Skip to main content

Advertisement

Log in

Development of predictive pharmacophore model for in silico screening, and 3D QSAR CoMFA and CoMSIA studies for lead optimization, for designing of potent tumor necrosis factor alpha converting enzyme inhibitors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A chemical feature-based pharmacophore model was developed for Tumor Necrosis Factor-α converting enzyme (TACE) inhibitors. A five point pharmacophore model having two hydrogen bond acceptors (A), one hydrogen bond donor (D) and two aromatic rings (R) with discrete geometries as pharmacophoric features was developed. The pharmacophore model so generated was then utilized for in silico screening of a database. The pharmacophore model so developed was validated by using four compounds having proven TACE inhibitory activity which were grafted into the database. These compounds mapped well onto the five listed pharmacophoric features. This validated pharmacophore model was also used for alignment of molecules in CoMFA and CoMSIA analysis. The contour maps of the CoMFA/CoMSIA models were utilized to provide structural insight for activity improvement of potential novel TACE inhibitors. The pharmacophore model so developed could be used for in silico screening of any commercial/in house database for identification of TACE inhibiting lead compounds, and the leads so identified could be optimized using the developed CoMSIA model. The present work highlights the tremendous potential of the two mutually complementary ligand-based drug designing techniques (i.e. pharmacophore mapping and 3D-QSAR analysis) using TACE inhibitors as prototype biologically active molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature 385:729–733. doi:10.1038/385729a0

    Article  CAS  Google Scholar 

  2. Vassalli P (1992) The pathophysiology of tumor necrosis factors. Ann Rev Immunol 10:411–452. doi:10.1146/annurev.iy.10.040192.002211

    Article  CAS  Google Scholar 

  3. Maini RN, Elliott MJ, Brennan FM, Feldmann M (1995) Beneficial effects of tumour necrosis factor-alpha (TNF-alpha) blockade in rheumatoid arthritis (RA). Clin Exp Immunol 101:207–212

    CAS  Google Scholar 

  4. Elliott MJ, Maini RN, Feldmann M, Long-Fox A, Charles P, Bijl H, Woody JN (1994) Repeated therapy with monoclonal antibody to tumour necrosis factor alpha (cA2) in patients with rheumatoid arthritis. Lancet 344:1125–1127

    Article  CAS  Google Scholar 

  5. Dixon SL, Smondyrev AM, Rao SN (2006) PHASE: a novel approach to pharmacophore modeling and 3D database searching. Chem Biol Drug Des 67:370–372. doi:10.1111/j.1747-0285.2006.00384.x

    Article  CAS  Google Scholar 

  6. Mutasem O, Taha LA, Dahabiyesh YB, Hiba Z, Suhair S (2008) Combining ligand-based pharmacophore modeling, quantitative structure-activity relationship analysis and in silico screening for the discovery of new potent hormone sensitive lipase inhibitors. J Med Chem 51:6478–6494. doi:10.1021/jm800718k

    Article  Google Scholar 

  7. Maskos K, Fernandez-Catalan C, Huber R, Bourenkov GP, Bartunik H, Ellestad GA, Reddy P, Wolfson MF, Rauch CT, Castner BJ, Davis R, Clarke HR, Petersen M, Fitzner JN, Cerretti DP, March CJ, Paxton RJ, Black RA, Bode W (1998) Crystal structure of the catalytic domain of human tumor necrosis factor-α-converting enzyme. Proc Natl Acad Sci USA 95:3408–3412

    Article  CAS  Google Scholar 

  8. Newton RC, Decicco CP (1999) Therapeutic potential and strategies for inhibiting tumor necrosis factor-α. J Med Chem 42:2295–2314. doi:10.1021/jm980541n

    Article  CAS  Google Scholar 

  9. Grootveld M, McDermott M (2003) BMS-561392 (Bristol-Myers Squibb). Curr Opin Investig Drugs 4:598-602. PMID: 12833656

    Google Scholar 

  10. Mustata GI, Brigo A, Briggs JM (2004) HIV-1 integrase pharmacophore model derived from diverse classes of inhibitors. Bioorg Med Chem Lett 14:1447–1454. doi:10.1016/j.bmcl.2004.01.027

    Article  CAS  Google Scholar 

  11. Murumkar PR, Giridhar R, Yadav MR (2008) 3D-quantitative structure–activity relationship studies on benzothiadiazepine hydroxamates as inhibitors of tumor necrosis factor-α converting enzyme. Chem Biol Drug Des 71:363–373. doi:10.1111/j.1747-0285.2008.00639.x

