67:606–616

    Article  CAS  Google Scholar 

  34. Morris GarrettM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  35. Augspurger JD, Scheraga HA (1996) An efficient, differentiable hydration potential for peptides and proteins. J Comput Chem 17:1549–1558

    Article  CAS  Google Scholar 

  36. Blanchet J, Lin SX, Zhorov BS (2005) Mapping of steroids binding to 17 beta-hydroxysteroid dehydrogenase type 1 using Monte Carlo energy minimization reveals alternative binding modes. Biochemistry 44:7218–7227

    Article  CAS  Google Scholar 

  37. Zhorov BS, Bregestovski PD (2000) Modeling chloride channels of glycine and GABA receptors with blockers. Biophys J 78:A2092

    Article  Google Scholar 

  38. Tikhonov DB, Zhorov BS (2007) Sodium channels: ionic model of slow inactivation and state-dependent drug binding. Biophys J 93:1557–1570

    Article  CAS  Google Scholar 

  39. Bruhova I, Zhorov BS (2007) Monte Carlo-energy minimization of correolide in the Kv1.3 channel: possible role of potassium ion in ligand-receptor interactions. BMC Struct Biol 7(5):1–13

    Google Scholar 

  40. Zhorov BS (1983) Vector method for calculating derivatives of the energy deformation of valence angles and torsion energy of complex molecules according to generalized coordinates. J Struct Chem 23:649–655

    Article  Google Scholar 

  41. Weiner SJ, Kollman PA, Nguyen DT, Case DA (1986) An all atom force-field for simulations of proteins and nucleic-acids. J Comput Chem 7:230–252

    Article  CAS  Google Scholar 

  42. Brooks CL, Pettitt BM, Karplus M (1985) Structural and energetic effects of truncating long ranged interactions in ionic polar fluids. J Chem Phys 83:5897–5908

    Article  CAS  Google Scholar 

  43. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) AM1: a new general purpose quantum mechanical model. J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  44. Laskowski RA, Hutchinson EG, Michie AD, Wallace AC, Jones ML, Thornton JM (1997) PDBsum: a web-based database of summaries and analyses of all PDB structures. Trends Biochem Sci 22:488–490

    Article  CAS  Google Scholar 

  45. Perola E, Walters WP, Charifson PS (2004) A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins 56:235–249

    Article  CAS  Google Scholar 

  46. Zhorov BS, Lin SX (2000) Monte Carlo-minimized energy profile of estradiol in the ligand-binding tunnel of 17 beta-hydroxysteroid dehydrogenase: atomic mechanisms of steroid recognition. Proteins 38:414–427

    Article  CAS  Google Scholar 

  47. Hopfinger AJ, Battershell RD (1976) Application of SCAP to drug design. 1. Prediction of octanol-water partition coefficients using solvent-dependent conformational analyses. J Med Chem 19:569–573

    Article  CAS  Google Scholar 

  48. Teague SJ (2003) Implications of protein flexibility for drug discovery. Nat Rev Drug Discov 2:527–541

    Article  CAS  Google Scholar 

  49. Cavasotto CN, Abagyan RA (2004) Protein flexibility in ligand docking and virtual screening to protein kinases. J Mol Biol 337:209–225

    Article  CAS  Google Scholar 

  50. Ferrara P, Gohlke H, Price DJ, Klebe G, Brooks CL 3rd (2004) Assessing scoring functions for protein-ligand interactions. J Med Chem 47:3032–3047

    Article  CAS  Google Scholar 

  51. Cavasotto CN, Orry AJ, Abagyan RA (2003) Structure-based identification of binding sites, native ligands and potential inhibitors for G-protein coupled receptors. Proteins 51:423–433

    Article  CAS  Google Scholar 

  52. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy minimization and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  53. Hassan SA (2007) Liquid-structure forces and electrostatic modulation of biomolecular interactions in solution. J Phys Chem B 111:227–241

    Article  CAS  Google Scholar 

  54. Venkatarangan P, Hopfinger AJ (1999) Prediction of ligand-receptor binding thermodynamics by free energy force field three-dimensional quantitative structure-activity relationship analysis: applications to a set of glucose analogue inhibitors of glycogen phosphorylase. J Med Chem 42:2169–2179

    Article  CAS  Google Scholar 

  55. Jorov A, Zhorov BS, Yang DS (2004) Theoretical study of interaction of winter flounder antifreeze protein with ice. Protein Sci 13:1524–1537

    Article  CAS  Google Scholar 

  56. Tikhonov DB, Zhorov BS (2008) Molecular modeling of benzothiazepine binding in the L-type calcium channel. J Biol Chem 283:17594–17604

    Article  CAS  Google Scholar 

  57. Tikhonov DB, Zhorov BS (2009) Structural model for dihydropyridine binding to L-type calcium channels. J Biol Chem 284:19006–19017

    Article  CAS  Google Scholar 

  58. Cheng RC, Tikhonov DB, Zhorov BS (2009) Structural model for phenylalkylamine binding to L-type calcium channels. J Biol Chem 284:28332–28342

    Article  CAS  Google Scholar 

  59. Garden DP, Bruhova I, Zhorov BS (2010) In-silico activation and deactivation of the pore domains of voltage- and ligand-gated ion channels. Biophys J Supplement 2687-Pos

Download references

Acknowledgments

We thank Denis Tikhonov for helpful discussions. This work was made possible by the facilities of the Shared Hierarchical Academic Research Computing Network (SHARCNET: www.sharcnet.ca). The study was supported by the grant MOP-53229 to BSZ from the Canadian Institutes of Health Research and a Graduate Scholarship to Daniel Garden from SHARCNET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris S. Zhorov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garden, D.P., Zhorov, B.S. Docking flexible ligands in proteins with a solvent exposure- and distance-dependent dielectric function. J Comput Aided Mol Des 24, 91–105 (2010). https://doi.org/10.1007/s10822-009-9317-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-009-9317-9

Keywords

Navigation