    Article  CAS  Google Scholar 

  12. Murumkar PR, Dasgupta SD, Zambre VP, Giridhar R, Yadav MR (2009) Development of predictive 3D-QSAR CoMFA and CoMSIA models for α-aminohydroxamic acid-derived tumor necrosis factor-α converting enzyme inhibitors. Chem Biol Drug Des 73:97–107. doi:10.1111/j.1747-0285.2008.00737.x

    Article  CAS  Google Scholar 

  13. Murumkar PR, Dasgupta SD, Chandani SR, Giridhar R, Yadav MR (2010) Novel TACE inhibitors in drug discovery: a review of patented compounds. Expert Opin Ther Pat 20:31–57. doi:10.1517/13543770903465157

    Article  CAS  Google Scholar 

  14. Dasgupta S, Murumkar PR, Giridhar R, Yadav MR (2009) Current perspective of TACE inhibitors: a review. Bioorg Med Chem 17:444–459. doi:10.1016/j.bmc.2008.11.067

    Article  CAS  Google Scholar 

  15. Dasgupta S, Murumkar PR, Giridhar R, Yadav MR (2009) Studies on novel 2-imidazolidinones and tetrahydropyrimidin-2(1H)-ones as potential TACE inhibitors: design, synthesis, molecular modeling, and preliminary biological evaluation. Bioorg Med Chem 17:3604–3617. doi:10.1016/j.bmc.2009.04.003

    Article  CAS  Google Scholar 

  16. Yadav MR, Dasgupta S, Murumkar PR, Giridhar R (2010) In: Berhardt L (ed) Advances in medicine and biology, vol 3. Nova Science, New York (in press)

  17. Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1 methodology and preliminary results. Computer-Aided Mol Des 20:647–667. doi:10.1007/s10822-006-9087-6

    Article  CAS  Google Scholar 

  18. Duan JJ, Chen L, Wasserman ZR, Lu Z, Liu RQ, Covington MB, Qian M, Hardman KD, Magolda RL, Newton Christ DD, Wexler RR, Decicco CP (2002) Discovery of γ-lactam hydroxamic acids as selective inhibitors of tumor necrosis factor-α converting enzyme: design, synthesis, and structure−activity relationships. J Med Chem 45:4954–4957. doi:10.1021/jm0255670

    Article  CAS  Google Scholar 

  19. Duan JJ, Lu Z, Xue C, He X, Seng JL, Roderick JJ, Wasserman ZR, Liu R, Covington MB, Magolda RL, Newton RC, Trzaskos JM, Decicco CP (2003) Discovery of N-Hydroxy-2-(2-oxo-3-pyrrolidinyl)acetamides as potent and selective inhibitors of tumor necrosis factor-α converting enzyme (TACE). Bioorg Med Chem Lett 13:2035–2040. doi:10.1016/S0960-894X(03)00313-5

    Article  CAS  Google Scholar 

  20. Xue C, He X, Roderick J, Corbett RL, Duan JJ, Liu RQ, Covinton MB, Qian M, Ribadeneira MD, Vaddi K, Christ DD, Newton RC, Trzaskos JM, Magolda RL, Wexler RR, Decicco CP (2003) Rational design, synthesis and structure—activity relationships of a cyclic succinate series of TNF-α converting enzyme inhibitors. Part 2: lead optimization. Bioorg Med Chem Lett 13:4299–4304. doi:10.1016/j.bmcl.2003.09.057

    Article  CAS  Google Scholar 

  21. Gilmore JL, King Bryan W, Asakawa N, Harrison K, Tebben A, Sheppeck JE II, Liu RQ, Covington M, Duan JJW (2007) Synthesis and structure–activity relationship of a novel, non-hydroxamate series of TNF-α converting enzyme inhibitors. Bioorg Med Chem Lett 17:4678–4682. doi:10.1016/j.bmcl.2007.05.100

    Article  CAS  Google Scholar 

  22. Duan JJW, Lu Z, Wasserman ZR, Liu R, Convington MB, Decicco CP (2005) Non-hydroxamate 5-phenylpyrimidine-2, 4, 6-trione derivatives as selective inhibitors of tumor necrosis factor-α converting enzyme. Bioorg Med Chem Lett 15:2970–2973. doi:10.1016/j.bmcl.2005.04.039

    Article  CAS  Google Scholar 

  23. Gilmore JL, King BW, Harris C, Maduskuie T, Mercer SE, Liu R, Convington MB, Qian M, Ribadeneria MD, Vaddi K, Trzaskos JM, Newton RC, Decicco CP, Duan JJW (2006) Synthesis and structure–activity relationship of a novel, achiral series of TNF-α converting enzyme inhibitors. Bioorg Med Chem Lett 16:2699–2704. doi:10.1016/j.bmcl.2006.02.015

    Article  CAS  Google Scholar 

  24. Sheppeck JE, Gilmore JL, Yang A, Wasserman ZR, Decicco CP, Duan JJW (2007) A molecular modeling analysis of novel non-hydroxamate inhibitors of TACE. Bioorg Med Chem Lett 17:1408–1412. doi:10.1016/j.bmcl.2006.11.082

    Article  CAS  Google Scholar 

  25. Sheppeck JE, Gilmore JL, Yang A, Chen X, Xue CB, Roderick J, Liu RQ, Covington MB, Decicco CP, Duan JJW (2007) Discovery of novel hydantoins as selective non-hydroxamate inhibitors of tumor necrosis factor-α converting enzyme (TACE). Bioorg Med Chem Lett 17:1413–1417. doi:10.1016/j.bmcl.2006.11.089

    Article  CAS  Google Scholar 

  26. Ott GR, Asakawa N, Lu Z, Liu RQ, Convington MB, Vaddi K, Quin M, Newton RC, Christ D, Traskos JM, Decicco CP, Duan JJW (2008) α, β-Cyclic-β-benzamido hydroxamic acids: novel templates for the design, synthesis, and evaluation of selective inhibitors of TNF-α converting enzyme (TACE). Bioorg Med Chem Lett 18:694–699. doi:10.1016/j.bmcl.2007.11.059

    Article  CAS  Google Scholar 

  27. Ott GR, Asakawa N, Liu RQ, Convington MB, Vaddi K, Newton RC, Traskos JM, Christ DD, Galya L, Cholz T, Marshall W, Duan JJW (2008) α,β-Cyclic-β-benzamido hydroxamic acids: novel oxaspiro[4.4]nonane templates for the discovery of potent, selective, orally bioavailable inhibitors of tumor necrosis factor-α converting enzyme (TACE). Bioorg Med Chem Lett 18:1288–1292. doi:10.1016/j.bmcl.2008.01.030

    Article  CAS  Google Scholar 

  28. Lu Z, Ott GR, Anad R, Liu RQ, Convington MB, Vaddi K, Qian M, Newton RC, Christ DD, Traskos JM, Duan JJW (2008) Potent, selective, orally bioavailable inhibitors of tumor necrosis factor-α converting enzyme (TACE): discovery of indole, benzofuran, imidazopyridine and pyrazolopyridine P1′ substituents. Bioorg Med Chem Lett 18:1958–1962. doi:10.1016/j.bmcl.2008.01.120

    Article  CAS  Google Scholar 

  29. Ott GR, Asakawa N, Lu Z, Anad R, Liu RQ, Convington MB, Vaddi K, Qian M, Newton RC, Christ DD, Traskos JM, Duan JJW (2008) Potent, exceptionally selective, orally bioavailable inhibitors of TNF-α converting enzyme (TACE): novel 2-substituted-1H-benzo[d]imidazol-1-yl)methyl)benzamide P1′ substituents. Bioorg Med Chem Lett 18:1577–1582. doi:10.1016/j.bmcl.2008.01.075

    Article  CAS  Google Scholar 

  30. SYBYL 7.0 (1699) Tripos Inc., 1st Louis

  31. http://www.expasy.org/blast

  32. Entry A7Y1V1: http://www.expasy.org/uniport/A7Y1V1

Download references

Acknowledgments

We thank All India Council for Technical Education (A.I.C.T.E), New Delhi, India for financial support [File No. 8023/BOR/RID/RPS-148/2007-08]. Prashant R. Murumkar is thankful to A.I.C.T.E, New Delhi, India for the award of National Doctoral Fellowship [F.NO:1–10/FD/NDF-PG/(41)/2006–07].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mange Ram Yadav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murumkar, P.R., Zambre, V.P. & Yadav, M.R. Development of predictive pharmacophore model for in silico screening, and 3D QSAR CoMFA and CoMSIA studies for lead optimization, for designing of potent tumor necrosis factor alpha converting enzyme inhibitors. J Comput Aided Mol Des 24, 143–156 (2010). https://doi.org/10.1007/s10822-010-9322-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-010-9322-z

Keywords

Navigation